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Abstract. We report the first-time use of the Lagrangian Particle Dispersion Model (LPDM) FLEXPART to simulate 15 

isotope ratios of the biomass burning tracer levoglucosan. Here, we combine the model results with observed levoglucosan 

concentrations and 13C to assess the contribution of local vs. remote emissions from firewood domestic heating to the 

particulate matter sampled during the cold season at two measurements stations of the Environmental Agency of North 

Rhine-Westphalia, Germany.  

For the investigated samples, the simulations indicate that the largest part of the sampled aerosol is 1 to 2 days old, and thus 20 

originates from local to regional sources. Consequently, photo-chemical aging, also limited by low mean OH concentrations 

in the cold season, has a minor influence the observed levoglucosan concentration and 13C. The retro plume ages agree well 

with those derived from observed 13C, (the 'isotopic' ages ), demonstrating that the limitation of backwards calculations to 

seven days for this study doesn't introduce any significant bias. A linear regression analysis applied to the experimental 

levoglucosan 13C vs. the inverse concentration confirms the young age of aerosol. The high variability in the observed δ13C 25 

implies that the local levoglucosan emissions are characterized by very different isotopic ratios in the range of -25.3 to -21.4 

‰. These values are in good agreement with previous studies on levoglucosan source specific isotopic composition in 

biomass burning aerosol. Comparison between measured and estimated levoglucosan concentrations suggest that emissions 

are underestimated by a factor of two on average. These findings demonstrate that the aerosol burden from home heating in 

residential areas is not of remote origin and thus it can be mitigated by reducing local emissions.  In this work we show that 30 

combining Lagrangian modelling with isotope ratios is valuable to obtain additional insight in source apportionment. Error 

analysis shows that the largest source of uncertainty is limited information on isotope ratios of levoglucosan emissions. 
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Based on the observed low extent of photochemical processing during cold season, levoglucosan can be used under similar 

conditions as a conservative tracer without introducing substantial bias.  

 35 

1 Introduction 

Organic aerosol (OA) has anthropogenic and biogenic sources, being either released as primary OA (POA), or formed as 

secondary organic aerosol (SOA). Most of the anthropogenic emissions originate from combustion of fossil fuels or biomass. 

The biogenic particles are predominately SOA formed by the photo oxidation of biogenic VOC. In the atmosphere, OA 

undergoes various physical and chemical processes, such as aging by photolysis and photo oxidation, or deposition by 40 

sedimentation and wash-out. Particles have a direct radiative effect by absorbing and scattering solar radiation. Moreover, 

they act as cloud condensation nuclei (CCN), leading to cloud formation, which indirectly impacts the radiation budget. 

Being exposed to OA containing hazardous components, humans experience severe health impairments such as 

cardiovascular and respiratory diseases (Li et al., 2008) and references therein. Thus, OA affects air quality, health and 

climate. 45 

Biomass burning is an important source of OA. (Hallquist et al., 2009) estimated that biomass burning releases 42 Tg C a-1 

into the atmosphere, which is about a quarter of the global emitted particulate carbon. Such estimates are associated with 

considerable uncertainties. Parts of the uncertainties result from the lacking knowledge on source distribution and strength, 

as well as from the incomplete understanding of the loss processes. Since biomass burning substantially contributes to the 

OA hazards, it is of great scientific and societal interest to accurately apportion its sources and quantify its sinks.  For the 50 

source apportionment of biomass burning aerosol, factor analyses, chemical mass balance and Lagrangian techniques are 

employed e.g. (Busby et al., 2016;Zheng et al., 2002). Chemical mass balance modelling, used levoglucosan as the specific 

non-reactive molecular marker of biomass burning in aerosol e.g. (Fine et al., 2002), because it is only formed by the thermal 

breakdown of cellulose and it is then emitted in large quantities. The accuracy of such studies is limited by considerable 

uncertainties in the emission factors, and by the fact that levoglucosan was recently proven to be chemically unstable. Recent 55 

laboratory studies have shown that levoglucosan reacts with OH radicals within a lifetime of few days under typical 

atmospheric conditions (Hennigan et al., 2010;Sang et al., 2016). This new finding opens up new potential applications, 

especially in the field of isotopic analyses. 

Sources of biomass burning aerosol can be significantly better constrained by taking into account the stable carbon isotope 

ratio of levoglucosan (Gensch et al., 2014). This option is based on the fact that at the emission, levoglucosan has a source 60 

specific isotopic composition, the ‚isotopic fingerprint‘. Furthermore, chemical processing leads to isotopic fractionation due 

to the kinetic isotope effect (KIE), which is distinct for each reaction (making an ‚isotopic footprint‘). Consequently, highly 

innovative source apportionment methods aim to combine trajectory and wind - based models with isotopic analyses, which 

deliver additional information for validation. Recently, (Gensch et al., 2018) used isotopic measurements together with the 

Lagrangian particle dispersion model (LPDM) FLEXPART (Stohl et al., 2010) to investigate photo-chemical aging 65 

processes in biomass burning aerosol. To this end, the photochemical age of particulate levoglucosan was derived from 
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observed isotopic ratios, employing the isotopic hydrocarbon clock equation on the one hand, and from back trajectory 

simulations on the other. For the latter, a post-modelling numerical approach was developed to describe the mixing with 

freshly emitted levoglucosan and to quantify this impact on the isotopic composition. The results of these two independent 

methods agreed well on average. Moreover, the agreement between 'isotope age' and 'retro plume age' demonstrates that the 70 

modelling results are not significantly influenced by limiting these to a few days for this study. Isotopes are thus a useful tool 

to evaluate the effect of the finite retro plumes. As a consequence, (Gensch et al., 2018) showed that the degree of photo 

oxidative aging of particulate levoglucosan can be quantified by combining laboratory KIE studies, observed isotopic 

composition at sources and in the field, as well as back trajectory analyses. Yet, the scatter in the individual data pairs 

(model vs. observation) pointed out the need to improve the identification and distinction of contributions from different 75 

source types, which is possible by using the full dispersed output of FLEXPART. 

