Supporting Information for:

Oligomer formation from the gas-phase reactions of Criegee intermediates with hydroperoxide esters: mechanism and kinetics

Long Chen,^{1,2} Yu Huang,^{*,1,2} Yonggang Xue,^{1,2} Zhihui Jia,³ Wenliang Wang⁴

¹ State Key Lab of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an, 710061, China

² CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China

³ School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China

⁴ School of Chemistry and Chemical Engineering, Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China

Submitted to Atmospheric Chemistry & Physics

*Corresponding author:

Prof. Yu Huang, E-mail address: huangyu@ieecas.cn

Contents:

Table S1 The electronic energy (ΔE^{\neq}) and Gibbs free energy (ΔG^{\neq}) barriers for the initial reactions of distinct SCIs with HCOOH predicted at the Y/X (Y = M06-2X, CCSD(T) and QCISD(T), X = ma-TZVP, 6-311+G(2df,2p) level based on the M06-2X/6-311+G(2df,2p) optimized geometries (kcal mol⁻¹)

Table S2 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of each elementary pathway involved in the initial reaction of CH₂OO with HCOOH computed at different temperatures

Table S3 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of each elementary pathway involved in the initial reaction of *anti*-CH₃CHOO with HCOOH computed at different temperatures

Table S4 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of each elementary pathway involved in the initial reaction of *syn*-CH₃CHOO with HCOOH computed at different temperatures

Table S5 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of each elementary pathway involved in the initial reaction of (CH₃)₂OO with HCOOH computed at different temperatures

Figure S1. The geometries of all the stationary points for distinct SCIs reactions with formic acid optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S2. The geometries of all the stationary points for $2CH_2OO + Pent1a$ reaction optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S3. The geometries of all the stationary points for 2anti-CH₃CHOO + Pent1b reaction optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S4. The geometries of all the stationary points for 2syn-CH₃CHOO + Pent1c reaction optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S5. The geometries of all the stationary points for $2(CH_3)_2COO + Pent1d$ reaction optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S6. The geometries of all the stationary points for distinct SCIs reactions with Pent1a optimized at the M06-2X/6-311+G(2df,2p) level of theory

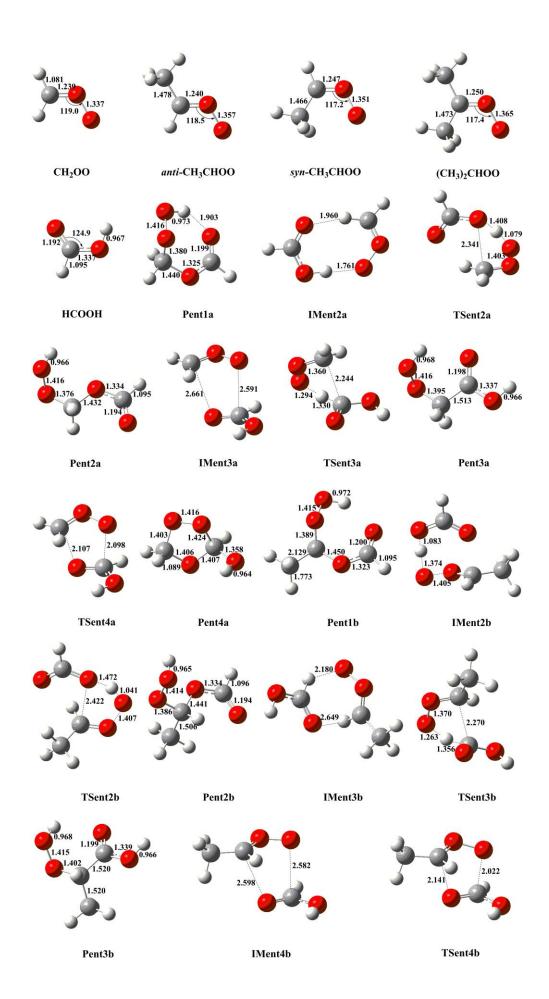
	M06-2X/		CCSD(T)/		QCISD(T)/	
	ma-TZVP		6-311+G(2df,2p)		6-311+G(2df,2p)	
-	ΔE^{\neq}	ΔG^{\neq}	ΔE^{\neq}	$\Delta G^{ eq}$	ΔE^{\neq}	$\Delta G^{ eq}$
Entry 2						
CH ₂ OO	8.0	10.0	8.6	10.5	8.7	10.7
anti-CH ₃ CHOO	12.0	13.0	11.0	11.9	10.9	12.0
syn-CH ₃ CHOO	13.1	14.6	13.3	14.9	13.2	14.8
Entry 3						
CH ₂ OO	20.6	21.8	20.4	21.6	20.6	21.8
anti-CH ₃ CHOO	20.6	22.2	20.2	21.8	20.2	21.8
syn-CH ₃ CHOO	25.7	27.6	25.6	27.7	25.8	27.7
Entry 4						
CH ₂ OO	4.4	5.8	4.2	5.6	4.3	5.7
anti-CH ₃ CHOO	4.1	5.6	3.3	4.9	3.4	4.9
syn-CH ₃ CHOO	8.9	11.1	8.5	10.9	8.6	10.8

