



### Supplement of

# Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

M. R. Canagaratna et al.

Correspondence to: M. R. Canagaratna (mrcana@aerodyne.com)

#### **Supplementary Figures**

**S1:** a) Standard deviations in repeated elemental ratio measurements of several standards obtained with a single instrument. Standard deviations are shown for O:C and H:C ratios calculated with the Aiken-Ambient method. b) Scatter plots of Aiken-Ambient O:C ratios calculated for several standards with three different AMS instrument (AMS\_1, AMS\_2, and AMS\_3. c) Scatter plots of Aiken-Ambient H:C ratios calculated for several standards instrument (AMS\_1, AMS\_2, and AMS\_3).

**S2:** Vaporizer temperature dependence of the fractional AMS ion intensity measured for  $CO_2^+$ ,  $CO^+$ , and  $H_2O^+$  for some of the standards measured in this study. For each standard, fractional ion intensities measured at 600°C (first bar) and 200°C (second bar) are shown.

**S3:** Scatter plots of key ions observed in the AMS spectra of laboratory standards. Panel a shows  $OH^+$  vs.  $H_2O^+$ , panel b shows  $O^+$  vs.  $H_2O^+$ , and panel c shows  $O^+$  vs.  $CO_2^+$ . The dashed line denotes the default relationships assumed when analyzing AMS data with the Aiken-Ambient method.

**S4:** Dependence of the fractional CHO<sup>+</sup> ion intensity on functional composition of OA standards. The standards are separated into two groups according to those that contain at least one -OH or -OR functional group and those that don't contain any of those functional groups.

**S5:** a) Scatter plot between OM/OC values calculated with Improved-Ambient method and the known OM/OC values for standard molecules. b) Scatter plot between OM/OC values and O:C values calculated with the Improved-Ambient method for standard molecules. The black line shows a linear fit through the data.