As a particular form of biomass burning, home heating with firewood is a major contributor to the fine dust in the cold 

season in the mid- and high latitudes. According to the German Environmental Agency (UBA), small wood stoves in the 

residential sector provide only 1.5% of the total energy supply, but contribute 16% to the total PM2.5 emissions in Germany. 

This is comparable to the total road traffic PM2.5 exhaust (Amann et al., 2018). For pollution mitigation, an accurate 80 

apportionment of local emissions versus remote transport is necessary. The main objective of this study was to implement 

stable carbon isotopes in the full dispersed output of FLEXPART by explicitly tracking of the levoglucosan fraction 

containing 13C. In order to determine the model performance for given conditions, the sensitivity of the simulation responses 

to uncertainties of the governing atmospheric processes described in FLEXPART were examined. Finally, the set of selected 

modelling routines were applied in a case study with the goal to assess the contribution of local vs. remote emissions from 85 

firewood domestic heating to the particulate matter (PM) sampled at two measurement stations of the North Rhine-

Westphalia Environmental Agency, LANUV. Thereby, the measured levoglucosan concentration and isotopic composition 

in the sampled aerosol were used to evaluate the model performance. 

 

2 Experimental 90 

Aerosol PM2.5 fraction was sampled on quartz filters at two of the numerous LANUV monitoring network stations (Pfeffer et 

al., 2013). The sampling time was 24h and filters were daily changed at 00:00 UTC+1. For this study two sampling sites 

with contrasting characteristics were chosen. The ‘urban background’ station, hereinafter referred to as STYR, is situated in 

Mülheim-Styrum (51.453459°N, 6.865050°E, with site information available at https://www.lanuv.nrw.de/luqs/ 

messorte/pdf/STYR.pdf), while the ‘remote/rural’ one, hereinafter referred to as EIFE, is located in the hilly Eifel region 95 

(50.653234°N, 6.281008°E, with site information available at https://www.lanuv.nrw.de/luqs/messorte/pdf/EIFE.pdf). For 

laboratory and model analyses, 25 pairs of aerosol filters collected on the same day in the cold seasons 2015-2017 at each of 

the two sites were decided on.  The main criterion in selecting those was to provide a broad geographical coverage for the 

wind directions for the sampled air masses around the measurement sites. A list of the selected samples can be found in the 
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Supporting Information (Table S1 in section S1, containing the sampling dates, levoglucosan loading of the filters and the 100 

main origin of the sampled air masses estimated by HYSPLIT trajectory analyses). 

Levoglucosan concentration was measured by ion chromatography (Kuepper et al., 2018) at the LANUV. Isotopic analyses 

were carried out at IEK-8, Forschungszentrum Jülich, by liquid extraction-thermal desorption-two dimensional gas 

chromatography, coupled with isotope ratio mass spectroscopy (LE–TD–2D-GC-IRMS) (Gensch et al., 2018). Details on the 

experimental approaches are given in the Supporting Information (section S2). Basic statistical analysis of the measurement 105 

results can be found in Supporting Information (Table S3 in section S3). 

 

3 Modelling stable carbon isotopes with FLEXPART 

Stable carbon isotope ratios of a VOC can be calculated in numerical atmospheric models by considering 12C and 13C 

isotopologues as separate species. These are treated individually during the simulations, taking into account the slightly 110 

different physical and chemical behaviour. Mostly, molecules containing 13C react a little slower than the light isotopologue 

due to the kinetic isotope effect (KIE). Denoting the rate constants for these two reactions by 13k and 12k, respectively, KIE is 

defined as 𝑘 
12 / 𝑘 

13  and is typically expressed using the epsilon notation in parts per thousand (‰): 

𝜀 = (1 − 𝐾𝐼𝐸) × 1000 ‰ = (1 −
𝑘 

12

𝑘 
13 ) × 1000 ‰         (1) 

KIE can be experimentally determined in laboratory studies (Anderson et al., 2003;Sang et al., 2016). Carbon isotope effects 115 

are generally so small, that the relation between the change in the isotopic ratios and the extent of chemical processing can 

be linearized without introducing significant bias (Rudolph and Czuba, 2000). Based on the proposed ‘isotopic hydrocarbon 

clock’ equation, the photochemical age of a VOC can be determined from its isotopic composition when the source signature 

and the KIE of the atmospheric degradation reaction are known.  

𝛿13C𝑡 =  𝛿13C0 + 𝑡𝑎𝑣[𝑂𝐻]𝑎𝑣𝑘𝑂𝐻 𝜀 
𝑂𝐻          (2) 120 

where 𝛿13C0 and 𝛿13C𝑡 represent the isotopic composition at the source and observation site, respectively, 𝑡𝑎𝑣[𝑂𝐻]𝑎𝑣 is the 

average photochemical age,[𝑂𝐻]𝑎𝑣 is the average OH concentration during the photochemical processing, 𝑘𝑂𝐻 is the rate 

coefficient of the species of interest with OH, and 𝜀 
𝑂𝐻  is the KIE of the latter oxidation reaction. 

