Projected increases in wildfires may challenge regulatory curtailment of PM2.5 over the

eastern US by 2050

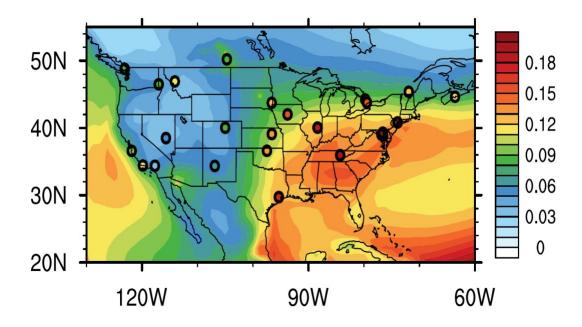
Chandan Sarangi^{1,2*}, Yun Qian^{2*}, L. Ruby Leung², Yang Zhang³, Yufei Zou^{4,2}, Yuhang Wang⁴

¹ Indian Institute of Technology Madras, Chennai, India

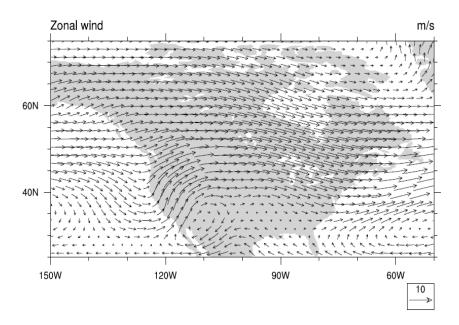
² Pacific Northwest National Laboratory, Richland, WA, USA

³ Department of Civil and Environmental Engineering, Northeastern University, Boston, MA

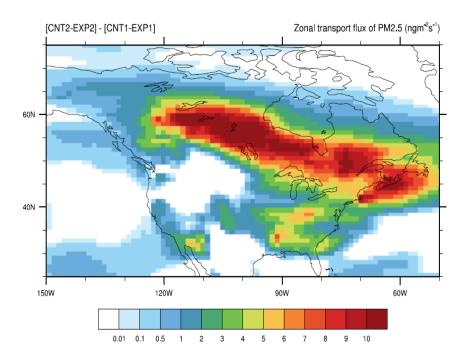
⁴ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA,

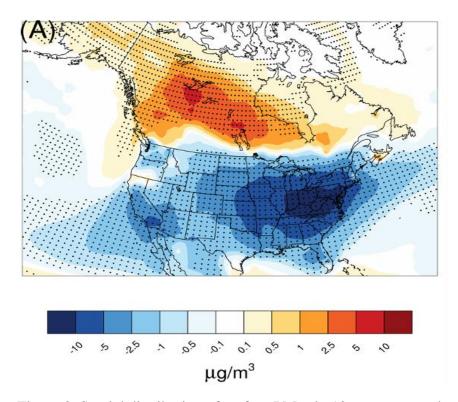

USA.

*Corresponding Author: yun.qian@pnnl.gov and chandansarangi@iitm.ac.in


Contents:

Supplementary Figures: 1-3


1


Supplementary Figure 1: Evaluation of the simulated AOD at 550 nm (unitless) against observations at the AERONET sites in North America. Comparison of decadal-averaged (2001-2010) annual mean AOD between the simulation (shading) and AERONET in-situ observations (colored circles) in the 2000s.

Supplementary Figure 2A: Spatial distribution of mean summertime wind vector over North America at 800 hPa from the 2000_{ALL} simulation. Differences in the mean wind vector among the 4 simulations are negligible (not shown).

Supplementary Figure 2B: Spatial distribution of the decadal mean difference in summer mean zonal flux (U*PM $_{2.5}$ values) of wildfire-induced PM $_{2.5}$ between the 2000s and the 2050s ([2050 $_{ALL}$ -2050 $_{WEF}$]-[2000 $_{ALL}$ -2000 $_{WEF}$]) within the planetary boundary layer (from the surface to 800 hPa).

Supplementary Figure 3: Spatial distribution of surface $PM_{2.5}$ in 10-year averaged summer mean quantities over North America from the present day to the mid- 21^{st} century (2050_{ALL} - 2000_{ALL}). Areas marked with black dots indicate grids where changes are significant at the 95% confidence level.