Supplement of Atmos. Meas. Tech., 9, 5281–5292, 2016 http://www.atmos-meas-tech.net/9/5281/2016/doi:10.5194/amt-9-5281-2016-supplement © Author(s) 2016. CC Attribution 3.0 License.

Supplement of

Community Air Sensor Network (CAIRSENSE) project: evaluation of low-cost sensor performance in a suburban environment in the southeastern United States

Wan Jiao et al.

Correspondence to: Gayle Hagler (hagler.gayle@epa.gov)

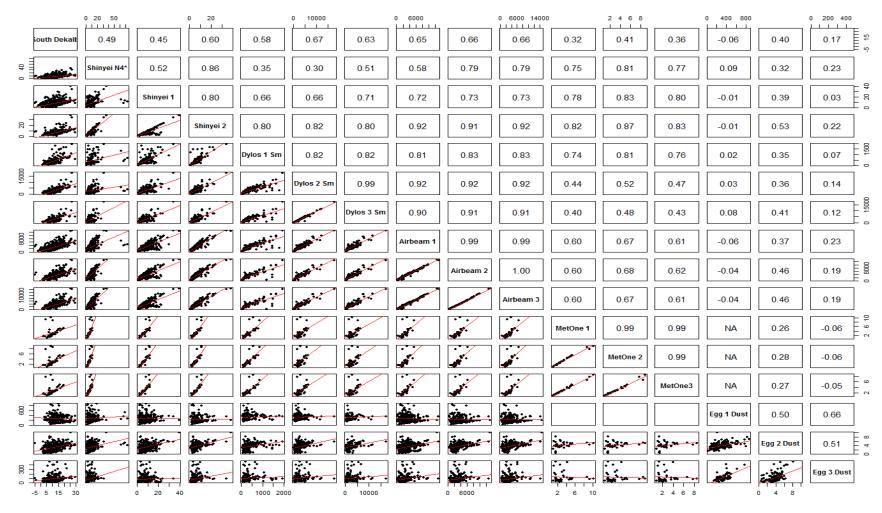

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table S1. Multiple Regression Models for Selected Sensors with Environmental Artifact Corrections

Averaging Time	Pollutant	Sensor	Artifact	R^2_{adj}	Equation
			Variable		
12-hr	PM	Shinyei SAFT-2	RH, Day	0.42	$C_{\text{FEM}} = 11.3 + 0.787C - 0.0400RH - 0.0112Day$
		Dylos SAFT-2 Small	RH, Day	0.60	$C_{FEM} = 14.8 + 0.00164C_{Sensor} - 0.0751RH - 0.0358Day$
		Airbeam SAFT-2	RH, Day	0.51	$C_{\text{FEM}} = 12.2 + 0.00203C_{\text{Sensor}} - 0.0693RH - 0.0167Day$
Hourly	O ₃	Aeroqual SAFT-1			NA
		CairClip SAFT-1	RH	0.95	$C_{\text{FEM}} = 26.6 + 0.709C_{\text{Sensor}} - 0.175\text{RH}$
	NO ₂	CairClip SAFT-1	T, RH	0.81	$C_{\text{FEM}} = 26.2 + 1.18C_{\text{Sensor}} - 0.483T - 0.129RH$
	NO	AQMesh SAFT-1			NA
	СО	AQMesh SAFT-1	Day	0.75	$C_{FEM} = -7.09E-02 + 8.88E-04C_{Sensor} + 2.52E-03Day$

Table S2. Linear Regression Equations Used to Correct Wireless Sensor Network (WSN) Hourly Sensor Data

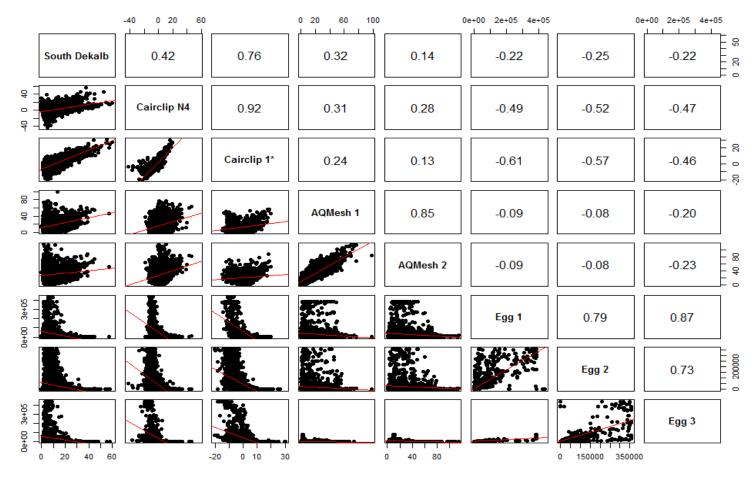

Pollutant	Sensor	\mathbf{r}^2	Equation
PM	N1 Shinyei	0.20	$C_{FEM} = 0.5C_{Sensor} + 7.3$
	N2 Shinyei	0.21	$C_{\text{FEM}} = 0.66C_{\text{Sensor}} + 7.3$
	N3 Shinyei	0.17	$C_{\text{FEM}} = 0.96C_{\text{Sensor}} + 6.4$
	N4 Shinyei	0.18	$C_{\text{FEM}} = 0.53C_{\text{Sensor}} + 6.4$
O3	N1 Aeroqual	0.39	$C_{FEM} = 630C_{Sensor} + 8.9$
	N4 Aeroqual	0.76	$C_{FEM} = 815C_{Sensor} + 5.6$

Figure S1. Scatterplot and correlation matrix of 12-hr average PM readings between sensors and co-located FEM instrument. Raw sensor units are shown in the comparison. Linear regressions are superimposed on pairwise plots. (*: data with aluminum foil added)

Figure S2. Scatterplot and correlation matrix of hourly average ozone readings between sensors and co-located FEM instrument. Raw sensor units are shown in the comparison. Linear regressions are superimposed on pairwise plots. (*: data after sensor replacement on 2014/11/15).

