EGU24-19168, updated on 11 Mar 2024
https://doi.org/10.5194/egusphere-egu24-19168
EGU General Assembly 2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Molecules and microbes: monitoring peatland health below the surface

Nicholle Bell, Ezra Kitson, Gianluca Trifiro, and Richard York
Nicholle Bell et al.
  • Edinburgh, Chemistry, EDIINBURGH, United Kingdom of Great Britain – England, Scotland, Wales (nicholle.bell@ed.ac.uk)

Peatlands are organic matter rich (with over 60% organic matter) ecosystems that act as ‘carbon sinks’, storing many times the carbon stored by Earth’s forests. Peatlands act as sponges storing excess water from rain events and releasing it slowly, a mechanism that not only mitigates floods but also filters drinking waters. However, peatlands can only conduct these vital services when healthy and functioning, with a near surface water table and anoxic acidic conditions below the surface. Unfortunately, 80% of UK peatlands have been assessed as damaged mainly via drainage for repurposing the land for other uses. Rewetting peatlands by installing dams is one of the most common methods to restore these damaged bogs. While there is a large amount of evidence that rewetting restores the water table, questions remain whether rewetting successfully restores peatlands to their full health. To answer this question, we need to know what is happening below the surface and examine the roles of key players in peat formation and carbon cycling, namely the microbes and the carbon-containing molecules. It is not clear which of these players is more important, or how they depend on each other. To address this question, we are using the latest technologies (DNA/RNA sequencing, NMR spectroscopy and FT-ICR mass spectrometry) to uncover who they are, how they interact and how they are impacted by drainage and rewetting. The task is not easy as peat is an uncharacterised complex mixture on a molecular and microbial level and the key players could be found in different phases (solid or liquid). In this presentation, I will provide a brief overview of what insights the technologies we are using provide for below the surface characterisation of UK peatlands.

How to cite: Bell, N., Kitson, E., Trifiro, G., and York, R.: Molecules and microbes: monitoring peatland health below the surface, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-19168, https://doi.org/10.5194/egusphere-egu24-19168, 2024.