Supplement of

Evolution and chemical characteristics of organic aerosols during wintertime PM_{2.5} episodes in Shanghai, China: Insights gained from online measurements of organic molecular markers

Shuhui Zhu et al.

Correspondence to: Jian Zhen Yu (jian.yu@ust.hk) and Cheng Huang (huangc@saes.sh.cn)

10

5

Contents of this file:

Text S1 to S2

Table S1 to S2

Figures S1 to S12

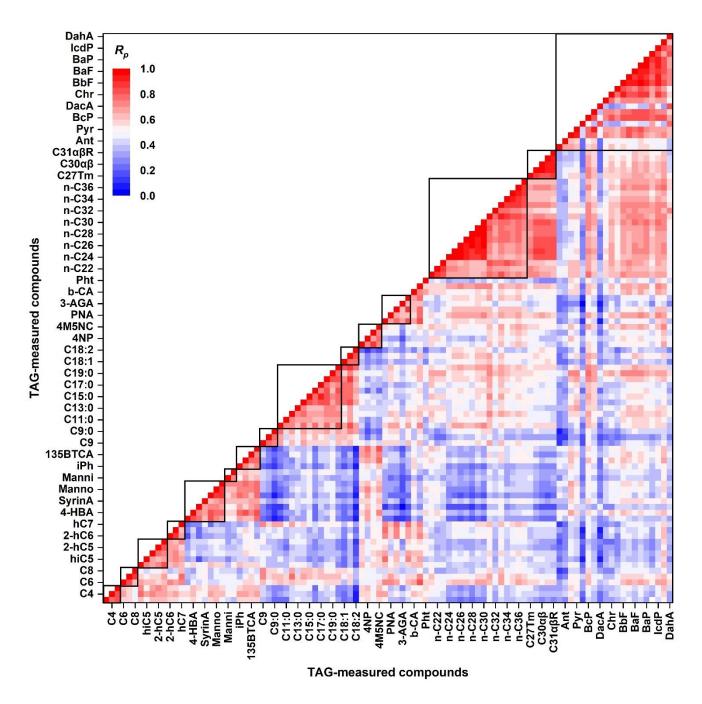
15 References

Group	Compounds	Abbreviation	Avg ng/m ³	Range ng/m ³	Internal standards	Quantification ions	Potential sources	
	Malonic acid	C3	0.66	0.04-5.54	Adipic acid-d10	233		
L_DCAs	Succinic acid	C4	77.8	3.50-498.4	a	247	Oxidation products of	
	Glutaric acid	C5	16.1	0.73-150.6	Succinic acid-d4 261		VOCs	
	Malic_acid	hC4	155.5	10.1-568.1		233		
	Citramalic_acid	hiC5	29.4	2.16-142.1	Azelaic Acid-d14	247		
L_hDCAs	Glyceric_acid	hC3	53.5	3.33-234.5	Succinic acid-d4	292	Oxidation products of	
	2-hydroxyglutaric acid	2-hC5	2.26	0.04-13.7	A 11 1 11 11 0	349	VOCs	
	3-hydroxyglutaric acid	3-hC5	23.7	0.70-170.6	Adipic acid-d10	349		
	Adipic acid	C6	9.54	0.71-64.4	Adipic acid-d10	111		
H_DCAs	Pimelic acid	C7	2.22	0.17-15.5	A _ 1 ¹ A ¹ 1 114	289	Oxidation products of	
	Suberic acid	C8	4.05	0.08-26.6	Azelaic Acid-d14	303	VOCs	
	2-hydroxyadipic acid	2-hC6	3.06	0.05-22.9		363		
H_hDCAs	3-Hydroxyadipic acid	3-hC6	15.4	0.40-116.4	Adipic acid-d10 363	Oxidation products of		
	Hydroxypimelic acid	hC7	6.95	0.30-39.4	Azelaic Acid-d14	377	VOCs	
	Pinic acid	PA	7.55	0.38-34.3		171		
	Pinonic acid	PNA	1.03	0.09-6.47		171		
αPinT	3-methyl-1,2,3-butanetricarboxylic acid	3-MBTCA	4.34	0.10-26.0	Azelaic Acid-d14	405	Oxidation products of α-	
	3-acetylglutaric acid	3-AGA	3.73	0.40-15.1		303	pinene	
	3-hydroxy-4,4-dimethylglutaric	3-HDGA	12.6	0.06-67.3		377		
βCaryT	β-caryophyllinic acid	b-CA	1.36	BD-5.15	Azelaic Acid-d14	383	Oxidation product of β- caryophyllene	
DHOPA	2,3-dihydroxy-4-oxopentanoic acid	DHOPA	12.9	0.47-58.6	Azelaic Acid-d14	277	Oxidation product of mono aromatics	
Pht	Phthalic acid	Pht	28.8	1.28-147.1	Phthalic-3,4,5,6-d4	295	Oxidation product of	

Table S1. Statistics of hourly concentrations of 98 organic molecules measured by TAG system.

