

Supplement of

Diurnal fluxes of HONO above a crop rotation

Sebastian Laufs et al.

Correspondence to: Jörg Kleffmann (kleffman@uni-wuppertal.de)

The copyright of individual parts of the supplement might differ from the CC BY 3.0 License.

Calculations of the scalar flux by the aerodynamic gradient method

For stable conditions, the stability integrated function Ψ was calculated as in Webb (1970) or Paulson (1970):

$$\Psi_{(z-d)/L} = -5.2 \cdot \frac{(z-d)}{L} \tag{S1}.$$

For unstable conditions, it was also calculated as explained in Webb (1970) or Paulson (1970):

$$\Psi_{(z-d)/L} = 2 \cdot ln \left[\frac{1 + \sqrt{1 - 16 \cdot \frac{(z-d)}{L}}}{2} \right]$$
(S2).

The flux of a scalar is given by:

$$F = -u_* \cdot \chi_* \tag{S3}.$$

By replacing χ_* by its expression in equation (1), one gets:

$$F = -u_* \cdot \frac{\kappa \cdot (z-d)}{\varphi_{(z-d)/L}} \cdot \frac{\partial \chi}{\partial z}$$
(S4).

10 Knowing that Ψ is the integral of φ and noticing the following equality:

$$\frac{\partial z}{\partial [\ln(z-d) - \Psi_{(z-d)/L}]} = \frac{(z-d)}{\varphi_{(z-d)/L}}$$
(S5),

leads to the expression for the flux given in equation (2):

$$F = -\kappa \cdot u_* \cdot \frac{\partial \chi}{\partial [\ln(z-d) - \Psi_{(z-d)/L}]}$$
(S6).

Hence, the slope of χ against the stability corrected logarithmic height, $\ln(z-d) - \Psi_{(z-d)/L}$, multiplied by

15 $-\kappa \cdot u_*$ gives a direct estimate of the flux by the aerodynamic gradient method.

References supplement:

Paulson, C. A.: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteorol., 9, 857-861, 1970.

Webb, E. K.: Profile relationships. Log-linear range, and extension to strong stability, Quart. J. Roy. Meteorol.Soc., 96, 67-90, 1970.

5