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ABSTRACT:

Since the availability of high-resolution Airborne Laser Scanning (ALS) data, substantial progress in geomorphological research,
especially in landslide analysis, has been carried out. First and second order derivatives of Digital Terrain Model (DTM) have become
a popular and powerful tool in landslide inventory mapping. Nevertheless, an automatic landslide mapping based on sophisticated
classifiers including Support Vector Machine (SVM), Artificial Neural Network or Random Forests is often computationally time
consuming. The objective of this research is to deeply explore topographic information provided by ALS data and overcome
computational time limitation. For this reason, an extended set of topographic features and the Principal Component Analysis (PCA)
were used to reduce redundant information. The proposed novel approach was tested on a susceptible area affected by more than
50 landslides located on Roznéw Lake in Carpathian Mountains, Poland. The initial seven PCA components with 90% of the total
variability in the original topographic attributes were used for SVM classification. Comparing results with landslide inventory map, the
average user’s accuracy (UA), producer’s accuracy (PA), and overall accuracy (OA) were calculated for two models according to the
classification results. Thereby, for the PCA-feature-reduced model UA, PA, and OA were found to be 72%, 76%, and 72%, respectively.
Similarly, UA, PA, and OA in the non-reduced original topographic model, was 74%, 77% and 74%, respectively. Using the initial
seven PCA components instead of the twenty original topographic attributes does not significantly change identification accuracy but
reduce computational time.

1. INTRODUCTION other derivatives are very beneficial in the landslide recognition.
Very promising results are obtained based on surface roughness
investigation. ~ McKean and Roering (2004) applied local
variability of unit vector orientations of slope and aspect. Their

results indicate that contrast analysis of surface roughness can be

Landslides are natural hazard causing significant damages to the
environment in many countries. Landslides can be fatal and can

also destroy or damage natural landforms. Moreover, landslides
have disruptive impact on man-made structures such as
buildings, agricultural and forestial lands and on water in rivers
and streams (Akgun and Erkan, 2016; Schuster and Fleming,
1986). Because of the increasing socio-awareness of landslide
impact on the environment, efficient landslide assessment is
required (Aleotti and Chowdhury, 1999). Therefore, many
countries created or are creating their own national or regional
landslide databases (LDBs). This is a fundamental source for
quantitative  zoning of landslide  susceptible areas
(Van Den Eeckhaut and Hervds, 2012).

Currently, landslide mapping methods involve field inventories,
which are time consuming. Alternative landslide mapping
methods applied photogrammetric approaches and analysis of
Digital Elevation Model (DEM). Here airborne laser scanning
(ALS) achieved big popularity by providing high resolution
topographic  information overwhelming over traditional
surveying techniques (Tarolli, 2014). Nowadays, applying ALS
data in landslide mapping seems to be a standard tool.
Nevertheless, many studies beside the ALS data use expert
knowledge, experience and very often familiarity with the study
sites.  Unfortunately, very few researchers made attempt to
automate the process of landslide mapping using computer-aided
methods (Van Den Eeckhaut et al., 2012). In automatic
approaches, DEM and first and second-order derivatives of DEM
such as: slope, aspect, curvature, topographic roughness among

used to identify bedrock landslides, outline their spatial extent
and even examine landslide internal kinematics. Furthermore,
impressive results were obtained by Booth et al. (2009) using
spectral analysis and high-resolution topographic data. They
compared the results with independent landslide inventory maps
and correctly classified an average of 82% of the terrain in five
study areas in Washington and Portland Hills, Oregon. Chen et
al. (2014) used DEM-derived features and random forests
algorithm for semi-automatic landslide mapping. They achieved
overall accuracy of 78.24%. Another approach using
object-oriented image analysis (OOA) was proposed by Van
Den Eeckhaut et al. (2012). The results obtained show that OOA
using DEM-derivatives allows them to recognize more than 90%
of the main scarps and 70% of the landslide bodies. Recently,
another approach was presented by Leshchinsky et al. (2015).
They proposed a novel algorithm for the automatic and
consistent landslide deposits mapping. The authors applied the
Contour Connection Method (CCM) and a high agreement with
manual delineated landslides deposit was achieved.

Applying many DEM-derivatives and sophisticated classifiers
including Support Vector Machine (SVM), Artificial Neural
Network or Random Forests are often computationally time
consuming. Moreover, high resolution of the DEM data and
their derivatives for large areas are often big data sets, which
require powerful processing platforms to handle them.
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Therefore, the objective of this research is to deeply explore
topographic information provided by the ALS data and to
decrease the computational time in semi-automatic and
computer-aided landslide mapping. For this reason, an extended
set of topographic features and the Principal Component
Analysis (PCA) were used to reduce redundant information and
to accelerate the classification process.