					acid		naphthalene and derivatives
Aromatic	Isophthalic acid	iPh	1.75	0.12-9.14	295		
polycarboxylic	Terephthalic acid	tPh	21.1	0.94-105.3	Phthalic-3,4,5,6-d4	295	Oxidation products of
	1,2,4-benzentricarboxylic acid	124BTCA	15.1	0.25-98.4	acid	411	aromatic compounds
acids (Ar-PCAs)	1,3,5-benzentricarboxylic acid	135BTCA	2.49	0.16-15.1		411	
	4-nitrocatechol	4NC	1.54	BD-9.42		284	
Nitro-aromatic	4-nitrophenol	4NP	3.33	0.06-20.7	Phthalic-3,4,5,6-d4	196	Nitration of aromatic
compounds (NACs)	3-methyl-5-nitrocatechol	3M5NC	0.24	BD-1.30	acid	298	compounds
	4-methyl-5-nitrocatechol	4M5NC	0.66	BD-4.00		298	
	3-hydroxybenzoic acid	3-HBA	0.76	0.05-3.36		267	
	4-hydroxybenzoic acid	4-HBA	1.40	0.09-6.41	Phthalic-3,4,5,6-d4	267	
Diamana haamina	Syringic acid	SyrinA	0.65	0.02-3.97	acid	327	
Biomass burning	Vanillic acid	VaniA	0.57	0.03-3.27		267	Biomass burning
tracers (BBtracers)	Galactosan	Gal	2.44	0.13-12.8		217	
	Mannosan	Manno	4.54	0.36-19.4	Levoglucosan-d7	204	
	Levoglucosan	Levo	61.3	5.18-185.1		204	
D.'.	Mannitol	Manni	31.3	1.92-155.0	Glucose-d7	319	
Primary sugars	Glucose	Glu	5.17	0.51-21.8	Glucose-d/	204	Plant debris, fungal spores
	Azeleic_acid	С9	10.5	1.02-62.1	317		
C9 acids	9-oxononanoic acid	ωC9:0	5.95	0.45-36.4	Azelaic Acid-d14	228	Oxidation products of long chain fatty acids
	Nonanoic acid	C9:0	0.58	0.04-5.05		215	
	Decanoic acid	C10:0	2.00	0.14-12.6	Azelaic Acid-d14	229	
	Undecanoic acid	C11:0	0.06	BD-0.32		243	
7 16 1	Lauric acid	C12:0	0.86	0.05-6.26	M 1 107	257	
Saturated fatty acids	Tridecanoic acid	C13:0	0.11	0.02-0.58	Myristic acid-d27	271	Cooking
(sFAs)	Myristic acid	C14:0	2.92	0.18-21.6		285	
	Pentadecanoic acid	C15:0	0.85	0.10-5.88	D-1	299	
	Palmitic acid	C16:0	53.9	4.39-360.8	Palmitic acid-d31	313	

	Heptadecanoic acid	C17:0	0.93	0.05-9.98		327	
	Stearic acid	C18:0	30.2	2.20-283.0		341	
	Nonadecanoic acid	C19:0	0.34	0.03-3.68	Stearic acid-d35	355	
	Eicosanoic acid	C20:0	0.84	0.04-10.1		369	
	Oleic acid	C18:1	20.5	0.64-178.2	Stearic acid-d35	339	
Unsaturated fatty	Palmitoleic acid	C16:1	0.36	0.03-3.31	Palmitic acid-d31	311	Cooking
acids (uFAs)	Linoleic acid	C18:2	7.76	0.07-164.6	Stearic acid-d35	337	
	Heneicosane	n-C21	0.99	0.20-5.35	n-Eicosane-d42	57	
	Docosane	n-C22	1.94	0.29-9.29		57	
	Tricosane	n-C23	1.95	0.25-11.6		57	
	Tetracosane	n-C24	3.05	0.43-13.5	n-Tetracosane-d50	57	
	Pentacosane	n-C25	4.73	0.67-25.6		57	
	Hexacosane	n-C26	4.12	0.48-22.0		57	
	Heptacosane	n-C27	4.65	0.52-25.8		57	
	Octacosane	n-C28	3.41	0.26-22.3		57	V
Alkanes	Nonacosane	n-C29	4.36	0.29-23.9		57	Vegetative detritus, fos fuel uses
	Tracotane	n-C30	2.38	0.02-17.2	n-Octacosane-d58	n-Octacosane-d58 57	Tuer uses
	Hentriacontane	n-C31	2.01	0.02-12.5		57	
	Dotriacontane	n-C32	1.39	0.02-13.4		57	
	Tritractotane	n-C33	0.73	BD-5.67		57	
	Tetratriactoane	n-C34	0.60	0.02-4.37		57	
	Pentatriacontane	n-C35	0.56	BD-4.39	n-Hexatriacontane-	57	
	Hexatriacontane	n-C36	0.38	BD-2.91	d74	57	
	Heptatriacontane	n-C37	0.22	BD-2.36		57	
	22,29,30-trisnorhopane	C27Tm	0.04	BD-0.26		191	
Hononog	αβ-norhopane	C29αβ	0.37	0.03-1.96	n-Tetracosane-d50	191	Vehicular emission, co
Hopanes	αβ-hopane	C30αβ	0.46	BD-2.32	n-retracosane-030	191	combustion
	αβ-22S-homohopane	C31αβS	0.11	BD-0.66		191	