Figure S1



Figure S2











| Ambient PMF | Reference                          | 0.0     | Change | HC       | Change | OMOC     | Change | $\overline{OS}$ - $m$ - $m$ | Absolute |
|-------------|------------------------------------|---------|--------|----------|--------|----------|--------|-----------------------------|----------|
| components  | Kelefence                          | 0.C I-A | (%)    | 11.C J-A | (%)    | OWLOCI_A | (%)    | US C (I-A)                  | Change   |
| HOA         | (Aiken et al., 2009)               | 0.21    | 31     | 2.03     | 10     | 1.45     | 6      | -1.61                       | -0.09    |
|             | (DeCarlo et al., 2010)             | 0.07    | 24     | 1.92     | 7      | 1.26     | 2      | -1.77                       | -0.10    |
|             | (Docherty et al., 2011)            | 0.02    | 26     | 2.10     | 7      | 1.21     | 2      | -2.05                       | -0.13    |
|             | (Ge et al., 2012)                  | 0.11    | 27     | 1.95     | 8      | 1.33     | 3      | -1.72                       | -0.10    |
|             | (Gong et al., 2012)                | 0.11    | 26     | 1.94     | 8      | 1.34     | 3      | -1.71                       | -0.09    |
|             | (He et al., 2011)                  | 0.14    | 25     | 1.83     | 8      | 1.35     | 4      | -1.55                       | -0.07    |
|             | (Wang et al., 2010)                | 0.14    | 28     | 1.88     | 9      | 1.34     | 4      | -1.60                       | -0.09    |
|             | (Huang et al., 2012)               | 0.20    | 28     | 1.93     | 9      | 1.43     | 5      | -1.52                       | -0.07    |
|             | (Huang et al., 2013) (Winter)      | 0.14    | 29     | 2.02     | 9      | 1.38     | 4      | -1.74                       | -0.11    |
|             | (Huang et al., 2013) (Summer)      | 0.17    | 29     | 1.93     | 9      | 1.40     | 5      | -1.60                       | -0.09    |
|             | (Mohr et al., 2012)                | 0.04    | 26     | 2.10     | 7      | 1.23     | 2      | -2.03                       | -0.13    |
|             | (Saarikoski et al., 2012)          | 0.26    | 24     | 1.84     | 8      | 1.50     | 5      | -1.32                       | -0.03    |
|             | (Setyan et al., 2012)              | 0.11    | 34     | 1.99     | 11     | 1.31     | 4      | -1.77                       | -0.14    |
|             | (Sun et al., 2011)                 | 0.08    | 26     | 1.96     | 7      | 1.26     | 3      | -1.81                       | -0.10    |
| BBOA        | (Aiken et al., 2009)               | 0.40    | 34     | 1.88     | 11     | 1.69     | 10     | -1.08                       | 0.01     |
|             | (DeCarlo et al., 2010)             | 0.55    | 31     | 1.60     | 12     | 1.88     | 11     | -0.49                       | 0.09     |
|             | (Ge et al., 2012)                  | 0.46    | 40     | 1.78     | 14     | 1.79     | 12     | -0.86                       | 0.04     |
|             | (Gong et al., 2012)                | 0.25    | 31     | 1.55     | 10     | 1.50     | 6      | -1.05                       | -0.02    |
|             | (He et al., 2011)                  | 0.45    | 42     | 1.69     | 15     | 1.81     | 12     | -0.79                       | 0.04     |
|             | (Huang et al., 2011)               | 0.34    | 32     | 1.79     | 10     | 1.60     | 8      | -1.10                       | 0.00     |
|             | (Huang et al., 2013) (Winter)      | 0.36    | 35     | 1.70     | 12     | 1.66     | 9      | -0.97                       | 0.00     |
|             | (Mohr et al., 2012)                | 0.31    | 30     | 1.94     | 10     | 1.58     | 8      | -1.31                       | -0.02    |
|             | (Saarikoski et al., 2012)          | 0.33    | 44     | 1.77     | 16     | 1.59     | 11     | -1.11                       | -0.04    |
| COA         | (Ge et al., 2012)                  | 0.14    | 27     | 1.85     | 8      | 1.35     | 4      | -1.57                       | -0.07    |
|             | (Wang et al., 2010)                | 0.14    | 28     | 1.88     | 9      | 1.34     | 4      | -1.60                       | -0.09    |