2. DEM AND ITS DERIVATIVES

The ALS data was obtained in the framework of the ISOK
project (Pawtuszek et al., 2014). Point cloud with resolution of
4-6 points/m? and overall accuracy less than 15 cm was used.
According to Pawluszek et al. (2014) the height component
accuracy of the ISOK data does not exceed 23 cm for forested
areas. Based on the DEM, 19 DEM-derivative layers were
prepared. Because of the large number of the DEM-derivatives,
only multiple shaded relief derivative is presented in figure 1.
Main information, calculation patterns and references for other
derivatives are collected in tablel.
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Figure 1: Multiple shaded relief and the existing landslides (pink
areas)

3. GENERAL SETTINGS OF THE STUDY AREA

The study area is located in the central part of the Outer West
Carpathians in Poland and it approximately covers an area of 2.8
km? (figure 2). The geographical location of this area is 49°
44°N to 49°45°N latitude and 20°40E to 20°43E longitude. The
altitude of the study area ranges from 267.48m to 477.77m.
Maximum slope angle in the study area is 58.63°. From the
geological point of view, the study area is situated within the
Cigzkowice Foothills, close to the bank of Roznéw Lake
(Starkel, 1972). According to the hydrological data,
precipitation occurs frequently in the form of rain and snow
throughout the winter. The annual mean precipitation of this
area over the period of 1981-2010 is 800 mm (Wozniak et al.,
2013). The main reason of the landslide occurrence within the
study area is sedimentary rocks and rainfalls. = Moreover,
landslide activity is mostly associated to the abundant rainfall,
fluctuation of water level in the Roznéw Lake and the flysch
type of rocks (Borkowski et al., 2011). According to figure 2
three diverse land uses can be observed: forestial, agricultural
and urban areas. As can be seen, landslides mainly occur in
forested areas and cropland. Therefore, it is worth to emphasize
usefulness of ALS in landslide mapping within study area,
where traditional field inventories are challenging.

DEM-derivatives

Information and references

DEM

[ArcGIS™] Van Westen et al. (2008)

slope

[Spatial Analyst in ArcGIS™]
Van Westen et al. (2008)

standard deviation of
shaded relief

moving standard deviation filter using
3 x 3 pixel kernel [Spatial Analyst in
ArcGIS™]

openness

difference between original DEM
and DEM;;, where DEMy; is
interpolated DEM with 9 x 9 moving
average kernel Van Den Eeckhaut
et al. (2012) [Raster Calculator in
ArcGIS™]

topographic
roughness

GIS Geomorphometry & Gradient
Metrics toolbox by Evans et al. (2015)

contour density

20cm contour density per circle with
radius of 3m [Python in ArcGIS™]

area solar radiation
(ASR)

ASR represents the solar energy for a
given pixel and specific date [Spatial
analyst toolbox in ArcGIS™!]

morphological
gradient

represents difference between the
dilation and the erosion of the DEM-
image [Python in ArcGIS™]

topographic position

Land Facet Corridor Designer by

index (TPI) Jenness et al. (2013)

skewness represents the asymmetry of the
probability  distribution,  moving
skewwness index filter wit 3x3 pixel
kernel [Python in ArcGIS™

curvature [Spatial analyst toolbox in ArcGIS™]
(Van Den Eeckhaut et al., 2012)

integrated  moisture | [GIS Geomorphometry & Gradient

index (IMI) Metrics toolbox by Evans et al.

(2015)]

stream power index
(SPI)

describes potential flow erosion at
the specific location of the surface.
[Spatial analyst Tools and Raster
Calculator in ArcGIS™] (Akgun et
al., 2008)

compound [GIS Geomorphometry & Gradient

topographic index | Metrics toolbox by Evans et al.

(CTD (2015)]

semivariogram moving semivariogram index filter
using 9x9 pixel kernel [Python in
ArcGIS™]

slope/aspect [GIS Geomorphometry & Gradient

transformation Metrics toolbox by Evans et al.
(2015)]

difference  between | [Raster calculator and interpolation

DEM and polynomial | function in ArcGIS™]

surface fitted into

DEM

deviation from trend

[GIS Geomorphometry & Gradient
Metrics toolbox by Evans et al.
(2015)]

standard deviation of
slope

moving standard deviation filter using
3 x 3 pixel kernel [ArcGIS™]

multiple shaded relief

[Spatial analyst toolbox in ArcGIS™]
(Eeckhaut et al., 2007) figure 2

Table 1: Main information, calculation patterns and references
about DEM-derivative layers
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Figure 2: Location of the study area with the existing landslides
and ortoimage

4. METHODOLOGY

The methodology is presented in figure 3. Based on the DEM,
19 first or second order DEM-derivatives were calculated. The
analysis were performed for two data sets. The first data set
includes all layers derived from the DEM. The second data set
consists of only seven layers derived from the PCA. For the
training samples, 24.5% of the study area was used. Within the
training data set 62.6% were the landslide areas. The training
samples were selected randomly. Afterwords, based on the same
training data set, the SVM classification was performed for the
second data set.