	$\alpha\beta$ -22R-homohopane	C31αβR	0.11	BD-0.70		191	
	Phenanthrene	Phe	0.43	0.07-1.34		178	
	Anthracene	Ant	0.18	0.01-0.54		178	
	Fluoranthene	Flu	0.41	0.03-3.38		202	
	Pyrene	Pyr	0.38	BD-3.48		202	
	Benzo[b]chrysene	BbC	0.02	BD-0.31	Phenanthrene-d10	278	
	Benzo[c]phenanthrene	BcP	0.05	BD-0.40		228	
	Cyclopenta[cd]pyrene	CcdP	0.07	BD-0.86		226	
	Dibena[a,c]anthracene	DacA	0.02	BD-0.42		278	
	Triphenylene	TriP	0.18	BD-2.39		228	
PAHs	Chrysene	Chr	0.22	0.02-1.26	C1	228	Combustion sources (e
	Benzo[a]anthracene	BaA	0.17	BD-1.46	Chrysene-d12	228	coal combustion)
	Benzo[b]fluoranthene	BbF	0.23	0.01-1.48		252	
	Benzo[k]fluoranthene	BkF	0.43	BD-2.69		252	
	Benzo[a]fluoranthene	BaF	0.12	BD-1.14	D 1 112	252	
	Benzo[e]pyrene	BeP	0.42	0.03-2.49	Perylene-d12	252	
	Benzo[a]pyrene	BaP	0.45	BD-3.85		252	
	Perylene	Per	0.18	BD-1.81		252	
	Indeno[1,2,3-cd]pyrene	IcdP	0.38	BD-3.15	Benzo[ghi]perylene	276	
	Benzo[ghi]perylene	BghiP	0.53	0.04-2.47	-d12	276	
	Dibenzo[a,h]anthracene	DahA	0.09	BD-1.08		278	

ubgroups	Species	Avg	Range
ungroups	species	ppb	ppb
	Ethane	6.91	0.22-33.6
	Propane	5.47	0.16-51.6
	Isobutane	1.39	0.06-10.2
	n-Butane	1.82	0.09-18.8
	Cyclopentane	0.10	BD-1.20
	Isopentane	0.87	0.06-6.19
	n-Pentane	0.60	0.01-3.15
	2,2-Dimethylbutane	0.04	BD-0.97
	2,3-Dimethylbutane	0.07	BD-0.97
	2-Methylpentane	0.18	BD-1.18
	3-Methylpentane	0.18	BD-1.00
	n-Hexane	0.30	0.02-2.00
	2,4-Dimethylpentane	0.03	BD-1.04
Alkanes	Methylcyclopentane	0.09	BD-0.98
	2-Methylhexane	0.08	BD-1.01
	Cyclohexane	0.15	BD-1.51
	2,3-Dimethylpentane	0.03	BD-1.01
	3-Methylhexane	0.08	BD-1.79
	2,2,4-Trimethylpentane	0.05	BD-1.01
	n-Heptane	0.13	BD-3.09
	Methylcyclohexane	0.09	BD-1.01
	2,3,4-Trimethylpentane	0.04	BD-1.03
	2-Methylheptane	0.03	BD-1.05
	3-Methylheptane	0.03	BD-1.06
	n-Octane	0.10	0.01-3.46
	n-Nonane	0.18	0.01-3.88
	n-Decane	0.08	0.01-1.08
	Ethylene	2.49	0.04-27.0
	Propylene	0.63	BD-11.9
	Trans-2-butene	0.08	BD-1.38
	1-Butene	0.12	BD-1.10
	Isobutylene	0.14	0.02-0.53
	cis-2-Butene	0.06	BD-1.10
Alkenes	1,3-Butadiene	0.03	BD-0.40
	1-Pentene	0.03	BD-1.19
	trans-2-Pentene	0.03	BD-1.19
	Isoprene	0.04	BD-1.10
	cis-2-Pentene	0.02	BD-1.15
	1-Hexene	0.02	BD-0.96
	3-Methyl-1-butene	0.01	BD-0.06

Table S2. Statistics of hourly concentrations of all VOC species measured by GC-FID and their corresponding subgroups.

	2-Methyl-1-butene	0.02	BD-0.11
	2-Methyl-2-butene	0.01	BD-0.23
	4-Methyl-1-pentene	0.002	BD-0.02
	2-Methyl-1-pentene	0.02	BD-0.47
	2-Methyl-2-pentene	0.001	BD-0.02
Acetylene	Acetylene	2.08	0.02-19.3
-	Benzene	0.59	0.04-1.94
	Toluene	1.21	0.06-7.35
	Ethylbenzene	0.38	0.02-5.39
	m/p-Xylene	0.70	BD-10.8
	o-Xylene	0.32	0.02-3.54
	Styrene	0.09	BD-0.95
	iso-Propylbenzene	0.03	BD-1.03
	n-Propylbenzene	0.05	BD-1.01
Aromatics	m-Ethyltoluene	0.06	BD-1.10
	p-Ethyltoluene	0.05	BD-1.06
	1,3,5-Trimethylbenzene	0.05	BD-1.05
	o-Ethyltoluene	0.05	BD-1.01
	1,2,4-Trimethylbenzene	0.07	BD-0.91
	1,2,3-Trimethylbenzene	0.06	BD-1.00
	m-Diethylbenzene	0.04	BD-1.02
	p-Diethylbenzene	0.05	BD-0.92
	Acetaldehyde	0.84	0.08-5.36
	Acrolein	0.10	BD-0.51
	Propanal	0.23	0.05-1.05
	n-Butanal	0.09	0.01-0.56
	Methacrolein	0.02	BD-0.14
	Methylvinylketone	0.03	BD-0.20
	Methylketone	0.80	0.02-6.87
	2-Pentanone	0.02	BD-0.13
	n-Pentanal	0.06	BD-0.36
	3-Pentanone	0.02	BD-0.07
OVOCs	Methyl isobutyl ketone	0.04	BD-0.38
	n-Hexanal	0.16	0.01-1.85
	Methyl tert-butyl ether	0.15	BD-1.86
	Isopropyl alcohol	0.39	0.03-10.9
	Methyl acetate	0.53	0.01-16.2
	Ethyl acetate	0.95	0.01-15.1
	n-Propyl acetate	0.18	BD-7.44
	n-Butyl acetate	0.37	0.01-2.98
	Methyl methacrylate	0.01	BD-0.14
	Vinyl acetate	0.01	BD-0.28
	Acetonitrile	0.53	0.05-19.3