|             | (Mohr et al., 2012)                | 0.27    | 31     | 1.73     | 10     | 1.51     | 7      | -1.18                       | -0.03    |
|             | (Sun et al., 2011)                 | 0.23    | 26     | 1.71     | 8      | 1.44     | 5      | -1.26                       | -0.04    |
| OOA         | (Aiken et al., 2009) (OOA)         | 0.80    | 33     | 1.67     | 14     | 2.20     | 15     | -0.07                       | 0.20     |
|             | (DeCarlo et al., 2010) (SVOOA)     | 0.83    | 29     | 1.46     | 13     | 2.23     | 13     | 0.20                        | 0.21     |
|             | (DeCarlo et al., 2010) (LVOOA)     | 1.32    | 29     | 1.29     | 16     | 2.87     | 17     | 1.34                        | 0.42     |
|             | (Docherty et al., 2011) (SV-OOA)   | 0.32    | 40     | 1.88     | 14     | 1.59     | 10     | -1.23                       | -0.04    |
|             | (Docherty et al., 2011) (LVOOA)    | 0.86    | 20     | 1.40     | 10     | 2.26     | 10     | 0.32                        | 0.16     |
|             | (Ge et al., 2012) (OOA)            | 0.55    | 31     | 1.60     | 12     | 1.88     | 11     | -0.50                       | 0.09     |
|             | (Gong et al., 2012) (SV-OOA)       | 0.46    | 25     | 1.46     | 10     | 1.75     | 8      | -0.53                       | 0.06     |
|             | (Gong et al., 2012) (LV-OOA)       | 0.68    | 24     | 1.43     | 10     | 2.06     | 10     | -0.06                       | 0.14     |
|             | (He et al., 2011) (SV-OOA)         | 0.60    | 32     | 1.64     | 13     | 1.95     | 12     | -0.45                       | 0.10     |
|             | (He et al., 2011) (LV-OOA)         | 0.76    | 29     | 1.43     | 14     | 2.17     | 12     | 0.09                        | 0.17     |
|             | (Wang et al., 2010) (OOA1)         | 0.56    | 17     | 1.48     | 7      | 1.87     | 7      | -0.35                       | 0.07     |
|             | (Wang et al., 2010) (OOA2)         | 0.65    | 38     | 1.54     | 16     | 1.99     | 15     | -0.24                       | 0.15     |
|             | (Huang et al., 2011) (SV-OOA)      | 0.49    | 27     | 1.63     | 10     | 1.79     | 9      | -0.64                       | 0.06     |
|             | (Huang et al., 2011) (LV-OOA)      | 0.80    | 26     | 1.45     | 11     | 2.19     | 12     | 0.16                        | 0.18     |
|             | (Huang et al., 2012) (SV-OOA)      | 0.45    | 30     | 1.65     | 12     | 1.74     | 10     | -0.74                       | 0.04     |
|             | (Huang et al., 2012) (LV-OOA)      | 0.81    | 25     | 1.66     | 11     | 2.22     | 11     | -0.04                       | 0.15     |
|             | (Huang et al., 2013) (Winter; OOA) | 0.75    | 28     | 1.45     | 12     | 2.16     | 12     | 0.06                        | 0.17     |
|             | (Huang et al., 2013) (Summer; OOA) | 0.53    | 28     | 1.63     | 11     | 1.86     | 10     | -0.58                       | 0.07     |
|             | (Mohr et al., 2012) (SV-OOA)       | 0.41    | 29     | 1.75     | 11     | 1.70     | 9      | -0.92                       | 0.02     |
|             | (Mohr et al., 2012) (LV-OOA)       | 0.98    | 31     | 1.35     | 14     | 2.42     | 16     | 0.62                        | 0.30     |
|             | (Saarikoski et al., 2012) (OOAa)   | 0.95    | 20     | 1.46     | 10     | 2.39     | 10     | 0.44                        | 0.19     |
|             | (Saarikoski et al., 2012) (OOAb)   | 0.80    | 28     | 1.58     | 12     | 2.20     | 13     | 0.03                        | 0.18     |
|             | (Saarikoski et al., 2012) (OOAc)   | 0.69    | 21     | 1.36     | 9      | 2.03     | 9      | 0.01                        | 0.12     |
|             | (Setyan et al., 2012) (LO-OOA)     | 0.51    | 21     | 1.46     | 8      | 1.80     | 7      | -0.45                       | 0.06     |
|             | (Setyan et al., 2012) (MO-OOA)     | 0.74    | 37     | 1.52     | 15     | 2.11     | 15     | -0.04                       | 0.20     |
|             | (Sun et al., 2011) (SVOOA)         | 0.51    | 33     | 1.58     | 13     | 1.81     | 11     | -0.56                       | 0.08     |
|             | (Sun et al., 2011) (LVOOA)         | 0.78    | 24     | 1.43     | 11     | 2.16     | 11     | 0.14                        | 0.17     |