Figure S3. Scatterplot and correlation matrix of hourly average NO₂ readings between sensors and co-located FEM instrument. Raw sensor units are shown in the comparison. Linear regressions are superimposed on pairwise plots. (*: data after sensor replacement on 2014/11/15).

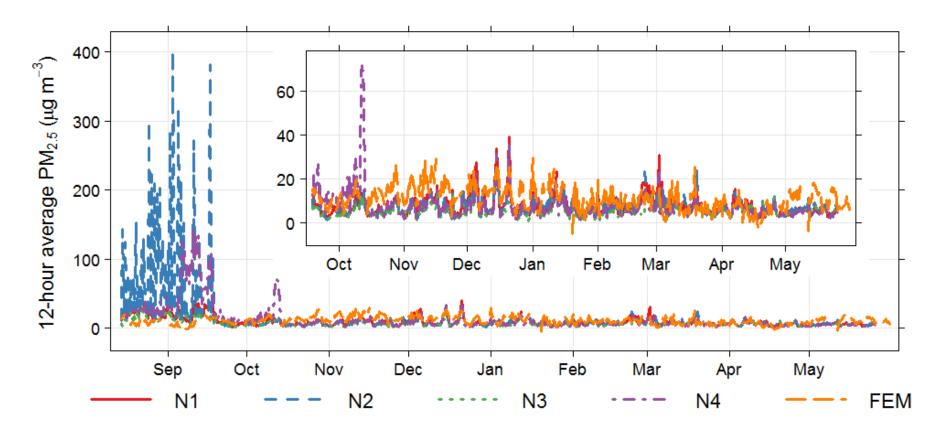


Figure S4. Effect of adding aluminum foil on 2014/09/18 to avoid spurious readings in Shinyei sensors for Wireless Sensor Network nodes.

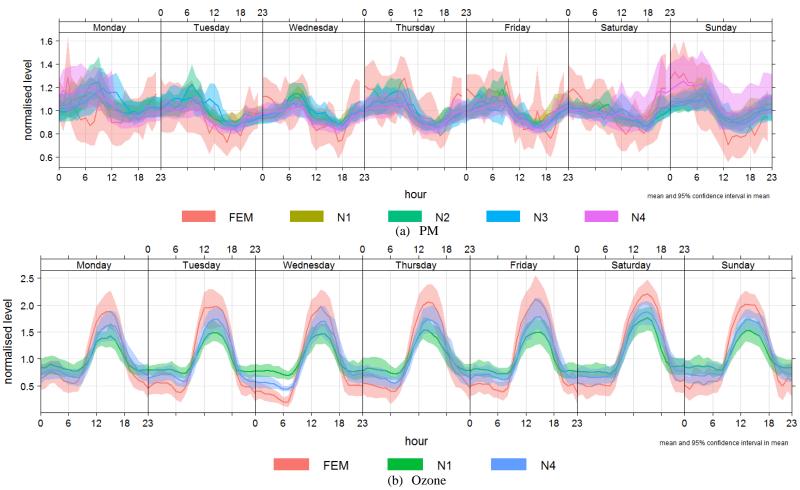
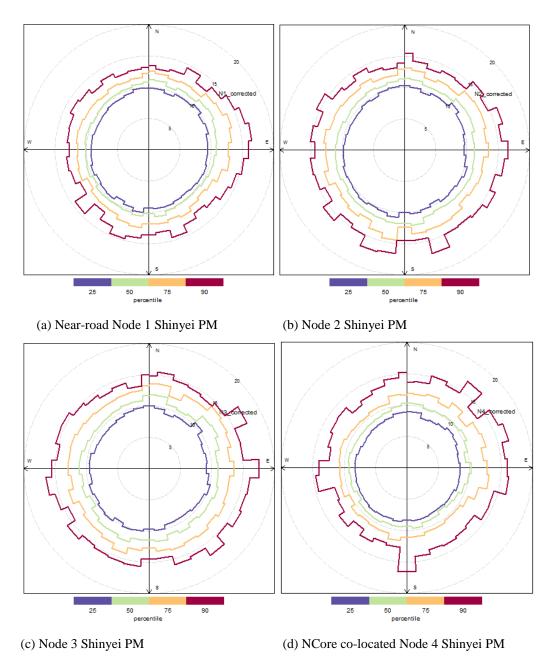



Figure S5. Time variation in Wireless Sensor Network with FEM-corrected hourly PM (with aluminum foil) and ozone sensor measurements.

Figure S6. Example percentile rose plots of wireless sensor network (WSN) Shinyei sensors for hourly FEM-corrected PM between mid-September 2014 and May 2015.