Chloromethane	0.17	0.01-0.89
Vinylchloride	0.01	BD-0.13
Bromomethane	0.01	BD-0.16
Chloroethane	0.04	BD-2.06
Freon-11	0.62	0.01-22.1
1,1-Dichloroethene	0.003	BD-0.07
Freon-113	0.06	BD-0.21
Dichloromethane	1.58	0.05-14.6
1,1-Dichloroethane	0.01	BD-0.19
cis-1,2-Dichloroethene	0.003	BD-0.04
Chloroform	0.25	BD-26.1
1,1,1-Trichloroethane	0.002	BD-0.01
Carbontetrachloride	0.14	BD-7.65
1,2-Dichloroethane	0.54	0.01-5.97
Trichloroethylene	0.07	BD-2.46
1,2-Dichloropropane	0.14	BD-5.25
Bromodichloromethane	0.003	BD-0.01
trans-1,3-Dichloropropene	0.003	BD-0.14
cis-1,3-Dichloropropene	0.003	BD-0.06
1,1,2-Trichloroethane	0.03	BD-0.32
Tetrachloroethylene	0.11	0.01-8.88
1,2-Dibromoethane	0.002	BD-0.03
Chlorobenzene	0.03	BD-0.43
1,3-Dichlorobenzene	0.02	0.01-0.09
Benzylchloride	0.03	0.01-0.22
1,2-Dichlorobenzene	0.03	0.01-0.17

Figure S1. Pearson coefficients (R_p) of hourly concentrations 98 TAG-measured organic molecules. Organic molecules in each dark square box characterized by high Rp are classified into the same organic molecular group. The order of organic molecules is same with Table S2.

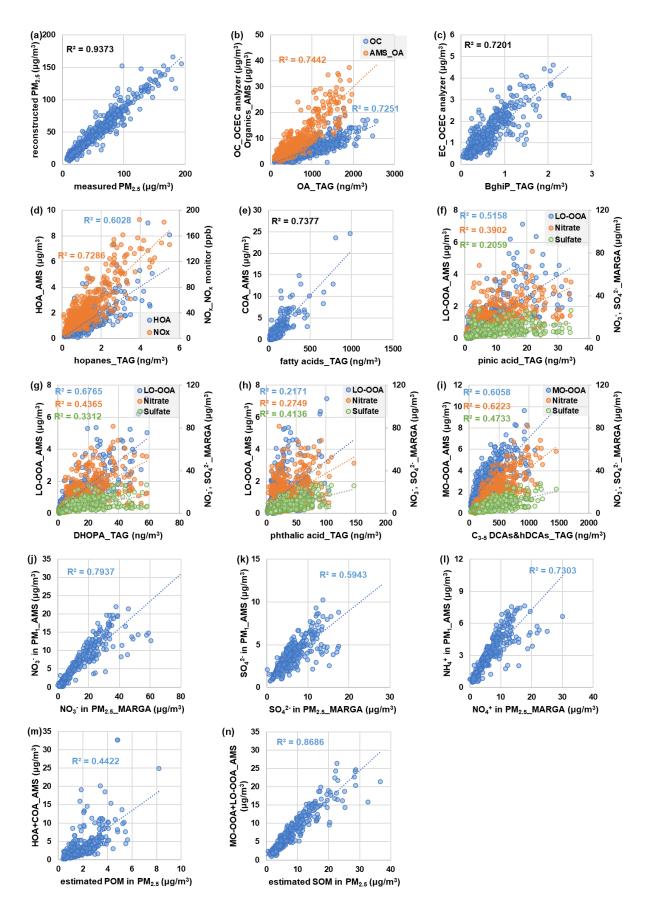


Figure S2. Scatter plots of select pairs of measured parameters with known underlying physical relationships. They serve as internal data consistency check.