Table S1 The electronic energy (ΔE^{\neq}) and Gibbs free energy (ΔG^{\neq}) barriers for the initial reactions of distinct SCIs with HCOOH predicted at the Y/X (Y = M06-2X, CCSD(T) and QCISD(T), X = ma-TZVP, 6-311+G(2df,2p) level based on the M06-2X/6-311+G(2df,2p) optimized geometries (kcal mol⁻¹)

T/K	k (TSent1)	k (TSent2)	k (TSent3)	k (TSent4)	$k_{ m tot}$
273	4.3×10^{-10}	3.6×10^{-12}	1.0×10^{-22}	3.6×10^{-12}	4.3×10^{-10}
280	3.8×10^{-10}	2.9×10^{-12}	1.2×10^{-22}	3.1×10^{-12}	3.9×10^{-10}
298	3.6×10^{-10}	1.9×10^{-12}	2.2×10^{-22}	2.3×10^{-12}	3.6×10^{-10}
300	3.5×10^{-10}	1.8×10^{-12}	2.4×10^{-22}	2.2×10^{-12}	3.5×10^{-10}
320	2.9×10^{-10}	1.2×10^{-12}	4.9×10^{-22}	1.6×10^{-12}	2.9×10^{-10}
340	2.8×10^{-10}	8.2×10^{-13}	1.0×10^{-21}	1.3×10^{-12}	2.8×10^{-10}
360	2.6×10^{-10}	5.9×10^{-13}	2.2×10^{-21}	1.0×10^{-12}	2.6×10^{-10}
380	2.4×10^{-10}	4.5×10^{-13}	4.5×10^{-21}	8.2×10^{-13}	2.4×10^{-10}
400	2.1×10^{-10}	3.5×10^{-13}	9.0×10^{-21}	6.9×10^{-13}	2.1×10^{-10}

Table S2 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of each elementary pathway involved in the initiation reaction of CH₂OO with HCOOH computed at different temperatures

T/K	$k (TS_{ent1}-anti)$	k (TS _{ent2} -anti)	k (TS _{ent3} -anti)	k (TS _{ent4} -anti)	k (tot-anti)
273	9.7×10^{-10}	4.2×10^{-11}	5.5 × 10 ⁻²²	6.1 × 10 ⁻¹¹	1.1 × 10 ⁻⁹
280	9.5×10^{-10}	3.8×10^{-11}	6.7×10^{-22}	4.9×10^{-11}	1.0×10^{-9}
298	9.3×10^{-10}	2.3×10^{-11}	1.2×10^{-21}	3.0×10^{-11}	9.8×10^{-10}
300	9.2×10^{-10}	2.0×10^{-11}	1.3 ×10 ⁻²¹	$2.8 \times 10^{\text{-}11}$	9.7×10^{-10}
320	8.6×10^{-10}	1.5 ×10 ⁻¹¹	2.6×10^{-21}	1.7×10^{-11}	8.9×10^{-10}
340	8.3×10^{-10}	9.4×10^{-12}	5.4×10^{-21}	1.1×10^{-11}	8.5×10^{-10}
360	8.2×10^{-10}	7.0×10^{-12}	1.1×10^{-20}	7.8×10^{-12}	8.3×10^{-10}
380	8.1×10^{-10}	3.6×10^{-12}	2.1×10^{-20}	5.6×10^{-12}	8.2×10^{-10}
400	8.1×10^{-10}	2.0×10^{-12}	4.0×10^{-20}	4.2×10^{-12}	8.2×10^{-10}