Not only are the fractionation effects small, but also the ratio of the rare isotope to the abundant one is very low. Therefore 

carbon isotope ratios 𝑅 
13 =

𝐶 
13

𝐶 
12   are given using the delta value: 125 

𝛿13𝐶 =  
( 𝐶 

13 / 𝐶 
12 )𝑠𝑎𝑚𝑝𝑙𝑒−( 𝐶 

13 / 𝐶 
12 )𝑉𝑃𝐷𝐵

( 𝐶 
13 / 𝐶 

12 )𝑉𝑃𝐷𝐵
 × 1000 ‰        (3) 

where ( 𝐶 
13 / 𝐶 

12 )𝑉𝑃𝐷𝐵 is the internationally accepted Vienna Peedee Belemnite (VPDB) value of 0.0111828 (Brand et al., 

2010;Craig, 1957). The source specific carbon isotope ratios of atmospheric trace organic components are introduced in the 

simulations considering the emission data for the investigated VOC (details in the following sections). 

https://doi.org/10.5194/acp-2020-1133
Preprint. Discussion started: 19 November 2020
c© Author(s) 2020. CC BY 4.0 License.



5 

 

In this study, detailed information on origin and pathway of the collected aerosol particles was obtained by calculating retro 130 

plumes backwards from the sampling sites with the LPDM FLEXPART, Version 10.2beta (Seibert and Frank, 2004;Stohl et 

al., 2010), source code available at git@git.nilu.no:flexpart/flexpart.git).  ECMWF 3 hourly data with a resolution of 1°×1° 

on 91 vertical levels was used as driving meteorology (Owens and Hewson, 2018). For every investigated day, ca. 200 000 

model particles were hourly released for 24h at the measurement stations. Levoglucosan (LG) was implemented as an 

aerosol biomass burning tracer which is subjected to photochemical degradation by OH, as well as to wet and dry deposition. 135 

The aerosol particle population defined in the input has a lognormal size distribution with d  = 0.25 µm, σ d   = 1.5 and a 

density of 1.4 kg m-3 (Fiebig et al., 2003). To simulate the wet aerosol particle removal, the new deposition module from 

(Grythe et al., 2017) was activated, using three dimensional cloud water fields from the ECMWF data. For below-cloud 

scavenging, a coalescence probability of one was set for both rain and snow (Grythe et al., 2017). Since anthropogenic 

biomass burning aerosol is emitted into the lower mixing layer, in-cloud scavenging is not likely. For the chemical loss, the 140 

OH-decay rate constant was set  to 2.67×10-12 cm3 molec-1 s-1 (Sang et al., 2016). The model was run backwards over 7 days. 

This is at the higher end of the expected levoglucosan life time for a mean OH concentration of 0.5×106 molec cm-3 in the 

cold season in Europe (Gerasopoulos et al., 2012;Rohrer and Berresheim, 2006). The output resolution was set to 0.25°× 

0.25° on 5 vertical levels. The resulting retro plumes entail the source-receptor-relationship reflecting the deposition- and 

decay-corrected receptor sensitivity to potential upwind sources. See Supporting Information (section S4) for details. 145 

To investigate the contribution of relevant domestic heating sources to the biomass burning aerosol sampled at the receptors, 

the retro plumes were folded with monthly-mean-gridded levoglucosan emissions during the cold season in Europe (Seibert 

and Frank, 2004). The emission inventories were derived from firewood consumption in the targeted European countries, 

population density and levoglucosan emission factors of firewood burned in common wood stoves (Akagi et al., 2011;Fine et 

al., 2004;Jimenez et al., 2017;Schauer et al., 2001), Firewood consumption by UN data: data.un.org, access March 10th 150 

2017, population density data by NASA: neo.sci.gsfc.nasa.gov, access February 6th 2017. Details are given in the 

Supporting Information (section S5). Domestic heating is the main source of the sampled levoglucosan in this study, since 

FIRMS (Fire Information for Resource Management System a NASA product: firms.modaps.eosdis.nasa.gov, access 

January 10th 2019) fire inventories show no larger scale open fires affecting the sampling during the considered periods. To 

determine the receptor sensitivity to home heating emissions, a dynamic footprint layer from 100 to 300m height was 155 

considered (Hüser et al., 2017). The resulting folded retro plumes quantify the contribution of each individual source in kg 

m-3 to the levoglucosan sampled at the measurement site. The corresponding concentration is then derived by summing up all 

contributions.  

Levoglucosan δ13C at the sampling sites were determined by introducing 13C-LG as an additional model tracer (Gensch et al., 

2011;Stein and Rudolph, 2007). It has the same physical and chemical properties as 12C-LG, except for a reduced OH 160 

reactivity due to the kinetic isotope effect. In the simulations, the rate of the 13C-LG chemical loss was derived by using KIE 

= 1.00229±0.00018 (Sang et al., 2016). 13C-LG at the source was calculated using 12C-LG emissions together with the 
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specified source isotopic ratios. The isotopic composition at the sampling point was derived as the ratio between the slightly 

different 13C-LG/12C-LG retro plumes folded with the corresponding 13C-LG/12C-LG emission inventories (for details see 

Supporting Information, Sections S4, S5). 165 

 

4 Results and discussion 

FLEXPART sensitivity studies 

Different FLEXPART modules, describing chemical decay, dry and wet deposition were successively activated. Modelling 

parameters, such as meteorology, levoglucosan lifetime and emission data were varied to reveal the governing simulated 170 

processes and to assess the modelling performance. Changes in output depending on the input parameter modifications were 

evaluated for consistency. 

Driving meteorological input data  

Unpredictability of the driving meteorology is one of the major error sources in the Lagrangian modelling (Angevine et al., 

2014;Davis and Dacre, 2009;Lin, 2013), leading to concentration uncertainties of up to 40%. In this study, two global 175 

numerical weather prediction models, ECMWF and Global Forecast System (GFS, with the same horizontal resolution, but 

with 39 vertical levels) (Global Climate & Weather Modeling Branch, 2003), delivered the input meteorological fields for 

two otherwise identical simulations with FLEXPART. The derived concentration and 13C values were compared.   

Tables S6.1 and S6.2 present model results obtained with the two meteorology sets (Supporting Information, section S6). 