30 Text S1. Clustering analysis and concentration weighted trajectory (CWT)

For every hour during the field campaign, a 48-hour backward trajectory starting at 100 m above the observation site was calculated by HYSPLIT software with 6-hour archived GDAS data as meteorological input. Then all the backward trajectories were clustered by calculating their spatial dissimilarity (SPVAR) and total spatial dissimilarity (TSV):

$$SPVAR = \sum_{j=1}^{x} \sum_{i=1}^{t} D_{ij}^2 \tag{1}$$

35 where *D_{ij}* is the distance from the stop point at the *j*th hour in the *i*th trajectory to the corresponding point in the average trajectory, *t* is the length of the trajectory, *x* is the number of trajectories in the cluster. Then TSV as shown in Figure S3 is calculated by summing up the SPVAR values of all clusters. The variations of PM_{2.5} chemical composition under each cluster is given in Figure S4. Apparently, PM_{2.5} chemical compositions were diverse under different air mass clusters with higher mass fractions of secondary organic matter (SOM) and sulfate observed under cluster 1 (CL#1). In comparison, cluster 2 (CL#2) was characterized by significantly higher mass loading of nitrate, and cluster 3 (CL#3) was characterized by higher mass percentages of elemental carbon (EC) and primary organic matter (POM). For cluster 4 (CL#4), higher mass proportions of sulfate and chloride were observed.

45

The potential source areas for $PM_{2.5}$ in Shanghai under the influence of different air mass clusters were then analyzed and illustrated by concentration weighted trajectory (CWT) approach with the adoption of ZeFir software based on the results derived from HYSPLIT. With the input of hourly $PM_{2.5}$ concentration data, the residence time of a back trajectory arriving at Shanghai in each $0.2^{\circ} \times 0.2^{\circ}$ grid cell of a 25-50°N × 105-135°E geographical domain is determined via the following equation:

$$CWT_{ij} = \frac{\sum_{L=1}^{M} c_L \tau_{ij-L}}{\sum_{L=1}^{M} \tau_{ij-L}}$$
(2)

where CWT_{ij} is the attributed PM_{2.5} concentrations in the ij^{th} grid cell, L is the index of the trajectory, M is the total number of back trajectories over a time period, C_L is the hourly concentration of PM_{2.5} corresponding to the arrival of back trajectory L, τ_{ij-L} is the number of trajectory segment endpoints in the ij^{th} grid cell for back trajectory L.

50

A weighted function was applied to downweigh cells associated with low values of n_{ij} to lower uncertainties, which was based on the trajectory density by calculating log(n+1) as described by Bressi et al. (2014) and Waked et al. (2014). The weighted function is empirically determined using the following equations:

$$W = \begin{cases} 1, \ for \log(n+1) > 0.85 * max_{\log(n+1)} \\ 0.725, \ for \ 0.6 * max_{\log(n+1)} < \log(n+1) \ 0.85 * max_{\log(n+1)} \\ 0.475, \ for \ 0.35 * max_{\log(n+1)} < \log(n+1) \ 0.6 * max_{\log(n+1)} \\ 0.175, \ for \ \log(n+1) < 0.35 * max_{\log(n+1)} \end{cases}$$
(3)

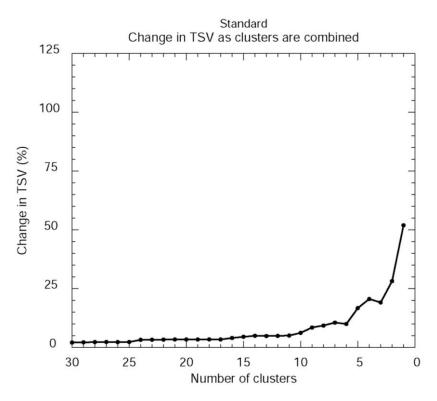


Figure S3. Change of total spatial variance (TSV) as a function of number of clusters for 100m arrival heights.

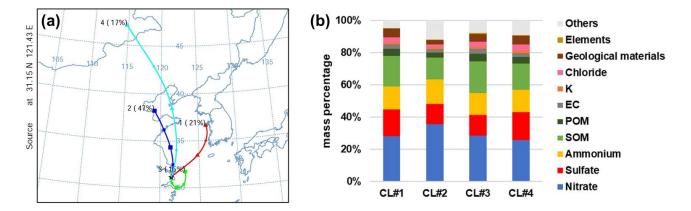


Figure S4. (a) Distribution of the 48-hour backward trajectory clusters arriving at SAES site at 100m above sea level during the campaign;
(b) PM_{2.5} chemical compositions under the influences of different clusters

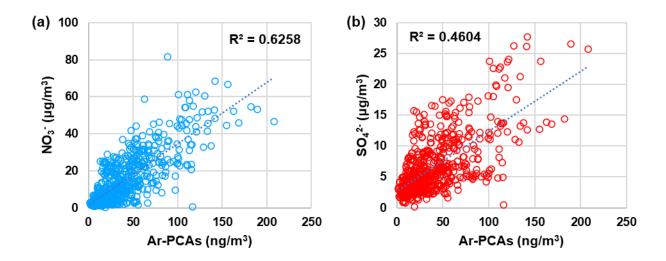
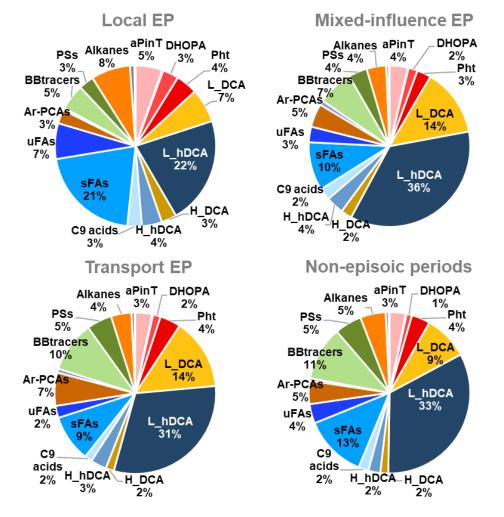



Figure S5. Scatter plots of hourly concentrations of Ar-PCAs versus (a) nitrate and (b) sulfate.