 Table S1. Improved-Ambient (I-A) results for previously reported ambient OA components.

| Reference                       | O:C <sub>I-A</sub> | Change<br>(%) | H:C <sub>I-A</sub> | Change<br>(%) | OM:OC <sub>I-A</sub> | Change<br>(%) | $\overline{OS}$ c (I-A) | Absolute<br>Change |
|---------------------------------|--------------------|---------------|--------------------|---------------|----------------------|---------------|-------------------------|--------------------|
| (Aiken et al., 2009)            | 0.53               | 32            | 1.82               | 12            | 1.86                 | 11            | -0.77                   | 0.06               |
| (Docherty et al., 2011)         | 0.44               | 27            | 1.71               | 10            | 1.73                 | 9             | -0.82                   | 0.03               |
| (Chen et al., 2009 and 2014)    | 0.60               | 34            | 1.65               | 14            | 1.94                 | 13            | -0.44                   | 0.11               |
| (Ge et al., 2012)               | 0.35               | 30            | 1.75               | 10            | 1.63                 | 8             | -1.05                   | 0.00               |
| (Gong et al., 2012)             | 0.50               | 26            | 1.63               | 9             | 1.87                 | 9             | -0.62                   | 0.07               |
| (He et al., 2011)               | 0.39               | 31            | 1.83               | 12            | 1.71                 | 9             | -1.04                   | -0.01              |
| (Wang et al., 2010)             | 0.41               | 26            | 1.63               | 9             | 1.69                 | 8             | -0.80                   | 0.03               |
| (Huang et al., 2011)            | 0.60               | 27            | 1.64               | 11            | 1.94                 | 11            | -0.44                   | 0.10               |
| (Huang et al., 2012)            | 0.40               | 28            | 1.92               | 11            | 1.69                 | 8             | -1.13                   | -0.02              |
| (Huang et al., 2013) (Winter)   | 0.43               | 30            | 1.73               | 11            | 1.75                 | 9             | -0.87                   | 0.03               |
| (Huang et al., 2013) (Summer)   | 0.36               | 28            | 1.94               | 10            | 1.67                 | 8             | -1.22                   | -0.02              |
| (Martin et al., 2008)           | 0.69               | 26            | 1.40               | 11            | 2.04                 | 11            | -0.01                   | 0.15               |
| (Mohr et al., 2012)             | 0.41               | 30            | 1.77               | 11            | 1.70                 | 9             | -0.94                   | 0.01               |
| (Ovadnevaite et al., 2011)      | 0.70               | 17            | 1.34               | 8             | 2.05                 | 8             | 0.06                    | 0.11               |
| (Poulain et al., 2011) (Summer) | 0.52               | 17            | 1.51               | 7             | 1.83                 | 6             | -0.47                   | 0.05               |
| (Poulain et al., 2011) (Autumn) | 0.54               | 14            | 1.48               | 7             | 1.84                 | 6             | -0.40                   | 0.04               |
| (Poulain et al., 2011) (Winter) | 0.53               | 16            | 1.48               | 7             | 1.83                 | 6             | -0.41                   | 0.05               |
| (Robinson et al., 2011)         | 0.71               | 45            | 1.62               | 20            | 2.08                 | 18            | -0.20                   | 0.17               |
| (Saarikoski et al., 2012)       | 0.59               | 26            | 1.64               | 10            | 1.92                 | 10            | -0.46                   | 0.09               |
| (Setyan et al., 2012)           | 0.56               | 28            | 1.53               | 11            | 1.88                 | 10            | -0.40                   | 0.10               |
| (Sun et al., 2011)              | 0.46               | 28            | 1.65               | 11            | 1.75                 | 9             | -0.73                   | 0.04               |

**Table S2.** Improved-Ambient (I-A) results for total OA from previously reported ambient field campaigns.

**Table S3.** Comparison of different versions of the organic fragmentation waves that can be used for AMS analysis

|     | Frag_organic            |                                 |  |  |  |  |
|-----|-------------------------|---------------------------------|--|--|--|--|
|     | Default AMS Frag. Table | Hildebrandt Ruiz et al., (2014) |  |  |  |  |
| m/z | Allan et al., (2004)    | Correction                      |  |  |  |  |
| 1   |                         | Hwave*frag_organic [18]         |  |  |  |  |
| 16  | 0.04*frag_organic [18]  | 0.04*frag_organic [18]          |  |  |  |  |
| 17  | 0.25*frag_organic [18]  | 0.25*frag_organic [18]          |  |  |  |  |
| 18  | 1*frag_organic [44]     | 1*frag_organic [44]             |  |  |  |  |

