

Supplement of

Aerosol responses to precipitation along North American air trajectories arriving at Bermuda

Hossein Dadashazar et al.

Correspondence to: Hossein Dadashazar (hosseind@arizona.edu)

The copyright of individual parts of the supplement might differ from the article licence.

26 Table S1. Seasonal number of points available for various measurements conducted at Fort

Prospect in Bermuda between Jan 2015 and Dec 2019. It should be noted that data points
 correspond to 6-hour resolution for all variables except for PM₁₀ data that were at daily

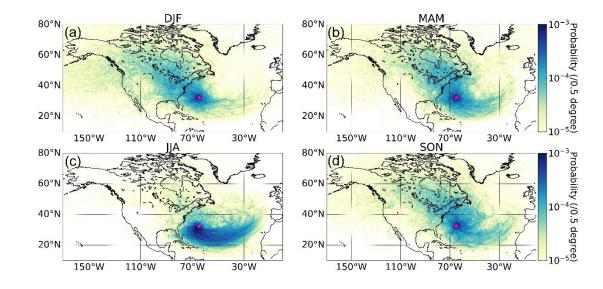
29 resolution.

	DJF	MAM	JJA	SON
NO	1340	1626	1698	1758
NO_2	1340	1626	1698	1758
NO_X	1340	1626	1698	1758
PM _{2.5}	1295	1761	1712	1551
PM_{10}	57	66	72	59

Table S2. Number of points that were used to calculate statistics presented in Table 2.

0	2
- 1	1
\mathcal{I}	\mathcal{I}

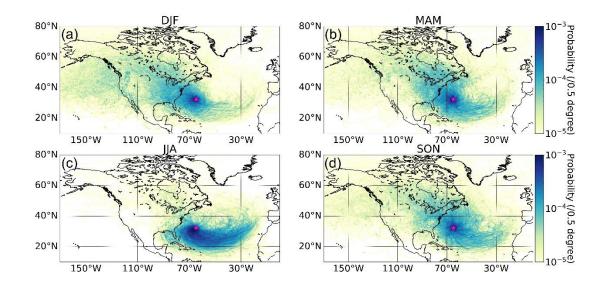
	High-rain (APT > 13.5 mm)/Low-rain (APT < 0.9 mm)			
Parameter	DJF	MAM	JJA	SON
NO (ppbv)	232/147	252/206	166/112	290/141
NO ₂ (ppbv)	232/147	252/206	166/112	290/141
NO _x (ppbv)	232/147	252/206	166/112	290/141
CO (ppbv)	356/171	308/244	173/120	307/148
$PM_{2.5} (\mu g m^{-3})$	244/132	290/242	168/111	255/117
$PM_{2.5}/\Delta CO \ (\mu g \ m^{-3} \ ppbv^{-1})$	224/87	278/209	154/78	215/98
Sea-Salt (µg m ⁻³)	356/171	308/244	173/120	307/148
Sea-Salt _{PM2.5} ($\mu g m^{-3}$)	356/171	308/244	173/120	307/148
Dust ($\mu g m^{-3}$)	356/171	308/244	173/120	307/148
Dust _{PM2.5} (µg m ⁻³)	356/171	308/244	173/120	307/148
Sea-Salt/ Δ CO (μ g m ⁻³ ppbv ⁻¹)	327/124	294/210	157/85	259/124
Sulfate/ ΔCO (µg m ⁻³ ppbv ⁻¹)	327/124	294/210	157/85	259/124
Dust/ Δ CO (µg m ⁻³ ppbv ⁻¹)	327/124	294/210	157/85	259/124
BC/ Δ CO (μ g m ⁻³ ppbv ⁻¹)	327/124	294/210	157/85	259/124
$OC/\Delta CO (\mu g m^{-3} ppbv^{-1})$	327/124	294/210	157/85	259/124
Sea-Salt _{PM2.5} / Δ CO (µg m ⁻³ ppbv ⁻¹)	327/124	294/210	157/85	259/124
$Dust_{PM2.5}/\Delta CO \ (\mu g \ m^{-3} \ ppbv^{-1})$	327/124	294/210	157/85	259/124
Wind _{SF} (m s ⁻¹)	356/171	308/244	173/120	307/148
APT _{6h} (mm)	356/171	308/244	173/120	307/148
APT (mm)	356/171	308/244	173/120	307/148
_	All	_		
$V_{\rm f} / \Delta CO \times 10^4 (\mu m^3 \mu m^{-2} ppbv^{-1})$	16/19			
R _{eff-f} (µm)	16/19			
R_{f} (µm)	16/19			
$\sigma_{\rm f}$	16/19			
V_c / $\Delta CO \times 10^4$ ($\mu m^3 \mu m^{-2} ppbv^{-1}$)	16/19			
R _{eff-c} (μm)	16/19			
R_c (µm)	16/19			
$\sigma_{\rm c}$	16/19			


