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Abstract

Using a recent theoretical approach, we study how the impact of global warming of
the thermodynamics of the climate system by performing experiments with a simplified
yet Earth-like climate model. In addition to the globally averaged surface temperature,
the intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy
production and the degree of irreversibility of the system are linear with the logarithm
of the CO, concentration. These generalized sensitivities suggest that the climate
becomes less efficient, more irreversible, and features higher entropy production as it
becomes warmer.

1 Introduction

The most basic way to characterize the climate system is describing it as a non-
equilibrium thermodynamic system, generating entropy by irreversible processes and
— if time-dependent forcings can be neglected — keeping a steady state by balancing
the input and output of energy and entropy with the surrounding environment.

A primary goal of climate science is to understand how the statistical properties of
the climate system change as a result of variations in the value of external or internal
parameters. Rigorous mathematical foundations to this problem can be traced to the
Ruelle response theory for non equilibrium steady state systems (Ruelle, 1998). Such
an approach has been recently proved to have formal analogies with the usual Kubo
response theory for quasi-equilibrium systems (Lucarini, 2008a) and to be amenable
to numerical investigation (Lucarini, 2009a).

It has long been recognized that a comprehensive view on the climate system can
be attained by adopting a thermodynamic perspective. Two main approaches can be
envisioned along this line.

In the first approach, the focus is on the dynamical mechanisms and physical pro-
cesses responsible for the transformation of energy from one form to the other. The
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concept of the energy cycle of the atmosphere due to Lorenz (1955) allowed for defin-
ing an effective climate machine, driven by the temperature difference between a warm
and a cold thermal pool. The atmospheric and oceanic motions at the same time re-
sult from the mechanical work (then dissipated in a turbulent cascade) produced by
the engine, and re-equilibrate the energy balance of the climate system (Peixoto and
Oort, 1992). More recently, Johnson introduced a rather convincing Carnot engine-
equivalent picture of the climate by defining robustly the warm and the cold reservoirs
and their temperatures (Johnson, 2000).

In the second approach, the emphasis lies on the analysis of the irreversibility of the
climate system, and, especially, of its entropy production. This largely results from the
intellectual stimulation coming from the maximum entropy production principle (MEPP),
which proposes that an out-of-equilibrium nonlinear system adjusts in such a way to
maximize the production of entropy (Paltridge, 1979). Even if the general validity of
MEPP is unclear (Dewar, 2005; Grinsteinn and Linsker, 2007), its heuristic adoption in
climate science has been quite fruitful (Kleidon and Lorenz, 2005; Kleidon et al., 2006),
and has stimulated a detailed re-examination of the importance of entropy production
in the climate system (Peixoto and Oort, 1992; Ozawa et al., 2003). Moreover, this has
resulted into a drive for adopting of a new generation of diagnostic tools based on the
2nd law of thermodynamics for auditing climate models (Fraedrich and Lunkeit, 2008)
and for outlining a set of parameterisations to be used in conceptual and intermediate
complexity models, or for the reconstruction of the past climate conditions (Kleidon and
Lorenz, 2005; Kunz et al., 2008).

Recently a link has been found between the Carnot efficiency, the entropy produc-
tion and the degree of irreversibility of the climate system (Lucarini, 2009b). This has
made possible a new fruitful exploration of the onset and decay of snowball conditions
(Lucarini et al., 2010) as parametrically controlled by variations in the solar constant. In
that analysis, the two branches of cold and warm climate stationary states have been
found to feature very distinct macro-thermodynamical properties.
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In this paper we revise and revive the classic problem of analyzing the climate sen-
sitivity to CO, concentration changes by adding on top of the usual analysis of globally
averaged surface temperature changes the investigation of how the global thermody-
namics of the system is influenced by the atmospheric composition, so that a wider
physically-based set of generalized sensitivities are introduced. Our investigation is
performed using the simplified and portable climate model Planet Simulator (PLASIM)
(Fraedrich et al., 2005; Fraedrich and Lunkeit, 2008). We believe our work contributes
to presenting reliable metrics to be used in the validation of climate models of various
degrees of complexity.