#### **Supplementary Material:**

#### Calculation of H<sup>+</sup>/H<sub>2</sub>O<sup>+</sup> for Organic Frag Wave in AMS fragmentation table.

The current treatment of water fragmentation does not account for the H-atoms which were bound to HO<sup>+</sup> and O<sup>+</sup> before fragmentation. The neglected mass from H-atoms is negligible when calculating organic aerosol mass concentrations. However, the neglected H<sup>+</sup> signal does affect oxidation state ( $\overline{OS}_c \sim 2 \times O:C - H:C$ ) calculations from current H:C and O:C AMS values. In particular, the  $\overline{OS}_c$  values are not invariant with respect to hydration/dehydration processes as they should be; the oxidation state decreases with dehydration because the prescribed H/O ratio of water in the AMS analysis is less than 2. Here we calculate H<sup>+</sup>/H<sub>2</sub>O<sup>+</sup> that needs to be added to the standard organic fragmentation wave to obtain an H/O ratio of 2 in the total signal of H<sub>2</sub>O determined by AMS data analysis. The addition of H<sup>+</sup> changes the organic H:C ratio calculated in elemental analysis of the organic aerosol (OA) and therefore the oxidation state ( $\overline{OS}_c$ ) estimated from O:C and H:C ratios.

The ratio of  $H^+/H_2O^+$  needed to add to the updated fragmentation table to keep  $\overline{OS}_c$  constant upon (de-) hydration can be calculated as follows:

For any given time point, let:

$$x = H^+/H_2O^-$$

 $z = initial mass of H_2O^+$ ,  $y = factor by which H_2O changes$ ,

$$f_{OH} = OH^+/H_2O^+ = 0.25$$
 and  $f_O = O^+/H_2O^+ = 0.04$ 

Accounting for the contribution of  $^{18}$ O:

## $f'_{OH} = 1.00205499 * f_{OH}$ and $f'_{O} = 1.00205499 * f_{O}$

 $mw_i$  =molecular weights

 $f_{cal}^{OC}$ ,  $f_{cal}^{HC}$  = calibration factors for O:C and H:C

The Aiken-Ambient and Aiken-Explicit values are 0.75 and 0.91, respectively The Improved-Ambient values are (See Equations 8 and 9) :  $0.75^{*} (1.26 - 0.623^{*} f_{CO2} + 2.28^{*} f_{CHO})$  for O/C

 $0.91^{*}$  (  $1.07 + 1.07^{*}f_{CHO}$ ) for H:C

NOTE:  $f_{CO2}$  and  $f_{CHO}$  are calculated using the default organic fragmentation wave that does not include the H<sup>+</sup> fragment since inclusion of the H<sup>+</sup> fragment does not significantly affect the calculated organic mass.

Then:

moles of 
$$0 = z \times \left(\frac{f'_0}{mw_0} + \frac{f'_{0H}}{mw_{0H}} + \frac{1}{mw_{H_20}}\right)$$
  
moles of  $H = z \times \left(\frac{f'_{0H}}{mw_{0H}} + \frac{2}{mw_{H_20}} + \frac{x}{mw_H}\right)$   
simplify the equations let  $\frac{f'_0}{mw_0} + \frac{f'_{0H}}{mw_{0H}} + \frac{1}{mw_{H_20}} = a$  and  $\frac{f'_{0H}}{mw_{0H}} + \frac{2}{mw_{H_20}} = b$ 

To simplify the equations, let  $\overline{mw_0} + \overline{mw_{0H}} + \overline{mw_{Hz0}} = u$  and  $\overline{mw_{0H}} + \overline{mw_{Hz0}} = u$ . Then:

moles of 
$$0 = z \times a$$
 and moles of  $H = z \times \left(b + \frac{x}{mw_H}\right)$ 

Keeping oxidation state constant when H<sub>2</sub>O is changed by y:

$$\frac{2}{f_{cal}^{OC}} \times zay - \frac{1}{f_{cal}^{HC}} zy \times \left(b + \frac{x}{mw_H}\right) = \frac{2}{f_{cal}^{OC}} \times za - \frac{1}{f_{cal}^{HC}} z \times \left(b + \frac{x}{mw_H}\right)$$