65 **Figure S6.** Mass proportions of 18-organic molecular groups in TAG-measured OA during the local episodes, mixed-influence episodes, transport episodes, and non-episodic periods, respectively.

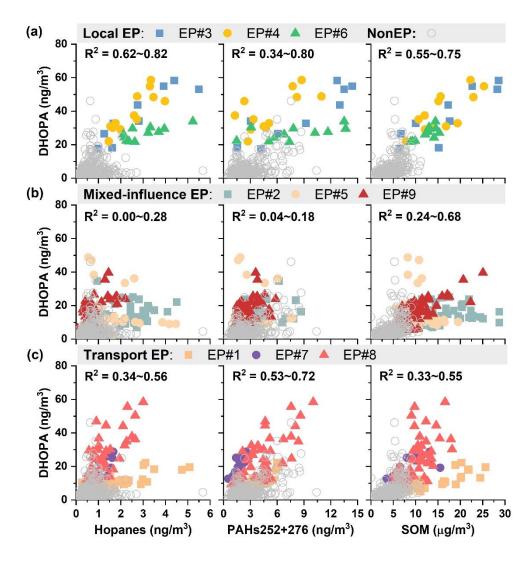


Figure S7. Correlations of DHOPA versus hopanes, PAHs and SOM during (a) local, (b) mixed-influence and (c) transport episodes.
 PAHs252+276 represents the sum of hourly concentrations of BbF, BkF, BaF, BeP, BaP, IcdP, BghiP measured during the campaign.

TextS2. Estimation of aromatic SOA

75

95

A modified tracer-based method for estimating aromatic SOA was proposed in Gao et al. (2019) and Zhang et al. (2021a), which has taken into consideration of equilibrium gas-particle partitioning of semi-volatile products. In this method, the hourly concentration of DHOPA, the oxidation product of monoaromatic compounds, is predicted with the following equations:

$$[DHOPA] = \sum_{i=1}^{N} \alpha_i \cdot [VOC_{i,consumed}]$$
(4)

$$\left[VOC_{i,consumed}\right] = VOC_{i,t} \times (\exp(k_i[OH]\Delta t) - 1)$$
(5)

$$[OH]\Delta t = \frac{1}{k_x - k_B} \times \left(ln \frac{[X]}{[B]} \right|_{t=t_0} - ln \frac{[X]}{[B]} \right|_{t=t})$$
(6)

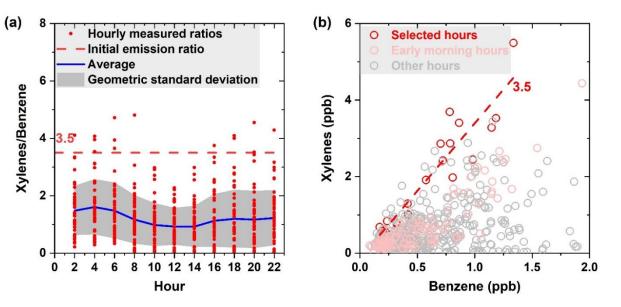
where the mass yield values (α_i) of DHOPA from a specific aromatic precursor *i* were obtained from (Al-Naiema et al., 2020), and k_i is the reaction rate coefficient of precursor i with OH radical. Equations (5) and (6) estimate the VOC precursors 80 consumed (Gouw et al., 2018; Borbon et al., 2013; Yuan et al., 2012; Y. Zhu et al., 2017). Due to the predominant presence of toluene and xylenes in urban area (Al-Naiema et al., 2020; Kleindienst et al., 2007; Zhang et al., 2021a), only include these two aromatic precursors were considered in the calculation. In other words, [VOC_{i, consumed}] in these equations refers to the consumed mass concentrations of toluene and xylenes by OH radicals, and their corresponding α_i values were 0.0019 for toluene and 0.00090 for xylenes under high-NO_x conditions. Note that our monitoring site had an average NO level at $10.4 \pm$ 19.7 ppb (>1 ppb) and VOCs/NO_x ratio at 1.1 ± 0.7 (<10) during the campaign, consistent with the high NO_x conditions created 85 in the chamber studies. $\frac{[X]}{[B]}\Big|_{t=t}$ is the measured ratio of m+p-xylene to benzene at time t. $\frac{[X]}{[B]}\Big|_{t=t_0}$ represents the concentration ratio in fresh emission before aging begins, which is assumed to be constant during the investigation period. The initial emission ratio was determined by conducting a linear fit on a selected dataset of m+p-xylene and benzene ambient concentrations measured in the early morning (0:00-6:00 A.M.) and with ratios of xylenes to benzene fell in the top 10% range. 90 The ratio is calculated to be 3.5 ppb/ppb, which is close to the slope of the upper "edge" in the scatterplot (Figure S8).

