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S1. Calculating the slope of the power spectrum 

In this paper we found that the slope of the power spectrum, Sfreq, was a key feature of tree motion. Here we outline how it was 45 

calculated in detail and how sensitive the results are to the calculation method. 

 

Each tree has two horizontal axes of motion and we applied a 10-minute high-pass Butterworth filter to remove offsets from 

each channel separately, and then calculated the resultant tree motion. We resampled each one-hour time-series to 4 Hz and 

calculated the power spectral density using Welch’s method (pwelch, in Matlab). We then plot the log-transformed power 50 

spectral density (y-axis) against the log-transformed frequency (x-axis) and fit a linear model to the data across the specified 

frequency range to obtain the slope of the power spectrum, Sfreq. The fitting method and frequency range are somewhat 

arbitrary, and we test multiple options below. We noted that the high frequency range showed the most variation and the 

frequency ranges up to 2 Hz were more significant in the analyses, we therefore test this frequency range in more detail. 
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Figure S1 - Power spectra for example forest conifer (left), forest broadleaf (middle) and open-grown broadleaf (right) in high 

medium and low wind speeds (colours).    
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We tested two methods to fit linear models to the power spectra: (1) using the output of pwelch directly and (2) logarithmically 60 

re-sampling the output to give evenly distributed log-transformed data. We found that this re-sampling altered the absolute 

values of the slope slightly, but did not alter the observed trends.  

 

Figure S2 - Linear models of the power spectra to calculate slope using output of pwelch directly (left) and logarithmically re-

sampled output (right). The frequency interval used in the above is 0.3 - 2 Hz.  65 

 

We tested three frequency intervals over which to fit the linear models, 0.05-2, 0.3-2 and 1-2 Hz. The first two intervals 

produced similar trends with slightly different absolute values. The shortest interval had a similar trend but was partially 

obscured by an increased level of noise.  
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Figure S3 - Slope of the power spectrum against wind speed for three example trees (same as Figure S1) for three different frequency 

ranges.   

 75 

Figure S4 – Same as figure S3 but calculated using the logarithmically re-sampled power spectrum output.  

Overall, we find that the trend described in Figure 4d of the main text is robust to the different frequency ranges and fitting 

methods.  

 

We also tested the effect of the Butterworth high-pass filter on the power spectra. The purpose of this filter is to remove offsets 80 

in the tree motion data. These offsets vary slowly so we chose a 10-minute high-pass filter. We found this had no significant 

effect on the power spectrum in the region of interest (0.05-2 Hz).  
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Figure S5 – Time-series for the same three trees as figures S1, 3 and 4 with and without the Butterworth high-pass filter.  85 

 

 

 

 

S2. Example power spectra at original resolution 90 

 

In the following we provide power spectra of tree motion (colours) and locally measured wind speed time-series (black) for 

the sites in which we have sufficient data. These are the forest broadleaf trees (figure S5) and forest conifers (figure S6). These 

power spectra were calculated at the original sampling frequency (all analysis in the main text was re-sampled to 4Hz) and we 

therefore pre-multiplied the y-axes by the frequency to allow a direct comparison between sites.  95 
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Figure S6 – power spectra for hourly samples of tree motion data (coloured lines) and wind speeds (black lines) at high, medium 

and low wind speed. Y-axis labels are the site names. The y-axis can be thought of as a measure of the relative energy content, in 

arbitrary units. The red dashed lines show the -2/3 slope as a reference point. The right-hand panels shows the difference between 100 
high and low wind speeds and the horizontal dashed line represents 0 change. Numbers in the top right-hand corners show the mean 

hourly wind speeds for the data sample. All of these sites are forest broadleaf trees. 
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Figure S7 - Same as figure S6 but for sites in conifer forests. 
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S3. Correlation of all tree motion features  

 

Figure S8 – Correlation plot for the tree motion features. Top panel shows tree height and diameter and only those features which 120 
are strongly correlated with them (R2>0.3). Bottom panels show all features used in this study. Colours represent strength of 

correlation as determined by the coefficient of determination (R2) 
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S4. Correlation between tree size and tree motion features 125 

We considered a subset of trees (N=168, 86 forest broadleaves, 54 forest conifers and 28 open-grown broadleaves) for which 

height, dbh and tree motion data were available. In order to test which features were closely related to tree size, while 

accounting for tree types, we predicted tree height and diameter from the tree motion features using a multiple linear regression 

including tree type in the model as a factor (Table 3). The best single predictor of dbh was Sfreq while 𝑓0 was the second best 

predictor of tree height after a catch22 feature (CO_Embed2_Dist_tau_d_expfit_meandiff). The factor “tree type” was the 9th 130 

most explanatory feature in the model of height and 6th in the model of dbh. This demonstrates that tree size is more strongly 

related to tree motion features than it is to tree type. Therefore, the relationship between tree type and tree motion features is 

unlikely to be confounded by differences in tree size, and hence the results of our classification analyses are valid. 