2 Efficiency and entropy production in the climate system

We define the total energy of the Q-domain of the climatic system by £ (Q) =P (Q) +
K (Q), where P represents the moist static potential energy, given by the thermal — in-
clusive of the contributions due to water phase transitions — and potential contributions,
and K is the total kinetic energy. The time derivative of the total kinetic and potential
energy can be expressed as K = —D + W,P =¥ + D - W, where we have dropped Q-
dependence for convenience, D is the (positive definite) integrated dissipation, W is
the instantaneous work performed by the system (or, in other words, the total intensity
of the Lorenz energy cycle), ¥ represents the hearting due to convergence of heat
fluxes (which can be split into the radiative, sensible, and latent heat components),
such that £ = W. We denote the total heating rate as ® =W +D. Under the hypothesis

of a non-equilibrium steady state system, we have £ = P = K =0, where the upper bar
indicates time averaging over a long time scale. At any instant, we can partition the
domain Q into Q* and Q~, such that the intensive total heating rate Q is positive in Q*
and negative in Q™:

P+W=/deO++/deO-=d>++d>-=d>. (1)
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Since D > 0 we obtain W = D = @+ + ®- > 0. Assuming local thermodynamic equilib-
rium — which applies well everywhere except in the upper atmosphere, which has a
negligible mass — and, neglecting the impact of mixing processes (Lucarini, 2009b)
we have that locally @ = $T, so that at any instant entropy fluctuations have locally the
same sign as heat fluctuations. The time derivative of the total entropy of the system

IS:

- .

S:/dvp? +/dvﬁg—:/dewﬂ-/dew1:i++i- ()
Q+

Q- Q+ Q-
where at all times $* >0 and 3~ <0. At steady state we have § =0, so that 3+ = —3-.
Moreover, 3+ measures the absolute value of the entropy fluctuations throughout the
domain since 23+ = [dVp|4].
Q

Therefore, we obtain 3+ = CiDJf/G)+ and 3- = Cb-/G)_, where ©*(©7) can be de-
fined as the time and space averaged value of the temperature where absorption (re-
3+ ok , we derive that @ >0~

—X_—and E

lease) of heat occurs. Since >

and we characterize the climate system as a Carnot engine such that W= nd+, with
efficiency n= (0% -07) /0" = (cb+ + dn—) / &+ (Johnson, 2000; Lucarini, 2009b).
The 2nd law of thermodynamics imposes that the long-term average of the material

entropy production inside the system S,,(Q) (this excludes the contributions due to
the “degradation” of the solar radiation into terrestrial longwave radiation) is bounded

from below by Spin (Q) zW/(@) ~ q;, where (@) = (@ +©7) /2 (Lucarini, 2009b).
Therefore, n sets also the scale relating the minimal material entropy production of
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the system to the absolute value of the entropy fluctuations inside the system. If the
system is isothermal and at equilibrium the internal entropy production is zero, since
the efficiency n is vanishing: the system has already attained the maximum entropy

state. While S, is related to the dissipation of kinetic energy, the excess of material

entropy production with respect to the minimum, S,,., is due to the turbulent sensible
and latent heat transport down the gradient of the temperature field. Therefore, we can
define:

a=5... ﬂidl/ﬁ(%)/(ﬁ//(@)) z!dVTG)/(rz;)ZO 3)

as a parameter of irreversibility of the system. Since Sin ~ N2+ (1+a), we have that ma-
terial entropy production is maximized if we have a joint optimization of heat transport
down the gradient of the temperature field and of production of mechanical work.

3 Methods

PLASIM is a simplified yet Earth-like climate model used in a configuration featuring
T21 horizontal resolution with five sigma levels in the vertical. The ocean is repre-
sented by a 50m slab ocean (with energy transport set to 0), including a 0-dimensional
thermodynamic sea ice model. Slab ocean climate models are well suited for providing
an accurate steady state climate response (Danabasoglu and Gent, 2009). The global
atmospheric energy balance is greatly improved with respect to previous versions of
the model by re-feeding the kinetic energy losses due to surface friction and horizontal
and vertical momentum diffusion (Becker, 2003; Lucarini and Fraedrich, 2009). The av-
erage energy bias is in all simulations is <0.2 Wm™2, which is about one order of mag-
nitude smaller than most state-of-the art climate models (Lucarini and Ragone, 2010).
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The biases in the global energy and entropy budgets can be written as S=3 +3 =
-+ - - - b
,and E =P +K =Ag, with Ag <<