Table S3. Four APT bin ranges (mm) that were used to create seasonal plots shown in Fig.
7.

Bin Number	DJF	MAM	JJA	SON
1	0-2.5	0-1.4	0-1.8	0-2.4
2	2.5-6.7	1.4-5.3	1.8-8.7	2.4-7.2
3	6.7-15.7	5.3-14.6	8.7-19.0	7.2-16.0
4	15.7-164.9	14.6-118.9	19.0-74.2	16.0-106.2

43 Table S4. Median values of aerosol parameters and APT for Min. Alt. legs (Fig. 10)

	Parameter	Min. Alt. 1	Min. Alt. 2	Min. Alt. 3	Min. Alt. 4
	APT (mm)	0.0	1.8	2.4	0.6
	$CN_{>10nm}$ (cm ⁻³)	4938	345	165	1076
	LAS (cm^{-3})	360	174	66	550
45	LAS _{Volume} ($\mu m^3 cm^{-3}$)	2.0	0.9	0.4	1.8


44 conducted in ACTIVATE's Research Flight 6 on 22 February 2020.

48 Figure S1. Seasonal maps (a-d) showing the probability density of trajectories calculated

- 49 based on 10-day HYSPLIT backward trajectories reaching Bermuda (32.30° N, 64.77°W),
- denoted by the pink star, at 500 m (AGL). This analysis is based on trajectories between 01
 January 2015 and 31 December 2019.

56 Figure S2. Seasonal maps (a-d) showing the probability density of trajectories calculated

- 57 based on 10-day HYSPLIT backward trajectories reaching Bermuda (32.30° N, 64.77°W),
- 58 denoted by the pink star, at 1 km (AGL). This analysis is based on trajectories between 01
- 59 January 2015 and 31 December 2019.

