EGU24-6361, updated on 08 Mar 2024
https://doi.org/10.5194/egusphere-egu24-6361
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Pleistocene near-surface earthquake events recorded in high-porosity fluvial sandstone sequence (Crotone forearc Basin, Italy)

Mattia Pizzati1, Anita Torabi2, Luca Aldega3, Cristian Cavozzi1, Fabrizio Storti1, and Fabrizio Balsamo1
Mattia Pizzati et al.
  • 1University of Parma, Department of Chemistry, Life Sciences, and Environmental Sustainability, NEXT - Natural and Experimental Tectonics Research Group, 43124, Parma, Italy.
  • 2University of Oslo, Department of Geosciences, Postbox 1047, Blindern 0316, Oslo, Norway.
  • 3Sapienza University of Rome, Department of Earth Sciences, 00185, Rome, Italy.

In scientific literature, the seismogenic zone is defined as the portion of the Earth's upper crust where most hypocenters are located. According to seismological data collected in different geodynamic settings and under different kinematics, the depth interval of the unstable seismogenic zone is typically comprised between 5 and 35 km. However, worldwide earthquake distribution shows extensive occurrence of shallow seismicity with hypocentral depths < 5 km, shallower than the unstable seismogenic zone’s upper boundary. Such shallow seismic sources represent potential additional threats and deserve to be thoroughly investigated and included in current seismic hazard evaluations.

To shed light on this subject, we studied a Pleistocene-age fault system which affects poorly consolidated deltaic, sandstone-dominated sequence composing the Late Pliocene-Pleistocene infilling of the Crotone forearc Basin, in South Italy. We focused on an extensional fault zone exposed along the walls of the Vitravo Creek Canyon, displaying a maximum displacement of ~50 m, with a sharp master fault surface separating the fault blocks. The footwall block is composed of an 8-10 m-wide damage zone with extensive occurrence of deformation bands and subsidiary faults. Towards the master fault, a 1-1.5 m-wide mixing zone is located, characterized by tectonic mixing of sandstone strata with different textural features due to the presence of high-displacement boundary faults. Eventually, the fault core is composed of ~1 m-wide, tightly cemented, cataclastic volume with subsidiary slip surfaces and deformation bands. The hanging wall damage zone shows a wealth of thin deformation bands with diminishing frequency moving away from the master fault. The master fault, where most of the displacement is accommodated, is decorated with a 1-2 cm-thick dark gouge layer. The dark gouge can be traced along the entire fault exposure and maintains a straight pattern parallel to the master fault. Locally it appears to have been injected into the fractures affecting the underneath calcite-cemented fault core. Microstructural analysis allows to document a severe and asymmetric cataclastic grain size reduction, with the footwall side of the dark gouge being more comminuted than the hanging wall side. Grain size analysis reveals a strong mechanical comminution of particles in the 70-500 µm size interval. XRD analysis conducted on the < 2 µm grain-size fraction of the gouge layer displays short-ordered illite-smectite mixed layers which support deformation temperatures of 100-120°C. Conversely, XRD analysis performed on clay fraction of the fault core, at few cm distance from the dark gouge layer, indicates temperatures < 50°C, consistent with the expected shallow burial conditions (< 800 m). We link the localized temperature increase within the dark gouge with frictional heating during coseismic deformation. Combining the microstructural, grain size and mineralogical data could facilitate the study of coseismic deformation affecting high-porosity granular materials at near surface conditions. Such multidisciplinary study could be useful to enhance the earthquake risk and hazard evaluation in seismically active geodynamic settings.

How to cite: Pizzati, M., Torabi, A., Aldega, L., Cavozzi, C., Storti, F., and Balsamo, F.: Pleistocene near-surface earthquake events recorded in high-porosity fluvial sandstone sequence (Crotone forearc Basin, Italy), EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6361, https://doi.org/10.5194/egusphere-egu24-6361, 2024.