Differences in the isotopic composition are well below the experimental uncertainty of 0.6‰. Levoglucosan concentration 180 

calculations based on ECMWF fairly agree with the measurements, showing mean deviations of 9.1 and 4.2% for the EIFE 

and STYR datasets, respectively. In general, the concentrations obtained when using the GFS meteorology are higher than 

for ECMWF initiated calculations, with a difference mean of 6.9 and 4.6%, respectively (Supporting Information, Figures 

6.1 and 6.2).  

Two extreme cases are presented in Figure 1. For February 18th, 2016, the simulations show a 1.5% deviation between the 185 

concentrations yielded using the ECMWF and GFS meteorology. This difference is largest (86.2%) for March 5th, 2016. In 

the former example, similar mixing heights (Hmix) and mixing events (when the centroid height Htraj<Hmix) are predicted. For 

the latter case, higher GFS Hmix  cause more frequent mixing events and thus, fresh emission entrainment in the sampled air 

masses. Additionally, mixing heights up to 2500 m imply strong convection, which might result in higher residence time of 

model particles in the footprint layer and thus in higher derived levoglucosan concentrations. 190 

Overall, the simulated concentration and 13C based on ECMWF meteorological fields show good agreement with the values 

obtained when using GFS data, the uncertainties being in the same range as those of the experimental observations. Small 

differences between the two models due to their vertical mixing parameterizations are expected during the more stable cold 

season over Europe. Due to the higher vertical resolution and ability to more accurately account for topography, ECMWF 

meteorology was chosen to initialize the model for the further runs. 195 
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Photo-chemical aging  

Based on the FLEXPART full dispersed output of the 'inert tracer' scenario, the retro plumes were divided into age classes, 

separating the data by the time the particles in the considered portion need until they reach the sampling point. Percentages 

of the total levoglucosan contribution to the sampled air were calculated. The results show that emissions during the last 24 h 

before sampling contribute on average 49 % of the sampled aerosol, being considered 'one day old'.  Detailed model results 200 

are given in Table S7.1 (Supporting Information, section S7). 30 % of the contributed emissions occurred between 48 and 

24h, 10 % between 72 and 48 h before sampling, being considered 'two and three days old', respectively. Only 11 % of the 

total emitted particles were older than three days. The simulations thus show that the major part of the sampled aerosol 

originates from local sources being emitted during the sampling day and the day before. Exemplarily, Figure 2 shows 

emission contributions of different ages for April 1, 2017. Due to the young age of the sampled aerosol and the typically low 205 

OH concentration in the cold season photo-chemical aging is not expected to be the governing loss process in this study.  

To investigate the influence of the photo-chemical aging of the sampling aerosol, simulations were carried out implementing 

the chemical degradation of levoglucosan as described by (Sang et al., 2016). Indeed, differences between the results of the 

'inert' and 'reactive tracer' scenarios , are on average 10% and 7% for the EIFE and STYR stations, respectively, both being 

within the experimental error range. Changes in the isotopic composition are at both stations 0.2 ‰ on average, being 210 

smaller than the measurement precision. 

Overall, under the investigated conditions, both concentration and isotopic composition at the sampling site are rather 

determined by mixing with fresh emissions than by chemical loss processes. This agrees well with the study by (Busby et al., 

2016), which pointed out that levoglucosan is relatively stable during winter due to the low OH concentration.  

Deposition  215 

Simulations including dry as well as dry and wet deposition were carried out. The calculated concentration and isotope ratios 

were compared with the 'reactive tracer' – without deposition – scenario to quantify the contribution of dry and wet removal, 

respectively.   

The initialized aerosol particle population has a mean diameter of 0.25 µm with a corresponding average settling velocity is 

5.6×10-6 m/s. Since the aerosol in this study is relatively young, most of it stays in the accumulation mode. Thus, 220 

gravitational settling concentration losses are negligible, amounting to 1.5 and 0.7% at the EIFE and STYR stations, 

respectively. Consequently, changes in the isotopic composition are minor as well (details in Supporting Information, section 

S8). 

Further, the existent simulations show that wet deposition removed minimal amounts of the emissions. This might be 

explained by a short exposure of aerosol to weak precipitation of less than 5mm in 6h in the investigated periods. Moreover, 225 

due to the low injection height of the levoglucosan emissions from domestic heating, there are no occurrences of in-cloud 

scavenging. Wet deposition had no significant influence on the isotopic composition of the sampled aerosol either.  

Domestic biomass burning emission estimates  
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Given the lack of levoglucosan emission data from residential heating an approach was developed here to estimate these 

from available information. Therefore, population density, country-specific firewood consumption and levoglucosan 230 

emission factors for typical fuel used in the residential heating were considered (details in the Supporting Information, 

section S5). Accordingly, uncertainties arising from potential spatial and temporal variability of the emission intensities are 

brought into the calculations, such as errors due to seasonal and regional differences in the wood acquisition and 

consumption. By considering the monthly mean consumption of firewood, which is provided by a personal survey, weekly to 

diurnal variances in the emissions are neglected. Additionally, weighting with the population density doesn't reflect the real 235 

spatial distribution of the wood consumption. As an example, fireplace heating is rather unusual in cities with high 

population densities. The conversion factor from wood weight to levoglucosan emission depends on the wood type and the 

combustion process (Akagi et al., 2011;Fine et al., 2004;Jimenez et al., 2017;Schauer et al., 2001). 

The injection height of a fire emission is usually parametrized based on exhaust magnitude and temperature. These are quite 

similar for domestic woodstoves, unlike in the case of large open fires. According to (Zhang et al., 2014), the footprint layer 240 

for domestic heating emissions stretches from 100m - 300 m. The model results are not sensitive to the footprint layer height 

as long as it is inside an effectively mixed layer (Hüser et al., 2017). This is valid for the investigated period, since the 

FLEXPART simulated mixing heights drop under 300m in less than 10% of cases. Furthermore, increasing the thickness of 

the footprint layer has no major influence on the model outcome because of two counteracting effects. A greater dilution 

reduces the impact of a source, while a wider spread of the emission increases the residence time of model particles in the 245 

footprint layer.  