|z

Ag, with Ag << |2 ® |,|® |. Moreover,

the Lorenz energy cycle has a spurious term, with W/ = D+ +P- - Ag. Therefore, the
thermodynamic efficiency is ill defined and, similarly, the estimates for entropy produc-
tion contributions are, in principle, inconsistent. If the numerical errors in the material
entropy budget discussed in (Johnson, 2000) are, as in this case, negligible, the 2nd
law of thermodynamics imposes that A ~ (©)Ag. Thanks to that, as thoroughly dis-
cussed in (Lucarini et al., 2010), the two thermodynamic temperatures ©@* and ©~
are still well defined, as the expression (0" —©@~) /@ provides a good first order ap-

proximation to the true efficiency n = W/E = (E+F- AE) /;) Similarly, the

material entropy production rate is computed as S‘in +Ag, and the irreversibility factor is

- -t
evaluated as a = (Sin +A3) / (q (Z +

in the denominator to account for the fact that 3 # 3 |. With these corrections, all

2 ‘) / 2), where we introduce a correction

proposed formulas apply with a high degree of approximation.

4 Results

In the usual operative definition climate sensitivity Ai is the increase of the globally

averaged mean surface temperature i between the preindustrial CO, concentration
steady state and the steady state conditions realized when CO, concentration is dou-

bled. As i is almost linear with respect to the logarithm of the CO, concentration on
a large range, it is actually easy to generalize the definition of Ai as the impact on Tg
of GO, doubling so that Az= dTg / dlog, ([coz]ppm) .
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The main goal of this work is to check whether it is possible to define, in a similar
fashion, generalized sensitivities Ay to describe the steady state response to CO,
concentration changes of the thermodynamical properties X of the climate system. At
this scope, we have performed climate simulations for CO, concentrations ranging from
50 to 1850 ppm by 50 ppm steps, thus totalling 37 runs. Each simulation has a length
of 50 years and the statistics are computed on the last 30 years of the simulations
in order to rule out the presence of transient effects. In order to fully characterize the
non-equilibrium properties of the climate system, we have analysed the most important
thermodynamic variables of the system introduced in the previous section:

— the time average of the temperatures of the warm (@) and cold (©7) reser-
voir, and, as reference, the time average of the global mean surface temperature

Ts (Fig. 1);

- the thermodynamic efficiency n (Fig. 2a);
— the average intensity of the Lorenz energy cycle W(Fig. 2b);

— the time average of the rate of material entropy production .S_,n (Fig. 2¢);

— the degree of irreversibility of the system a (Fig. 2d).

See the appendix for additional details in the calculations. It is rather interesting to ob-
serve that, in addition to the surface temperature, all of these thermodynamic variables
feature a striking linear behaviour with respect to the logarithm of the CO, concentra-
tion. Therefore, we can safely attribute a robust value (with an uncertainty of at most
10%) to the generalized sensitivities defined as Ay = dX/dI092 <[COZ]ppm). Results

are summarized in Table 1.
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The three temperature indicators (Fig. 1) feature, as expected, positive sensitivities:
the surface temperature sensitivity is well within the range of what is simulated by the
climate models included in IPCC (2007), whereas the two bulk thermodynamic tem-
peratures have smaller sensitivities. Therefore, an increase of the vertical temperature
gradient is predicted for higher CO, concentrations. Moreover, as the temperature of
the cold bath increases faster than that of the warm bath, higher CO, concentration
implies a more isothermal atmosphere. The main process contributing to this effect
is large enhancement of latent heat fluxes due to the impact of increasing average
temperature on the Clausius-Clapeyron relation. Consequently, increases in the CO,
concentration cause a steep decrease in the efficiency of the climate system, as shown
in Fig. 2a. In the explored range, the efficiency decreases by about 35%, with a rela-
tive change of about —7% per CO, doubling. In a thicker (and warmer) atmosphere,

the absorbed heat ®+ is larger, so that the actual strength of the Lorenz energy cycle
changes as the result of the competing effects of increasing energy input and decreas-
ing efficiency. The intensity of the Lorenz cycle decreases in a warmer climate (Fig. 2b),
with an approximate change of —4% per CO, doubling. By energy conservation, the
same applies to the total dissipation, so that in a warmer climate weaker surface winds
are expected.