Table S3 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of each elementary pathway involved in the initiation reaction of *anti*-CH₃CHOO with HCOOH computed at different temperatures

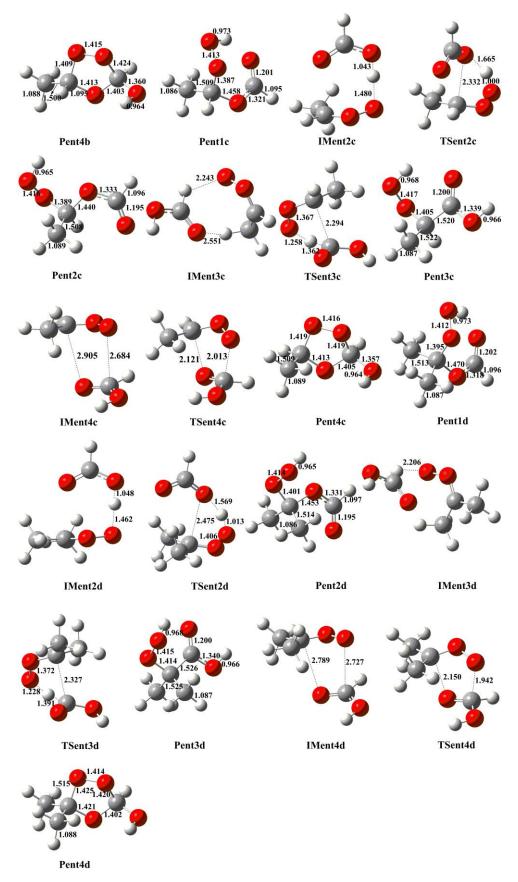

T/K	k (TS _{ent1} -syn)	k (TS _{ent2} -syn)	k (TS _{ent3} -syn)	k (TS _{ent4} -syn)	k (tot-syn)
273	7.7×10^{-10}	9.5 × 10 ⁻¹³	4.6×10^{-27}	7.5×10^{-16}	7.7×10^{-10}
280	7.4×10^{-10}	8.0×10^{-13}	7.1 ×10 ⁻²⁷	6.4×10^{-16}	7.4×10^{-10}
298	7.2×10^{-10}	5.4×10^{-13}	8.9×10^{-26}	5.5×10^{-16}	7.2×10^{-10}
300	7.1×10^{-10}	5.2×10^{-13}	9.9×10^{-26}	4.6×10^{-16}	7.1×10^{-10}
320	6.8×10^{-10}	3.6×10^{-13}	3.0×10^{-25}	3.8×10^{-16}	6.8×10^{-10}
340	6.5×10^{-10}	2.6×10^{-13}	9.1 ×10 ⁻²⁵	3.1×10^{-16}	6.5×10^{-10}
360	6.3×10^{-10}	2.0×10^{-13}	2.6×10^{-24}	3.0×10^{-16}	6.3×10^{-10}
380	6.2×10^{-10}	1.5×10^{-13}	7.2×10^{-24}	2.4×10^{-16}	6.2×10^{-10}
400	6.1×10^{-10}	1.2×10^{-13}	1.8×10^{-23}	2.2×10^{-16}	6.1 ×10 ⁻¹⁰

Table S4 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of each elementary pathway involved in the initiation reaction of *syn*-CH₃CHOO with HCOOH computed at different temperatures