 

Case study 

Based on the sensitivity study findings, modelling routines and parameters were selected and applied in a case study aiming 

to assess the contribution of local vs. remote emissions from firewood domestic heating to the aerosol sampled at EIFE and 250 

STYR sites. 

The measured levoglucosan concentration for the investigated samples varies over more than one order of magnitude (from ~ 

10 to 500 ng m-3), being overall lower at EIFE (54.2 ng m-3 on average) than at STYR (152.1 ng m-3 on average). The 

histograms depicted in Figure 3 show further differences between the sites with a unimodal vs. a multimodal distribution of 

the concentrations observed at EIFE and STYR, respectively. According to this, there are two major types of sources 255 

contributing to the sampled aerosol. The urban site region is affected not only by regional upwind emissions, like the remote 

one, but also by sources very near to the receptor. 

Measured versus simulated concentrations are depicted in Figure . Generally, the model results are at the lower end of the 

observation range, showing mean absolute percentage deviations of 42.0 and 53.8% for the EIFE and STYR sites, 

respectively. For the rural station, the model overestimates in 20% and underestimates in 44% of cases the concentration of 260 

levoglucosan outside the experimental error ranges. By contrast, at the urban stations, there is only one case of model 
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overestimation. Here, the model predominantly underestimates levoglucosan concentrations, far outside the experimental 

error ranges.  

Figure  shows the measured δ-values of the sampled levoglucosan for both measurement stations. The isotopic composition 

ranges between -26.3 ‰ and -21.3 ‰. In theory, such high variance can be explained either by different source specific 265 

isotopic ratios of the contributing emissions, or by different extent of the chemical processing of levoglucosan in the sampled 

aerosol. 

We previously showed that most contributing emissions are only one day old. Chemical decay is insignificant for this study 

also due to the low OH concentrations in the cold season. Thus, mixing of sources characterized by manifold isotopic 

composition likely explain the observations. The 13C distribution shown in Figure 3 is narrower for the EIFE site than for 270 

STYR, where mixing of individual different sources seems likely.  

A model-observation-comparison analysis gives the possibility to assign individual isotopic signatures to different source 

regions. Within this study, retro plume analyses providing the main wind direction were used to confine geographically 

source regions for the sampled aerosol (details in the Supporting Information, section S9). Weighted mean measured δ-

values of these assigned source regions are given in Figure 6. Within measurement error ranges there is no significant 275 

difference in 13C for the different source regions, indicating that there is on average no significant spatial dependence of the 

isotopic signature of levoglucosan emissions.  

 

Keeling plot analysis 

Due to absence of chemical degradation of levoglucosan in aerosol particles originating from domestic heating in the cold 280 

season, a Keeling plot approach was at first employed to investigate the mixing of two reservoirs, in this study of fresh - 

'isotopically-light', high-concentrated emissions with aged - 'heavier', low-concentrated background (Lin, 2013). To this end, 

the measured isotopic ratio was plotted vs. the inverse concentration (Figure 7). A linear regression analysis was carried out. 

Remarkably, according to the 95% confidence interval analysis, the yielded y-intercept range of -25.3 to -21.4 ‰ agrees well 

within error ranges with the published isotopic composition measured in aerosol from the combustion of various C3 plants 285 

(Sang et al., 2012). This analysis shows that the variability in the observed δ-values is likely due to the contribution of local 

sources that possess very different isotopic rations in the above mentioned range. A y-intercept of -23.2±0.1 ‰ was derived, 

being defined as the isotope ratio of fresh emissions. Accordingly, the model runs were initialized using a 13C0 of -23.2 ‰. 

The slope of the fitted line to the experimental data was found to be negative. Since background levoglucosan concentration 

data were not available, the lowest measured concentration (12.4 ng m-3 at the EIFE station on November 10th, 2015) was 290 

considered as constant background value. A corresponding 13C of -24.0±0.3 ‰ was calculated (Figure 7).  

This isotopic ratio, lower than that of sources, cannot describe the 'expected' photo-chemically-aged background aerosol. 

This result calls into question whether the initially postulated reservoirs explain the observed concentrations and delta 

values. The assumed background levoglucosan can originates either from a diffuse source that is not related to the population 
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density, or from air masses that are not taken into account by the 7 day retro plumes. The former hypothesis is not plausible 295 

in winter. The latter is likely in terms of the concentrations, but not compatible with the delta values, since the isotopic ratio 

of 7-days older levoglucosan increases by 2‰. The Keeling plot is therefore a strong indication that a significant background 

cannot be reconciled with the observed isotope values. Thus, a systematic underestimation of the source strength might be a 

better explanation for the observed data. In the first model runs, the background levoglucosan concentration and isotopic 

ratio were set to 12.4 ng m-3 and -24.0 ‰, respectively. Subsequently, model runs were repeated by gradually reducing the 300 

background. The best fit between the observed and calculated concentrations was reached by setting the background to zero 

(Supporting Information, Table 8.3). The linear regression analysis additionally shows a significant difference in the 

emission factors between EIFE and STYR. Nevertheless, emissions are underestimated by a factor of two on average. 

