EGU24-9437, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-9437
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Creeping sections on continental strike slip faults as the signature of deep fluid upwelling

Romain Jolivet1,2, Dmitry Garagash3, Dublanchet Pierre4, and Jorge Jara5
Romain Jolivet et al.
  • 1École Normale Supérieure, PSL University, Département de Géosciences, Paris, France (romain.jolivet@ens.fr)
  • 2Institut Universitaire de France, Paris, France
  • 3Department of Civil and Resource Engineering, Dalhousie University, Halifax, Canada
  • 4MINES ParisTech, PSL Research University, Centre de Géosciences, Fontainebleau, France
  • 5Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Postdam, Germany

Aseismic slip has been recognized over the last 50 years as one of the modes of elastic stress accommodation by large tectonic faults. Long strike slip faults have been imaged with InSAR and scrutinized with GNSS networks and creepmeters, revealing the strikingly ubiquitous occurrence of aseismic slip globally. From the 600-km-long creeping section of the Chaman to the 70 km-long Ismetpasa creeping section along the North Anatolian Fault, geodetic imaging illustrates the rich behavior of such aseismic slip, from mm-scale transient episodes of slip to seemingly continuously sliding fault segments.

Most models explaining the occurrence of aseismic slip along continental faults rely entirely on an ad hoc parameterization of the frictional rheology of the fault. While the friction law governing slip along faults has been determined from laboratory experiments, the inference of the constitutive parameters of such friction law entirely derives from reproducing geodetic data in most cases. In particular, most creeping sections are interpreted as the signature of rate-strengthening material, diffusing stress through stable sliding. However, most rocks at seismogenic depths exhibit a rate-weakening behavior and some even show transient episodes of slip incompatible with purely strengthening properties. In addition, other mechanisms, including complex geometric configuration of faults or fluid circulation may offer the conditions for slow slip. Therefore, the direct inference of constitutive properties of a fault zone from kinematic observations may not be simple.

We propose here a model in which upwelling of fluids sourced in the upper mantle through a vertical fault zone leads to the conditions for slow slip, irrespective of the fault constitutive properties. We map aseismic slip along three different fault zones, including the North Anatolian Fault (Turkiye), the San Andreas Fault (USA) and the Leyte fault (Philippines) and find a systematic relationship between the effective locking depth and the occurrence of aseismic slip. Our model explains this modulation of locking depth along strike and the subsequent modulation of surface shear stressing rate with the along strike variation in the mantle fluid source. This model applied to fault segments with relatively high mantle fluid source leads to low effective normal stress, large nucleation size of a frictional instability, and predicts occurrences of shallow aseismic slip. We perform numerical modeling to show that the critical parameter is the flux of upwelling fluid through the fault zone, which increase leads to the widening of the near-surface region of aseismic slip and transition to full-fault aseismic slip at large enough flux. We finally discuss the potential sources of fluids explaining such behavior.

How to cite: Jolivet, R., Garagash, D., Pierre, D., and Jara, J.: Creeping sections on continental strike slip faults as the signature of deep fluid upwelling, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-9437, https://doi.org/10.5194/egusphere-egu24-9437, 2024.