The estimated hourly DHOPA values using equations (4)-(6) are in good agreement with ambient measurements as shown in Figure S9, providing confidence that this modified method reasonably describes the formation and partitioning of DHOPA from multiple aromatic hydrocarbon precursors at this site. Subsequently, semi-volatile mono-aromatic SOA (SemiASOA) and total mono-aromatic SOA (TotalASOA), the latter of which includes more-oxidized aromatic SOA (MoASOA) like oligomers and dicarbonyl compounds, are estimated by the following equations proposed by Zhang et al. (2021a). Then MoASOA can be estimated by subtracting SemiASOA from TotalASOA:

$$SemiASOA = \frac{[DHOPA]}{f_{SOA}}$$
(7)

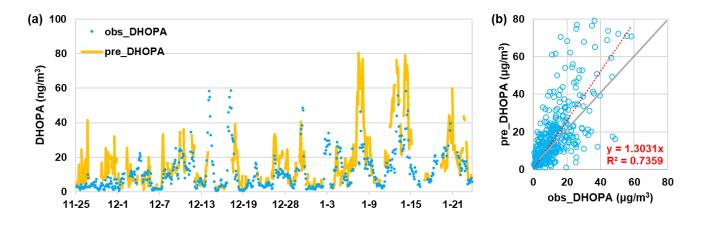
$$TotalASOA = \frac{[DHOPA]}{0.0020} \tag{8}$$

$$MoASOA = TotalASOA - SemiASOA \tag{9}$$


100 where f_{SOA} is the mass ratio of particle-phase DHOPA to SOA, which can be calculated by equation (10). The mass yield of DHOPA (α) in equation (10) is defined as the ratio of the amount of DHOPA produced to the amount of precursor VOC reacted, and β_i is the mass yield of an individual semi-volatile product *i*. In this study, α and β_i values for toluene and xylene under high NO_x environment were adopted from Zhang et al. (2021a). $F_{p,i}$ and $F_{p,i}$ are the fraction of DHOPA and semi-volatile products in the absorbing OM phase, respectively, which were estimated using equation (11) and (12), respectively. C_{OA} in the equations

represents the mass concentrations of organic aerosols, which were estimated from summing SOM and POM calculated in Section 2.2.2. The K_{OM} in equation (11) is the absorptive gas/particle partitioning coefficient of DHOPA and C_i^* in equation (12) is the saturation mass concentration of the products oxidized from toluene and xylene, both values of which were also adopted from Zhang et al. (2021a).

$$f_{SOA} = \frac{\alpha F_{p,t}}{\sum_{i=1}^{N} \beta_i \cdot F_{p,i}} \tag{10}$$


$$F_{p,t} = \left(1 + \frac{1}{\kappa_{OM} c_{OA}}\right)^{-1} \tag{11}$$

$$F_{p,i} = \left(1 + \frac{c_i^*}{c_{OA}}\right)^{-1}$$
(12)

115

Figure S8. (a) Diurnal variations of m+p-xylene/benzene concentration ratios during the campaign. Red dots are measured hourly ratios. Blue line indicates hourly geometric average, and gray area represents geometric standard deviations; (b) scatter correlation of m+p-xylene with benzene. Data selected for estimation of initial emission ratio were colored with red. The dashed red line in both graphs show the estimated initial emission ratio of m+p-xylene/benzene which is 3.5.

Figure S9. (a) Predicted and observed hourly concentrations of DHOPA during the campaign; (b) scatter plots of predicted and observed hourly DHOPA. Dashed red line is the linear fit line with slope forced to zero based on all hourly dataset and solid grey line is the 1:1 line.

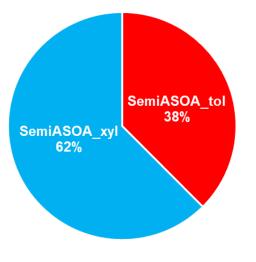
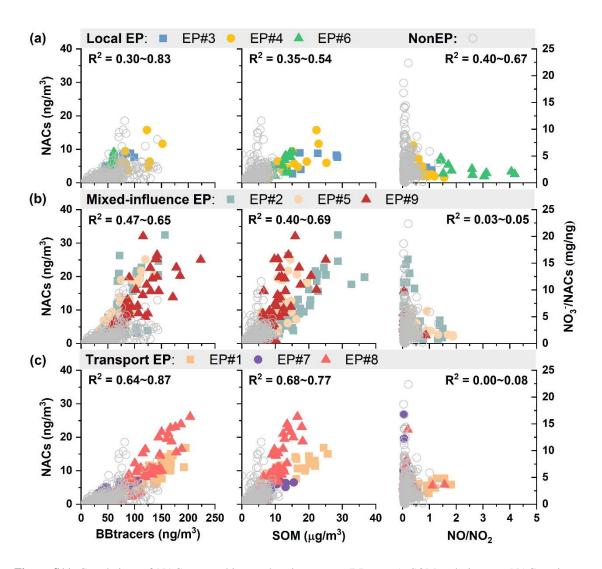
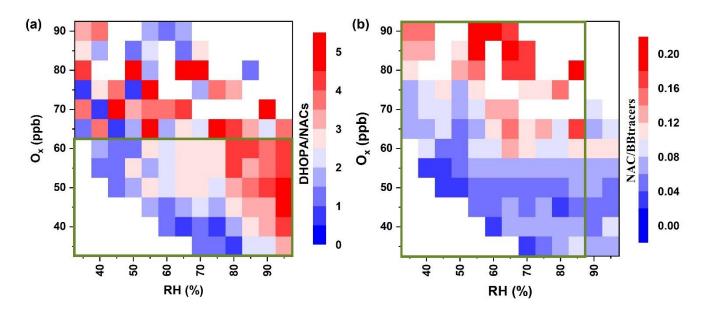