The modelled 13C results shown in Figure 7 are located next to the line fitted to the observations. Based on the isotopic 

hydrocarbon clock equation (Eq. 3), the 'isotopic age' was calculated from modelled and observed levoglucosan isotopic 305 

ratios, using a 13C0 of -23.2‰ and kinetic data from (Sang et al., 2016). The mean OH concentration was considered 

0.5×106 molec cm-3. This yields a 'negative' age for the observations (Supporting Information, Table 7.3), probably a 

consequence of the inaccuracy of the used emission isotope ratio. The trajectory model has an age of around 1.5 days, with a 

small but very significant difference between EIFE and STYR (EIFE is older, as expected). The observed delta values show 

a similar difference under the premise used here that the emissions contributing to EIFE and STYR have the isotopic 310 

composition. This is to be expected for the trajectory analyses in this study, since the mean age is greater than one day and 

therefore is regionally averaged. Moreover, due to the number and duration of the sample collection, the averaging includes 

also a variety of prevailing conditions. In reverse, when assuming that the trajectory analyses correctly reflect the mean age, 

one can determine the emission isotopic ratios from the observations. Noticeably here, the values for EIFE and STYR are 

almost identical supporting the good averaging conclusion. 315 

Overall, this model-observation-comparison study show good agreement between the model and observations. This 

demonstrates that FLEXPART well describes the atmospheric processes investigated in this study. Despite unknowns 

expected to introduce biases in the analyses, FLEXPART simulations provide a good description of the sources and 

background. 

 320 

5 Conclusions 

In this study we have combined Lagrangian particle dispersion modeling with concentration- and isotopic measurements of 

levoglucosan in PM sampled during the cold season at two LANUV stations as innovative tool to investigate home heating 

aerosol sources and its fate. To this end, we have successfully implemented 12Levoglucosan and 13Levoglucosan as separate 

chemical species into the LPDM FLEXPART, to calculate the isotopic ratio distribution of the specific biomass burning 325 

tracer from the source to the sampling site. The analysis of the full dispersed model output, in combination with emission 

inventories using the ‚folded retro plume technique ‘yielded very detailed information on the source–receptor relationships. 

Thus, aerosol source contribution to the receptor sites and its loss processes during the atmospheric transport are quantified.  
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Sensitivity studies show that for this special case, varying model variables, such as meteorology, rate constant of the photo-

oxidation reaction or deposition processes, does not yield significant changes in the simulation results. This is justified by 330 

similar vertical mixing parameterization in the wind models during the more stable cold season over Europe. Lower OH 

concentrations cause less photo-chemical degradation of levoglucosan. This can be also associated with the young age of the 

sampled aerosol derived from the simulations. Furthermore, sedimentation is an insignificant loss process for the fresh 

biomass burning aerosol. The activation of the wet deposition module leads to minor levoglucosan concentration reductions 

due to missing strong precipitation events in winter. Young levoglucosan can be explained either by deposition, or by local / 335 

regional sources and dispersion. Since dry and wet deposition are insignificant, the former hypothesis is the most likely. 

The presented case study shows good agreement between modelled and observed data within error ranges. The few 

overestimations of the derived concentration at EIFE might be caused by overestimated emissions rather than underestimated 

removal (Grythe et al., 2017). The frequent underestimations, especially at STYR might indicate unidentified sources or 

flaws in the levoglucosan emission strength. This comparison supports the fact that souces which are very close but not 340 

captured in the developed emission inventory approach strongly influence the local aerosol burden, particularly for the 

STYR site. Repeated calculations reducing the background and increasing the emissions indicated that the source strength is 

underestimated. The measured δ13C-values show by far higher variability compared with the simulated isotopic ratios. This 

can be explained by possible individual source to source variation (e.g. due to differences in the used fuel). The retro plume 

modelled age of levoglucosan agrees well with the age resulting from the observed isotopic ratios. This agreement 345 

demonstrates that the limitation to 7-days backwards calculations does not create any significant bias. Finally, since both 

observations and the retro plume analyse show that chemical aging does not play a significant role in the cold season in 

Central Europe, levoglucosan can be used as a 'conservative' tracer under similar conditions. All these findings demonstrate 

the FLEXPART fitness to simulate aerosol processes occurring between source and receptor. The sensitivity studies revealed 

individual factors leading to potential biases, while the comparison between simulated and observed concentration assessed 350 

the most probable sources and loss processes for the investigated aerosol. 

Both sensitivity and case studies unquestionably point out that local domestic heating is the major source contributing to the 

biomass burning aerosol burden under the investigated conditions. Thus we have demonstrated that the developed modelling 

strategies are suitable to assess sources of biomass burning aerosol in living areas in winter. Local emission mitigation is 

possible. Under similar conditions, i.e. cold season in Europe, photo-chemical decay is negligible, therefore levoglucosan 355 

can be employed as inert tracer in source-receptor studies, without introducing considerable bias. 

For the future, more isotopic measurements of fuels used for domestic heating in Europe are essential to better constrain the 

isotopic signature of individual sources. Global modelling together with more frequent ambient measurements is necessary 

to describe more accurately the concentration and isotopic composition of background aerosol. Further studies preferably on 

summer fires are needed to test processes described by FLEXPART. Isotopic information will likely deliver the additional 360 

information to quantify aerosol photo-chemical aging in a OH-radical-rich atmosphere, as well as the wet deposition during 

strong precipitation leading to heavy levoglucosan removal.  
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 385 

 

Figure 1: Simulated retroplumes (top, for the colour code see legend) as well as centroid-back-trajectory (bottom, solid lines) and the 

corresponding mixing-layer heights (bottom, dashed lines) for each release hour, using the ECMWF and GFS meteorology, exemplarily 

presented for the February 18th(left), and the March 5th 2016 (right) samples. The FLEXPART analyses are made for EIFE site (red star).  

 390 

 

Figure 2: Levoglucosan emission contribution to the EIFE site (green star), divided into age classes, for 1 April 2017. The plot enlightens 

source regions for one- (35% of the collected levoglucosan, red), two- (35%, yellow), three- (11%, blue) days old particles, as well as 

older than that (20%, grey). 
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Figure 3: Distribution frequency of the observed levoglucosan concentration and 13C.  
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Figure 4: Comparison between observed and simulated levoglucosan concentration at the EIFE and STYR sites. Also the 1:1 line is given 405 

(dashed line). 