As with increasing CO, concentration the average temperature increases and the

total dissipation decreases, Smin — which is related uniquely to mechanical dissipation
— is a decreasing function of CO, concentration. Instead, as shown in Fig. 2c, the

actual average rate of material entropy production S‘in has the opposite behaviour, with
an approximate relative increase of 2% per CO, doubling. This implies that the entropy
production due to the heat transport down the gradient of the temperature field is much
higher in warmer climates, the reason being, again, that latent heat fluxes become
extremely effective in transporting heat. Therefore, the degree of irreversibility of the
system a increases steeply with CO, concentration (Fig. 2d). In the considered range,
the fraction of entropy production due to mechanical energy dissipation 1/(a +1) drops
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from about 22% to about 12%. Note that this behaviour is specific for climate conditions
analogous to the present ones, whereas under snowball conditions, where latent heat
fluxes are negligible, higher temperatures lead to higher total entropy production, the
value of a is about unity and only slightly affected by temperature (Lucarini et al., 2010).

5 Conclusions

We have proposed a new approach for analysing the classical problem of the steady-
state response of the climate system to CO, concentration changes and have demon-
strated its validity with a simplified yet Earth-like climate model. We have introduced
a comprehensive set of generalized climate sensitivities describing the response of
the global thermodynamical properties of the climate system, building upon a recently
introduced theoretical framework (Lucarini, 2009b).

We find that, in addition to the globally averaged surface temperature, the intensity
of the Lorenz energy cycle, the Carnot efficiency, the material entropy production and
the degree of irreversibility of the system are linear with the logarithm of the CO, con-
centration. The generalized sensitivities proposed here (whose values are reported in
Table 1) demonstrate that the climate system becomes less efficient, more irreversible,
and features higher entropy production as it becomes warmer. Changes in intensity of
the latent heat fluxes tend to be the dominating ingredients, thus showing, at a funda-
mental level, how important it is to address correctly the impact of climate change on
the hydrological cycle.

Due to the monotonic (and, in particular, linear) dependence of the diagnosed vari-
ables with respect to the logarithm of the CO, concentration, it is possible to re-
parameterise efficiently all the variables with respect to just this one. In Table 2 we
provide the linear coefficients of all the thermodynamic macro-variables of the system
with respect to the changing surface temperature. These data may be of use when de-
vising simplified yet comprehensive climate models or estimating unknown quantities
in comprehensive models or from actual observational data.
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We believe that the investigation proposed here may serve as a stimulation to re-
examine, from a more fundamental point of view, the problem of climate change, and
may help addressing problems of paleoclimatological relevance, such as the interplay
between solar constant and atmospheric composition changes in determining ice ages,
or the onset and the decay of snowball conditions. We expect that extensive application
of the thermodynamically-based tools adopted here may, in general, help closing the
Gap between Simulation and Understanding in Climate Modeling (Held, 2005) and may
provide the basis for a new generation of metrics aimed at the validation of climate
models (Lucarini, 2008b).
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Generalized Sensitivities

Definition Value

N 255K
Ao 1.65K

No- 2.35K

A, -0.002

A -0.06 Wm™2

N 0.0004 Wm™2 K™
A, 0.7
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Parameterisations

Definition
do* / daT,
do" / daT,
dan / daT,

d_W/dT_s

dS, [ dT,

da/dT_s

Value
0.65

0.92
—0.0008 K™

~0.024Wm2K™!

0.00016 Wm™2K™2
0.275K™!
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Fig. 1. Time average of the global mean surface temperature T (solid line) and of the temper-
ature of the warm (@) and cold (©~) reservoirs (dashed and dotted lines, respectively).
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Fig. 2. Generalised climate sensitivities. CO, concentration dependence of macroscopic ther-
modynamic variables: (a) Thermodynamic efficiency; (b) average intensity of the Lorenz energy
cycle; (c¢) average rate of material entropy production; (d) degree of irreversibility. See text for

further details.
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