 

Model for DBH R2 AIC 

Power spectral slope  (𝑆𝑓𝑟𝑒𝑞)  0.05 – 2 Hz  0.308 174 

IN_AutoMutualInfoStats_40_gaussian_fmmi 0.356 163 

CO_FirstMin_ac 0.396 152 

SB_MotifThree_quantile_hh 0.426 144 

FC_LocalSimple_mean3_stderr 0.477 128 

DN_OutlierInclude_p_001_mdrmd 0.494 123 

Power spectral slope  (𝑆𝑓𝑟𝑒𝑞)  1 – 2 Hz  0.509 119 

CO_f1ecac 0.530 111 

Tree type 0.546 108 
 135 

 

Table S1 - Summary statistics from the most parsimonious multiple linear models relating tree DBH to tree motion features. Each 

feature is added to the model sequentially in order of the largest decrease in AIC. A brief description of the catch22 features can be 

found in the next section (S5) and a more detailed description in the associated publication (Lubba et al 2019).  
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Model for height R2 AIC 

CO_Embed2_Dist_tau_d_expfit_meandiff 0.127 1272 

Fundamental frequency (𝑓
0
) 0.194 1259 

SB_TransitionMatrix_3ac_sumdiagcov 0.236 1250 

Power spectral slope  (𝑆𝑓𝑟𝑒𝑞)  0.05 – 2 Hz  0.286 1239 

PD_PeriodicityWang_th0_01 0.318 1232 

Number of wavelet peaks 0.329 1230 

Tree type 0.353 1226 

SP_Summaries_welch_rect_centroid 0.364 1224 

CO_HistogramAMI_even_2_5 0.385 1219 
 

 150 

Table S2 - Summary statistics from the most parsimonious multiple linear models relating tree height to tree motion features. Each 

feature is added to the model sequentially in order of the largest decrease in AIC. A brief description of the catch22 features can be 

found in the supplementary materials (S4) and a more detailed description in the associated publication (Lubba et al 2019).  

S5. Catch22 features table 
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Name Description 

a DN_HistogramMode_5 Mode of z-scored distribution (5-bin histogram) 

b DN_HistogramMode_10 Mode of z-scored distribution (10-bin histogram) 

c SB_BinaryStats_mean_longstretch1 Longest period of consecutive values above the mean 

d DN_OutlierInclude_p_001_mdrmd 

Time intervals between successive extreme events above the 

mean 

e DN_OutlierInclude_n_001_mdrmd 

Time intervals between successive extreme events below the 

mean 

f CO_f1ecac First 1/e crossing of autocorrelation function 

g CO_FirstMin_ac First minimum of autocorrelation function 

h SP_Summaries_welch_rect_area_5_1 

Total power in lowest fifth of frequencies in the Fourier power 

spectrum 

i SP_Summaries_welch_rect_centroid Centroid of the Fourier power spectrum 

j FC_LocalSimple_mean3_stderr Mean error from a rolling 3-sample mean forecasting 

k CO_trev_1_num Time-reversibility statistic, h(xt+1 − xt)3it 

l CO_HistogramAMI_even_2_5 Automutual information, m = 2, = 5 

m IN_AutoMutualInfoStats_40_gaussian_fmmi First minimum of the automutual information function 

n MD_hrv_classic_pnn40 Proportion of successive differences exceeding 0.04 

o SB_BinaryStats_diff_longstretch0 Longest period of successive incremental decreases 

p SB_MotifThree_quantile_hh 

Shannon entropy of two successive letters in equiprobable 3-

letter symbolization 

q FC_LocalSimple_mean1_tauresrat Change in correlation length after iterative differencing 

r CO_Embed2_Dist_tau_d_expfit_meandiff Exponential fit to successive distances in 2-d embedding space 

s SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1 

Proportion of slower timescale fluctuations that scale with DFA 

(50% sampling) 

t SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1 

Proportion of slower timescale fluctuations that scale with 

linearly rescaled range fits 

u SB_TransitionMatrix_3ac_sumdiagcov 

Trace of covariance of transition matrix between symbols in 3-

letter alphabet 

v PD_PeriodicityWang_th0_01 

Periodicity measure of  Wang, X., Wirth, A., Wang, L.: 

Structure-based statistical features and multivariate 

time series clustering. Proceedings - IEEE International 

Conference on Data Mining,  

ICDM pp. 351–360 (2007). 