 

 

 

 410 

Figure 5: δ13C of the sampled levoglucosan at EIFE and STYR sites. The shaded areas represent ranges of observed levoglucosan source 

specific isotope ratios in aerosol formed during the combustion of soft (light green) and hard wood (dark green) (Sang et al., 2012). 
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 415 

Figure 6: Isotopic signatures for different source regions, including corresponding sample number as well as the average 13C. The source 

regions for the sampled aerosol were designated based on the the main wind direction (see text). 

 

 

 420 

Figure 7 Keeling plot depicting the observed levoglucosan d13C vs the inverse concentration (black symbols). Model results are given 

(red symbols) as well as the line fitted to the experimental data (dashed). The light and dark grey shaded areas represent the 95% 

prediction and confidence intervals, respectively. 

 

 425 

 

 

https://doi.org/10.5194/acp-2020-1133
Preprint. Discussion started: 19 November 2020
c© Author(s) 2020. CC BY 4.0 License.



17 

 

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: 

Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039-

4072, 10.5194/acp-11-4039-2011, 2011. 430 

Amann, M., Cofala, J., Klimont, Z., Nagl, C., and Schieder, W.: Measures to address air pollution from small combustion 

sources, Environment Agency Austria, International Institute for Applied Systems Analysis, 51, 2018. 

Anderson, R. S., Czuba, E., Ernst, D., Huang, L., Thompson, A. E., and Rudolph, J.: Method for Measuring Carbon Kinetic 

Isotope Effects of Gas-Phase Reactions of Light Hydrocarbons with the Hydroxyl Radical, J. Phys. Chem. A, 107, 6191-

6199, 10.1021/jp034256d, 2003. 435 

Angevine, W. M., Brioude, J., McKeen, S., and Holloway, J. S.: Uncertainty in Lagrangian pollutant transport simulations 

due to meteorological uncertainty from a mesoscale WRF ensemble, Geoscientific Model Development, 7, 2817-2829, 

10.5194/gmd-7-2817-2014, 2014. 

Brand, W. A., Assonov, S. S., and Coplen, T. B.: Correction for the 17O interference in δ(13C) measurements when 

analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report), Pure Appl. Chem., 82, 1719-1733, 440 

10.1351/pac-rep-09-01-05, 2010. 

Busby, B. D., Ward, T. J., Turner, J. R., and Palmer, C. P.: Comparison and Evaluation of Methods to Apportion Ambient 

PM2.5 to Residential Wood Heating in Fairbanks, AK, Aerosol and Air Quality Research, 16, 492-503, 

10.4209/aaqr.2015.04.0235, 2016. 

Craig, H.: Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon 445 

dioxide, Geochimica et Cosmochimica Acta, 12, 133-149, http://dx.doi.org/10.1016/0016-7037(57)90024-8, 1957. 

Davis, L. S., and Dacre, H. F.: Can dispersion model predictions be improved by increasing the temporal and spatial 

resolution of the meteorological input data?, Weather, 64, 232-237, 10.1002/wea.421, 2009. 

Fiebig, M., Stohl, A., Wendisch, M., Eckhardt, S., and Petzold, A.: Dependence of solar radiative forcing of forest fire 

aerosol on ageing and state of mixture, Atmospheric Chemistry and Physics, 3, 881-891, 10.5194/acp-3-881-2003, 2003. 450 

Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical Characterization of Fine Particle Emissions from the Fireplace 

Combustion of Woods Grown in the Southern United States, Environmental Science & Technology, 36, 1442-1451, 

10.1021/es0108988, 2002. 

Fine, P. M., Cass, G. R., and Simoneit, B. R. T.: Chemical Characterization of Fine Particle Emissions from the Wood Stove 

Combustion of Prevalent United States Tree Species, Environmental Engineering Science, 21, 705-721, 455 

10.1089/ees.2004.21.705, 2004. 

Gensch, I., Laumer, W., Stein, O., Kammer, B., Hohaus, T., Saathoff, H., Wegener, R., Wahner, A., and Kiendler-Scharr, A.: 

Temperature dependence of the kinetic isotope effect in β -pinene ozonolysis, Journal of Geophysical Research, 116, 

10.1029/2011JD016084, 2011. 

Gensch, I., Kiendler-Scharr, A., and Rudolph, J.: Isotope ratio studies of atmospheric organic compounds: Principles, 460 

methods, applications and potential, Int. J. Mass Spectrom., 365-366, 206-221, 10.1016/j.ijms.2014.02.004, 2014. 

Gensch, I., Sang-Arlt, X. F., Laumer, W., Chan, C. Y., Engling, G., Rudolph, J., and Kiendler-Scharr, A.: Using δ13C of 

Levoglucosan As a Chemical Clock, Environ. Sci. Technol., 52, 11094-11101, 10.1021/acs.est.8b03054, 2018. 

Gerasopoulos, E., Kazadzis, S., Vrekoussis, M., Kouvarakis, G., Liakakou, E., Kouremeti, N., Giannadaki, D., Kanakidou, 

M., Bohn, B., and Mihalopoulos, N.: Factors affecting O3 and NO2 photolysis frequencies measured in the eastern 465 

Mediterranean during the five-year period 2002-2006, J. Geophys. Res.: Atmos., 117, D22305/22301-D22305/22314, 22314 

pp., 10.1029/2012JD017622, 2012. 

Global Climate & Weather Modeling Branch, E.: The GFS atmospheric model, NCEP Office Note 442, 14, 2003. 