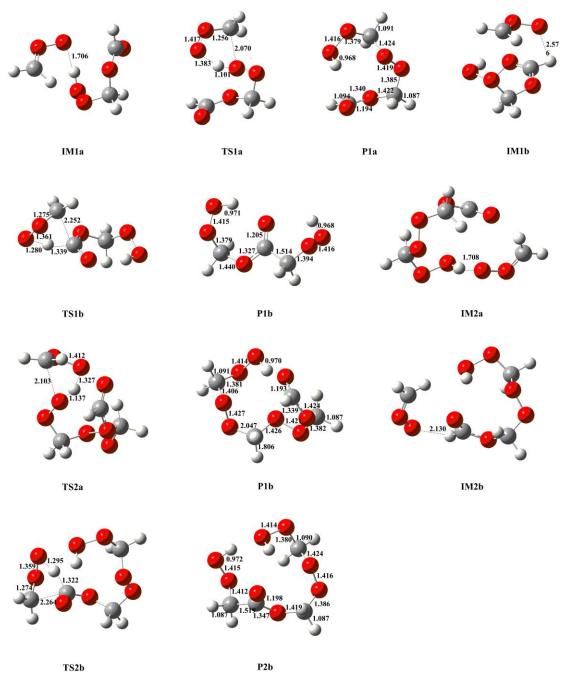
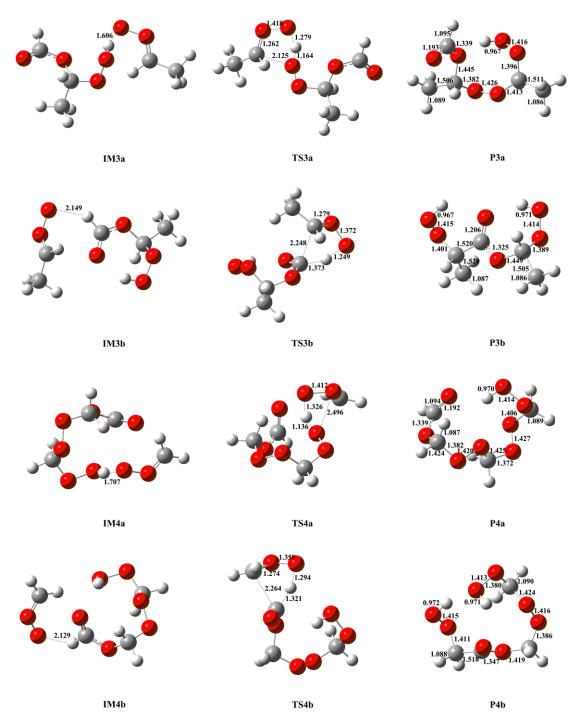
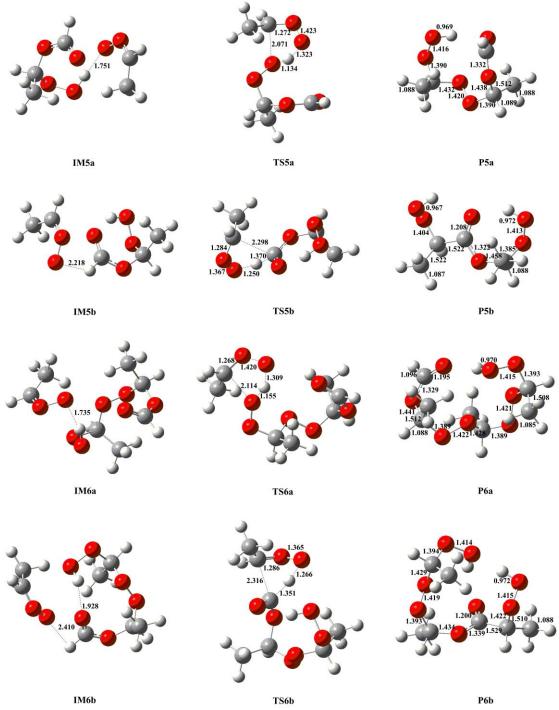

T (17					
T/K	$k (TS_{ent1}-dim)$	k (TS _{ent2} -dim)	k (TS _{ent3} -dim)	k (TS _{ent4} - dim)	k (tot- dim)
273	5.6×10^{-10}	6.8×10^{-12}	1.4×10^{-26}	4.4×10^{-15}	5.7×10^{-10}
280	5.3×10^{-10}	5.2×10^{-12}	2.2×10^{-26}	4.2×10^{-15}	5.4×10^{-10}
298	5.1×10^{-10}	2.8×10^{-12}	7.9×10^{-26}	4.0×10^{-15}	5.1×10^{-10}
300	5.1×10^{-10}	2.6×10^{-12}	9.2×10^{-26}	3.9×10^{-15}	5.1×10^{-10}
320	4.9×10^{-10}	1.4×10^{-12}	3.6×10^{-25}	3.7×10^{-15}	4.9×10^{-10}
340	4.8×10^{-10}	8.6×10^{-13}	1.3×10^{-24}	3.6×10^{-15}	4.8×10^{-10}
360	4.7×10^{-10}	5.5×10^{-13}	4.5×10^{-24}	3.5×10^{-15}	4.7×10^{-10}
380	4.5×10^{-10}	3.7×10^{-13}	1.4×10^{-23}	3.4×10^{-15}	4.5×10^{-10}
400	4.4×10^{-10}	2.6×10^{-13}	3.9×10^{-23}	3.4×10^{-15}	4.4×10^{-10}