Dividing by z and rearranging:

$$\frac{2}{f_{cal}^{OC}} \times a(y-1) = \frac{1}{f_{cal}^{HC}} \times \left(b + \frac{x}{mw_H}\right)(y-1)$$

Dividing by (y-1) and rearranging:

$$x = \left(\frac{2f_{cal}^{HC}}{f_{cal}^{OC}} \times a - b\right) \times mw_{H}$$

The calculated  $H^+/H_2O^+$  ratio from the above equations can be directly

incorporated into the AMS analysis frag\_organic wave as shown in Table S3. The modified Frag\_organic wave refers to HWave, which is a new wave that contains time varying values of the  $H^+/H_2O^+$  ratios over the time period being analyzed. For the

Aiken-Ambient and Aiken Explicit methods, where the constant Aiken et al. (2008) values are used for  $f_{cal}^{OC}$  and  $f_{cal}^{HC}$ , the HWave is constant over time at a value of 0.05. For the Improved-Ambient method, the variations in  $f_{cal}^{OC}$  and  $f_{cal}^{HC}$  introduce a time variation in HWave.

#### **Supplementary References**

- Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633-6653, 10.5194/acp-9-6633-2009, 2009.
- Allan, J. D., Coe, H., Bower, K. N., Alfarra, M. R., Delia, A. E., Jiménez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: Technical note: Extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909-922, 2004.
- Chen, Q., Farmer, D. K., Schneider, J., Zorn, S. R., Heald, C. L., Karl, T. G., Guenther, A., Allan, J. D., Robinson, N., Coe, H., Kimmel, J. R., Pauliquevis, T., Borrmann, S., Poschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L., and Martin, S. T.: Mass spectral characterization of submicron biogenic organic particles in the Amazon Basin, Geophys. Res. Lett., 36, L20806, 10.1029/2009gl039880, 2009.
- Chen, Q.: Manuscript in Preparation, 2014.
- DeCarlo, P. F., Ulbrich, I. M., Crounse, J., de Foy, B., Dunlea, E. J., Aiken, A. C., Knapp, D., Weinheimer, A. J., Campos, T., Wennberg, P. O., and Jimenez, J. L.: Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO, Atmos. Chem. Phys., 10, 5257-5280, 10.5194/acp-10-5257-2010, 2010.
- Docherty, K. S., Aiken, A. C., Huffman, J. A., Ulbrich, I. M., DeCarlo, P. F., Sueper, D., Worsnop, D. R., Snyder, D. C., Peltier, R. E., Weber, R. J., Grover, B. D., Eatough, D. J., Williams, B. J., Goldstein, A. H., Ziemann, P. J., and Jimenez, J. L.: The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition, Atmos. Chem. Phys., 11, 12387-12420, 10.5194/acp-11-12387-2011, 2011.
- Ge, X. L., Setyan, A., Sun, Y. L., and Zhang, Q.: Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry, J. Geophys. Res., 117, D19301, 10.1029/2012jd018026, 2012.
- Gong, Z., Lan, Z., Xue, L., Zeng, L., He, L., and Huang, X.: Characterization of submicron aerosols in the urban outflow of the central Pearl River Delta region of China, Frontiers of Environmental Science & Engineering, 6, 725-733, 10.1007/s11783-012-0441-8, 2012.
- He, L. Y., Huang, X. F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R. Y., and Zhang, Y. H.: Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry, J. Geophys. Res., 116, D12304, Doi 10.1029/2010jd014566, 2011.
- Hildebrandt Ruiz, L., et al. : Manuscript in preparation, 2014.

- Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Kroll, J. H., Ng, N. L., Zhang, Y. H., Lin, Y., Xue, L., Sun, T. L., Liu, X. G., Shao, M., Jayne, J. T., and Worsnop, D. R.: Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 11, 1865-1877, DOI 10.5194/acp-11-1865-2011, 2011.
- Huang, X. F., He, L. Y., Xue, L., Sun, T. L., Zeng, L. W., Gong, Z. H., Hu, M., and Zhu, T.: Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo, Atmos. Chem. Phys., 12, 4897-4907, DOI 10.5194/acp-12-4897-2012, 2012.
- Huang, X. F., Xue, L., Tian, X. D., Shao, W. W., Sun, T. L., Gong, Z. H., Ju, W. W., Jiang, B., Hu, M., and He, L. Y.: Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation, Atmos. Environ., 64, 200-207, 10.1016/j.atmosenv.2012.09.059, 2013.
- Martin, S. T., Rosenoern, T., Chen, Q., and Collins, D. R.: Phase changes of ambient particles in the Southern Great Plains of Oklahoma, Geophys. Res. Lett., 35, L22801, 10.1029/2008gl035650, 2008.
- Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G., Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R., Penuelas, J., Jimenez, J. L., Crippa, M., Zimmermann, R., Baltensperger, U., and Prevot, A. S. H.: Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data, Atmos. Chem. Phys., 12, 1649-1665, 10.5194/acp-12-1649-2012, 2012.
- Ovadnevaite, J., O'Dowd, C., Dall'Osto, M., Ceburnis, D., Worsnop, D. R., and Berresheim, H.: Detecting high contributions of primary organic matter to marine aerosol: A case study, Geophys. Res. Lett., 38, L02807, 10.1029/2010gl046083, 2011.
- Poulain, L., Spindler, G., Birmili, W., Plass-Dulmer, C., Wiedensohler, A., and Herrmann, H.: Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz, Atmos. Chem. Phys., 11, 12579-12599, 10.5194/acp-11-12579-2011, 2011.
- Robinson, N. H., Hamilton, J. F., Allan, J. D., Langford, B., Oram, D. E., Chen, Q., Docherty, K., Farmer, D. K., Jimenez, J. L., Ward, M. W., Hewitt, C. N., Barley, M. H., Jenkin, M. E., Rickard, A. R., Martin, S. T., McFiggans, G., and Coe, H.: Evidence for a significant proportion of secondary organic aerosol from isoprene above a maritime tropical forest, Atmos. Chem. Phys., 11, 1039-1050, 10.5194/acp-11-1039-2011, 2011.
- Saarikoski, S., Carbone, S., Decesari, S., Giulianelli, L., Angelini, F., Canagaratna, M., Ng, N. L., Trimborn, A., Facchini, M. C., Fuzzi, S., Hillamo, R., and Worsnop, D.: Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy, Atmos. Chem. Phys., 12, 8401-8421, 10.5194/acp-12-8401-2012, 2012.
- Setyan, A., Zhang, Q., Merkel, M., Knighton, W. B., Sun, Y., Song, C., Shilling, J. E.,
  Onasch, T. B., Herndon, S. C., Worsnop, D. R., Fast, J. D., Zaveri, R. A., Berg, L.
  K., Wiedensohler, A., Flowers, B. A., Dubey, M. K., and Subramanian, R.:
  Characterization of submicron particles influenced by mixed biogenic and
  anthropogenic emissions using high-resolution aerosol mass spectrometry: results

from CARES, Atmos. Chem. Phys., 12, 8131-8156, 10.5194/acp-12-8131-2012, 2012.

- Sun, Y. L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W. N., Bae, M. S., Hung, H. M., Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y. C.: Characterization of the sources and processes of organic and inorganic aerosols in New York city with a high-resolution time-of-flight aerosol mass apectrometer, Atmos. Chem. Phys., 11, 1581-1602, 10.5194/acp-11-1581-2011, 2011.
- Wang, X. F., Gao, S., Yang, X., Chen, H., Chen, J. M., Zhuang, G. S., Surratt, J. D., Chan, M. N., and Seinfeld, J. H.: Evidence for High Molecular Weight Nitrogen-Containing Organic Salts in Urban Aerosols, Environ. Sci. Technol., 44, 4441-4446, 10.1021/es1001117, 2010.