Grythe, H., Kristiansen, N. I., Zwaaftink, C. D. G., Eckhardt, S., Stroem, J., Tunved, P., Krejci, R., and Stohl, A.: A new 

aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10, Geosci. Model Dev., 10, 1447-1466, 470 

10.5194/gmd-10-1447-2017, 2017. 

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, 

C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., 

Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T. F., Monod, A., Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D., 

Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging 475 

issues, Atmos. Chem. Phys., 9, 5155-5236, 2009. 

https://doi.org/10.5194/acp-2020-1133
Preprint. Discussion started: 19 November 2020
c© Author(s) 2020. CC BY 4.0 License.



18 

 

Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L.: Levoglucosan stability in biomass burning particles 

exposed to hydroxyl radicals: LEVOGLUCOSAN STABILITY IN AEROSOL, Geophysical Research Letters, 37, n/a-n/a, 

10.1029/2010GL043088, 2010. 

Hüser, I., Harder, H., Heil, A., and Kaiser, J. W.: Assumptions about footprint layer heights influence the quantification of 480 

emission sources: a case study for Cyprus, Atmospheric Chemistry and Physics, 17, 10955-10967, 10.5194/acp-17-10955-

2017, 2017. 

Jimenez, J., Farias, O., Quiroz, R., and Yañez, J.: Emission factors of particulate matter, polycyclic aromatic hydrocarbons, 

and levoglucosan from wood combustion in south-central Chile, Journal of the Air & Waste Management Association, 67, 

806-813, 10.1080/10962247.2017.1295114, 2017. 485 

Kuepper, M., Quass, U., John, A. C., Kaminski, H., Leinert, S., Breuer, L., Gladtke, D., Weber, S., and Kuhlbusch, T. A. J.: 

Contributions of carbonaceous particles from fossil emissions and biomass burning to PM10 in the Ruhr area, Germany, 

Atmos. Environ., 189, 174-186, 10.1016/j.atmosenv.2018.06.039, 2018. 

Li, N., Xia, T., and Nel, A. E.: The role of oxidative stress in ambient particulate matter-induced lung diseases and its 

implications in the toxicity of engineered nanoparticles, Free Radical Biol. Med., 44, 1689-1699, 490 

10.1016/j.freeradbiomed.2008.01.028, 2008. 

Lin, J. C.: An Introduction, in: Lagrangian Modeling of the Atmosphre, edited by: Lin, J., Brunner, D., Gerbig, C., Stohl, A., 

Luhar, A., and Webley, P., John Wiley & Sons, Washington, DC, 2013. 

Owens, R. G., and Hewson, T.: ECMWF Forecast User Guide, in, ECMWF, Reading, 2018. 

Pfeffer, U., Breuer, L., Gladtke, D., and Schuck, T. J.: Contribution of wood burning to the exceedance of PM10 limit values 495 

in north rhine-westphalia, Gefahrstoffe - Reinhalt. Luft, 73, 239-245, 2013. 

Rohrer, F., and Berresheim, H.: Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet 

radiation, Nature (London, U. K.), 442, 184-187, 10.1038/nature04924, 2006. 

Rudolph, J., and Czuba, E.: On the use of isotopic composition measurements of volatile organic compounds to determine 

the “photochemical age” of an air mass, Geophysical Research Letters, 27, 3865-3868, 10.1029/2000gl011385, 2000. 500 

Sang, X. F., Gensch, I., Laumer, W., Kammer, B., Chan, C. Y., Engling, G., Wahner, A., Wissel, H., and Kiendler-Scharr, 

A.: Stable Carbon Isotope Ratio Analysis of Anhydrosugars in Biomass Burning Aerosol Particles from Source Samples, 

Environmental Science & Technology, 46, 3312-3318, 10.1021/es204094v, 2012. 

Sang, X. F., Gensch, I., Kammer, B., Khan, A., Kleist, E., Laumer, W., Schlag, P., Schmitt, S. H., Wildt, J., Zhao, R., 

Mungall, E. L., Abbatt, J. P. D., and Kiendler-Scharr, A.: Chemical stability of levoglucosan: An isotopic perspective, 505 

Geophys. Res. Lett., 43, 5419-5424, 10.1002/2016gl069179, 2016. 

Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.: Measurement of Emissions from Air Pollution Sources. 

3. C 1 −C 29 Organic Compounds from Fireplace Combustion of Wood, Environmental Science & Technology, 35, 1716-

1728, 10.1021/es001331e, 2001. 

Seibert, P., and Frank, A.: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward 510 

mode, Atmospheric Chemistry and Physics, 4, 51-63, 10.5194/acp-4-51-2004, 2004. 

Stein, O., and Rudolph, J.: Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport 

models, Journal of Geophysical Research, 112, 10.1029/2006JD008062, 2007. 

Stohl, A., Sodemann, H., Eckhardt, S., Frank, A., Seibert, P., and Wotawa, G.: The Lagrangian particle dispersion model 

FLEXPART version 8.2, 33, 2010. 515 

Zhang, B., Owen, R. C., Perlinger, J. A., Kumar, A., Wu, S., Val Martin, M., Kramer, L., Helmig, D., and Honrath, R. E.: A 

semi-Lagrangian view of ozone production tendency in North American outflow in the summers of 2009 and 2010, 

Atmospheric Chemistry and Physics, 14, 2267-2287, 10.5194/acp-14-2267-2014, 2014. 

Zheng, M., Cass, G. R., Schauer, J. J., and Edgerton, E. S.: Source Apportionment of PM2.5 in the Southeastern United 

States Using Solvent-Extractable Organic Compounds as Tracers, Environmental Science & Technology, 36, 2361-2371, 520 

10.1021/es011275x, 2002. 

 

https://doi.org/10.5194/acp-2020-1133
Preprint. Discussion started: 19 November 2020
c© Author(s) 2020. CC BY 4.0 License.