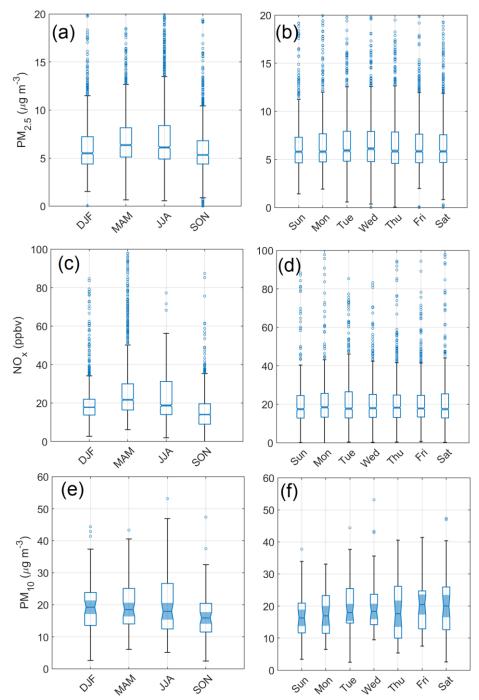
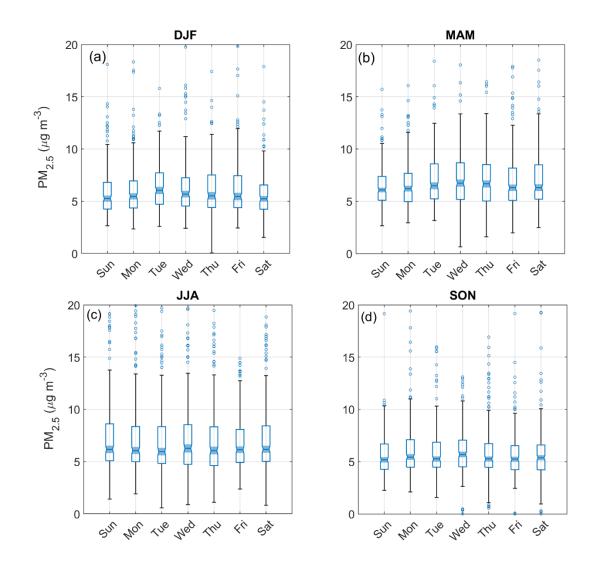
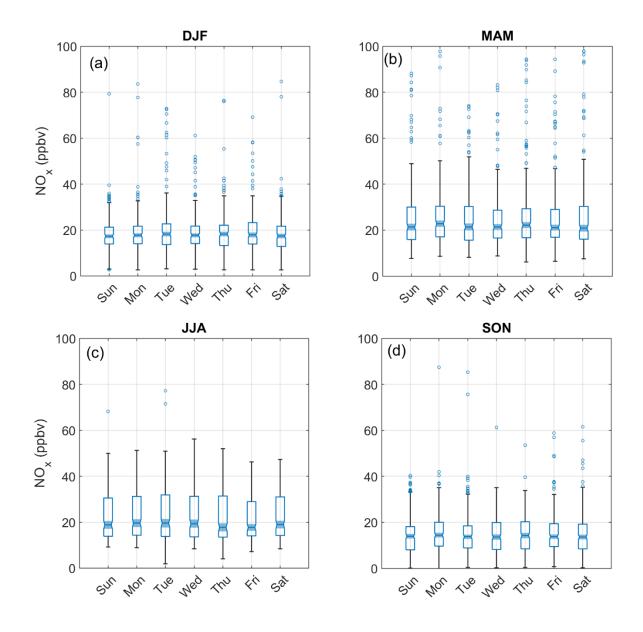
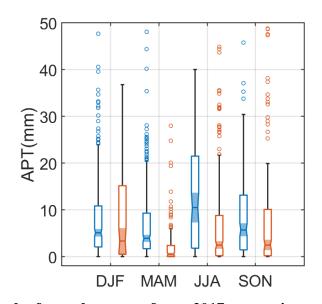




Figure S3. Seasonal (panels a/c/e) and day-of-week (panels b/d/f) box notch plots of PM_{2.5}, NO_x, and PM₁₀ measured at Fort Prospect in Bermuda between 1 January 2015 and 31 December 2019. The middle, bottom, and top lines in each box represent the median, 25th percentile, and 75th percentile, respectively. Markers show extreme values identified based on 1.5×IQR (interquartile range) distance from the top and bottom of each box. Whiskers represent maximum and minimum values excluding extreme points. Boxes with notches and shaded regions that do not overlap have different medians at 95% confidence level.

70 Figure S4. Day-of-week box notch plots of PM2.5 for (a-d) different seasons measured at



75 Figure S5. Day-of-week box notch plots of NO_x for (a-d) different seasons measured at Fort

Prospect in Bermuda between 1 January 2015 and 31 December 2019.

79 Figure S6. Box notch plot for each season of year 2017 comparing accumulated precipitation

along trajectories (APT) for Clusters 1 (blue) and 2 (orange) from Fig. 4b. APT values were
estimated from four-day HYSPLIT back trajectories reaching Bermuda (32.30° N, 64.77°W)
at 100 m AGL. The middle, bottom, and top lines in each box represent the median, 25th
percentile, and 75th percentile, respectively. Markers show extreme values identified based
on 1.5×IQR (interquartile range) distance from the top of each box. Whiskers represent
maximum and minimum values excluding extreme points. Boxes with notches and shaded
regions that do not overlap have different medians at the 95% confidence level.

Figure S7. Trajectory ensembles for (a) Min. Alt. 1, (b) Min. Alt. 2, (c), Min. Alt. 3, and (d) 91 Min. Alt. 4 legs, conducted by the HU-25 Falcon on 22 February 2020, overlaid on GOES 16 92 93 imagery obtained at 19:35:04 (UTC). The trajectory ensembles consisted of 27 individual 94 trajectories obtained by offsetting the meteorological data by a fixed grid factor. Trajectory 95 ensembles were calculated for the midpoints of four Min. Alt. legs, which are marked in each 96 plot. The average (± standard deviation) of accumulated precipitation along the trajectory 97 (APT) is also shown calculated for the recent history of the sampled air masses when they were 98 over the ocean (time over land excluded from APT calculations).