Figure S10. Predicted contributions to DHOPA from toluene and xylene pathways under high-NOx conditions.

Figure S11. Correlations of NACs versus biomass burning tracers (BBtracers), SOM and nitrate to NACs ratios versus NO/NO₂ ratios during (a) local, (b) mixed-influence and (c) transport episodes.

125

140

Figure S12. RH versus O_x dependence of the mass ratios of (a) DHOPA to NACs and (b) NACs to biomass burning tracers during the field campaign.

References

130 Al-Naiema, I., Offenberg, J. H., Madler, C. J., Lewandowski, M., Kettler, J., Fang, T. and Stone, E. A.: Secondary organic aerosols from aromatic hydrocarbons and their contribution to fine particulate matter in Atlanta, Georgia, Atmospheric environment (1994), 223, 117227, 10.1016/j.atmosenv.2019.117227, 2020.

Borbon, A., Gilman, J. B., Kuster, W. C., Grand, N., Chevaillier, S., Colomb, A., Dolgorouky, C., Gros, V., Lopez, M., Sarda-Esteve, R., Holloway, J., Stutz, J., Petetin, H., McKeen, S., Beekmann, M., Warneke, C., Parrish, D. D. and de Gouw, J.,A.:

Emission ratios of anthropogenic volatile organic compounds in northern mid-latitude megacities: Observations versus emission inventories in Los Angeles and Paris, Journal of geophysical research. Atmospheres, 118, 2041-2057, 10.1002/jgrd.50059, 2013.

Bressi, M., Sciare, J., Ghersi, V., Mihalopoulos, N., Petit, J. -., Nicolas, J. B., Moukhtar, S., Rosso, A., Féron, A., Bonnaire, N., Poulakis, E. and Theodosi, C.: Sources and geographical origins of fine aerosols in Paris (France), Atmospheric chemistry and physics, 14, 8813-8839, 10.5194/acp-14-8813-2014, 2014.

Gouw, J. A., Gilman, J. B., Kim, S. -, Alvarez, S. L., Dusanter, S., Graus, M., Griffith, S. M., Isaacman-VanWertz, G., Kuster, W. C., Lefer, B. L., Lerner, B. M., McDonald, B. C., Rappenglück, B., Roberts, J. M., Stevens, P. S., Stutz, J., Thalman, R., Veres, P. R., Volkamer, R., Warneke, C., Washenfelder, R. A. and Young, C. J.: Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission Ratios, Journal of geophysical

research. Atmospheres, 123, 2298-2319, 10.1002/2017JD027976, 2018.
 Gao, Y., Wang, H., Zhang, X., Jing, S., Peng, Y., Qiao, L., Zhou, M., Huang, D. D., Wang, Q., Li, X., Li, L., Feng, J., Ma, Y. and Li, Y.: Estimating Secondary Organic Aerosol Production from Toluene Photochemistry in a Megacity of China, Environ. Sci. Technol., 53, 8664-8671, 10.1021/acs.est.9b00651, 2019.

Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Lewis, C. W., Bhave, P. V. and Edney, E. O.: Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location, Atmospheric environment (1994), 41, 8288-8300, 10.1016/j.atmosenv.2007.06.045, 2007.

Waked, A., Favez, O., Alleman L, Y., Piot, C., Petit, J., Delaunay, T., Verlinden, E., GOLLY, B., Besombes, J. and Jaffrezo, J.: Source apportionment of PM_{10} in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions, Atmospheric chemistry and physics, 14, 3325-3346, 10.5194/acp-14-3325-2014, 2014

155 3325-2014, 2014.

Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S., Wang, M., Zeng, L., Zhang, Q., Song, Y., Zhang, J. and Hu, M.: Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis, Journal of Geophysical Research: Atmospheres, 117, n/a, 10.1029/2012JD018236, 2012.

Zhang, J., He, X., Gao, Y., Zhu, S., Jing, S., Wang, H., Yu, J. Z. and Ying, Q.: Assessing Regional Model Predictions of
 Wintertime SOA from Aromatic Compounds and Monoterpenes with Precursor-specific Tracers, Aerosol and air quality research, 21, 210233, 10.4209/aaqr.210233, 2021a.

Zhu, Y., Yang, L., Kawamura, K., Chen, J., Ono, K., Wang, X., Xue, L. and Wang, W.: Contributions and source identification of biogenic and anthropogenic hydrocarbons to secondary organic aerosols at Mt. Tai in 2014, Environ. Pollut., 220, 863-872, 10.1016/j.envpol.2016.10.070, 2017.