Table S5 Rate coefficients (cm³ molecule⁻¹ s⁻¹) of each elementary pathway involved in the initiation reaction of $(CH_3)_2OO$ with HCOOH computed at different temperatures




Figure S1. The geometries of all the stationary points for distinct SCIs reactions with formic acid optimized at the M06-2X/6-311+G(2df,2p) level of theory

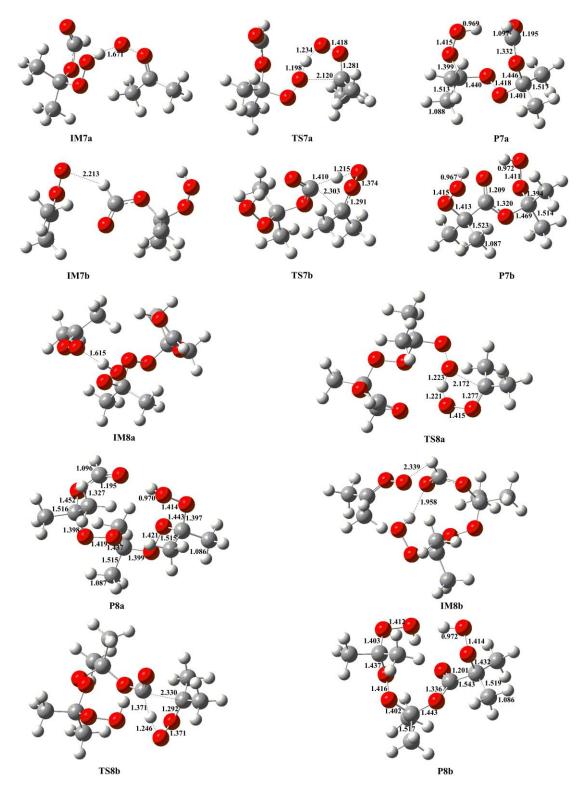

Figure S2. The geometries of all the stationary points for $2CH_2OO + Pent1a$ reaction optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S3. The geometries of all the stationary points for 2anti-CH₃CHOO + Pent1b reaction optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S4. The geometries of all the stationary points for 2syn-CH₃CHOO + Pent1c reaction optimized at the M06-2X/6-311+G(2df,2p) level of theory

Figure S5. The geometries of all the stationary points for $2(CH_3)_2COO + Pent1d$ reaction optimized at the M06-2X/6-311+G(2df,2p) level of theory

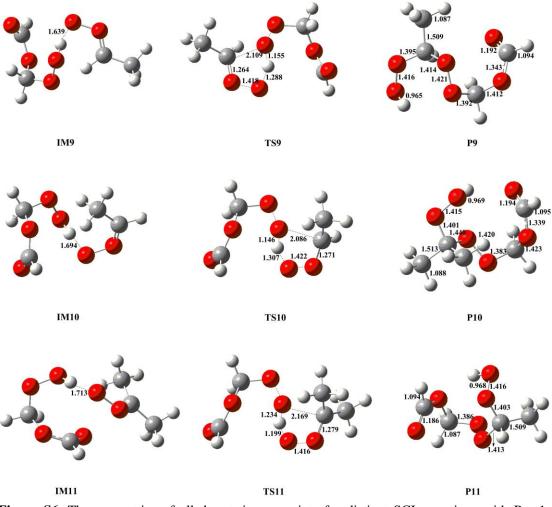


Figure S6. The geometries of all the stationary points for distinct SCIs reactions with Pent1a optimized at the M06-2X/6-311+G(2df,2p) level of theory