Supplement of

Timescales of Secondary Organic Aerosols to Reach Equilibrium at Various Temperatures and Relative Humidities

Ying Li¹, and Manabu Shiraiwa^{1,*}

[1] Department of Chemistry, University of California, Irvine, California, USA.

*Correspondence to: Manabu Shiraiwa (m.shiraiwa@uci.edu)

Tables S1 to S2 Figures S1 to S5

|--|

_

^a Description and the values of the symbols shown in the equations are summarized in Table S2. ^b D_g (T_{standard} , P_{standard}) is calculated by the EPA on-line tools: (<u>https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/estdiffusion-ext.html</u>).

Variable (Unit)	Description	Value
$R (J K^{-1} mol^{-1})$	gas constant	8.314
$T(\mathbf{K})$	temperature	varied from 220 to 310
RH (%)	relative humidity	varied from 0 to 100
M (g mol ⁻¹)	molar mass of compound Z	200
$T_0(\mathbf{K})$	room temperature	298
$\rho (\text{g cm}^{-3})$	density of organic particles	1.4
T _{standard} (K)	sea level standard temperature	288.15
P_{standard} (Pa)	sea level standard atmospheric	101325
	pressure	
$K (J K^{-1})$	Boltzmann constant	1.38×10^{-23}
a (cm)	effective molecular radius	10^{-8}
$\delta_{\rm Z}({\rm cm})$	effective molecular diameter	$2 imes 10^{-8}$
$\alpha_{ m s,0}$	surface accommodation	1
	coefficient on free-substrate	
$A (s^{-1})$	pre-exponential factor	10 ¹²
$E_{\rm des} ({\rm kJ} {\rm mol}^{-1})$	desorption energy	40
$[Z]_{g,eq} (cm^{-3})$	equilibrium (saturation) number	variable
0.1	concentrations of Z in the gas	
	phase	
$[Z]_{ss,eq}$ (cm ⁻²)	equilibrium (saturation) number	variable
/ 1 · · ·	concentrations of Z in the	
	quasi-static surface layer	
$\delta_{\rm ss}$ (cm)	thickness of the quasi-static	variable
	surface layer	
$\delta(k)$ (cm)	thickness of the bulk layer k	variable

Table S2. Description and the values of the symbols in the equations of Table S1.

Figure S1. Temperature-dependent kinetic processes simulated in the KM-GAP model. Parameters in blue are treated as a function of temperature (Table S1). [Z] are concentrations of species Z in the gas (g) and near-surface gas phases (gs), at the sorption layer (s) and in the surface (ss) and in the bulk (b) layers. J are the transport fluxes between each layer, including the gas-phase diffusion flux (J_{diff}), the adsorption (J_{ads}) and desorption (J_{des}) fluxes, surface–bulk exchange fluxes ($J_{s,ss}$, $J_{ss,s1}$, $J_{ss,s1}$, $J_{b1,ss}$), and bulk diffusion fluxes ($J_{b,b}$).

Figure S2. Bulk diffusion coefficient (D_b) in pre-existing particles as a function of temperature and relative humidity. The glass transition temperatures under dry conditions ($T_{g,org}$) are set to be (a) 240 K, (b) 270 K and (c) 300 K, respectively.

Figure S3. Temporal evolution of the mass fraction of Z in the near-surface bulk (f_s), and the average fraction of Z in the entire bulk (f_b). RH = 60% and T is (a, b) 298 K and (c, d) 250 K. The C_0 of Z is (a, c) 10 µg m⁻³ and (b, d) 0.1 µg m⁻³. The glass transition temperature of pre-existing particles under dry conditions ($T_{g,org}$) is set to be 270 K, which leads to D_b of (a, b) 10⁻¹¹ cm² s⁻¹ and (c, d) 10⁻¹⁸ cm² s⁻¹. The initial mass concentration of pre-existing particles is assumed to be 20 µg m⁻³ with the number concentrations of 3 × 10⁴ cm⁻³ and the initial particle diameter of 100 nm.

Figure S4. Temporal evolution of mass concentrations of the condensing compound Z in the gas phase (C_g), just above the particle surface (C_s), and in the particle phase (C_p). The mass fraction of Z in the near-surface bulk (f_s), and the average fraction of Z in the entire particle bulk (f_b) are also shown. D_b is 10⁻¹⁸ cm² s⁻¹. The C_0 of Z is (a) 0.1 µg m⁻³ and (b) 10⁻⁹ µg m⁻³. The initial mass concentration of pre-existing particles is set to be (a) 0.7 µg m⁻³ and (b) 20 µg m⁻³. τ_{eq} is marked with the red circle. τ_{eq} (~28 s) in (b) is consistent with the inverse of the condensation sink (29 s).

Figure S5. Temporal evolution of mass concentrations of the condensing compound Z in the gas phase (C_g), just above particle surface (C_s), in the particle phase (C_p), the mass fraction of Z in the near-surface bulk (f_s), and the average fraction of Z in the entire particle bulk (f_b). τ_{eq} are marked with red circles. RH = 60% and T is (a–b) 298 K and (c– d) 250 K. The C_0 of the condensing compound is (a, c) 10 µg m⁻³ and (b, d) 0.1 µg m⁻³. The glass transition temperature of pre-existing particles under dry conditions ($T_{g,org}$) is set to be 270 K, which leads to D_b of (a, b) 10⁻¹¹ cm² s⁻¹ and (c, d) 10⁻¹⁸ cm² s⁻¹. The initial mass concentration of pre-existing non-volatile particles (C_{OA}) is assumed to be 20 µg m⁻³ with the number concentrations of 3 × 10⁴ cm⁻³ and the initial particle diameter of 100 nm.