Step 1 - creation of input layers

PCA-reduced -reduced
model W & “model .
7 PCA 20 orginal
components | [DEM-derivatives

Step 2 - selection of training and testing areas

Study area
A 4

subset for training subset for testing
: 24.5% 75.5%

-

Step 3 Classification

Landslide identifiction
SVM classification
Step 4

Evaluation

Figure 3: Methodology flowchart

4.1 Principal Component Analysis

PCA is well known method to reduce redundant information
between highly correlated variables. It is widely used in
hyper-spectral analysis, where bands are highly correlated with
each other. The PCA allows reducing the elements necessary to
describe large number of inter-correlated variables (Abdi and
Williams, 2010). Many classification method from machine
learning theory are time-consuming, therefore using full data set
of DEM-derivatives for big study areas is ineffective. For this
reason the PCA was performed for the DEM and the 19
DEM-derivatives. The normalization of the DEM-layers was
required before performing the PCA in order to overcome
influance one layer over the others. The initial seven PCA
components provide 93.2% of information contained in 20
DEM-layers. Figure 4 shows RGB composition of the three
initial PCA components.
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Figure 4: RGB composition of the initial three PCA component
with borders (black line) of the existing landslides

4.2 Support Vector Machine

SVM is the useful tool for data classification. It was introduced
by Vapnik in 1995 as a new technique from machine learning
theory. The main idea of the SVM is to transform data using
kernel function into high-dimensional feature space.
Discrimination of classes in a new feature space can be
separable by means of decision hyperplane (figure 5). Our
implementation of SVM classification was made in ENVI using
four degree of kernel polynomial function, bias term equal to
three and kernel bandwidth v = p~!, where p is the number of
DEM-derivatives (Hsu et al., 2003).

5. RESULT

5.1 Accuracy assessment

Figure 6 and figure 7 present classification results for the
PCA-reduced model and the non-reduced model with the
landslide inventory map, respectively. Comparing results with
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Figure 5: Example of the linear SVM by (San, 2014)
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Figure 6: SVM classification results (green areas) for the seven
PCA components and the existing landslides (hatched polygons)

the landslide inventory map, the average user’s accuracy (UA),
the producer’s accuracy (PA) and the overall accuracy (OA)
were calculated for two models. Thereby, for the
PCA-feature-reduced model the UA, the PA and the OA were
found to be 72%, 76%, and 72%, respectively. Similarly, UA,
PA, and OA in the non-reduced original topographic model, was
74%, 77% and 74%, respectively. Table 2 and table 3 present
detailed accuracy assessment as a confusion matrix.

5.2 Computational time processing

The SVM classifications were performed using ENVI 32bit,
version 5.2. The computations were performed on two Intel (R)
Xeon (R) E5649 CPUs 2.53 GHz with 48 GB DDR3 RAM
memory. According to the time required for the calculation, user
time was measured. The user time is the amount of the CPU
time spent in user-mode code within the process. This is only
actual CPU time used in executing the process. Other processes
and time the process spends blocked do not count towards this
figure. According to the results, the SVM classification for the
PCA-reduced model and full dataset with the 20-DEM layers
took 32 and 65 minutes of the user time, respectively. The
computational time of the PCA is not crucial, because using
ArcGIS software the computation took 4s.
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Figure 7: SVM classification results (green areas) for all DEM-
derivtives and the existing landslides (hatched polygons)

class

Commission (%)

landslide areas

46.91

non landslide areas | 8.87
class | Omission (%)
landslide areas | 13.92
non landslide areas | 34.70

class

Producer Accuracy (%)

landslide areas | 86.08

non landslide areas | 65.30
class | User Accuracy (%)

landslide areas | 53.09

non landslide areas | 91.13

Overall Accuracy= 71.81%
Kappa coefficient=0.44

Table 2: Confusion Matrix of SVM classification using the seven
PCA components

class

Commission (%)

landslide areas

43.62

non landslide areas | 9.11
Omission (%)
landslide areas | 14.75
non landslide areas | 30.94

class

Producer Accuracy (%)

landslide areas | 85.25

non landslide areas | 69.06
User Accuracy (%)

andslide areas | 56.38

non landslide areas | 90.89

Overall Accuracy= 74.23 %
Kappa coefficient=0.48

Table 3: Confusion Matrix of SVM classification using full data

set
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6. SUMMARY AND CONCLUSIONS

The objective of this research was to deeply explore topographic
information provided by the ALS data and to overcome
computational time limitation. The PCA was used to reduce
redundant information in an extended set of topographic
features. The PCA was used also to decrease computational time
in semi-automatic and computer-aided landslide mapping. The
proposed novel approach was tested on the susceptible area
affected by more than 50 landslides located on Roznéw Lake in
the Carpathian Mountains, Poland. Based on accuracy
parameters presented in table 2 and table 3, seven initial PCA
components with 90% of the total variability in the original
topographic attributes were used for the SVM classification.

Comparing results with landslide inventory map, the average
user’s accuracy (UA), the producer’s accuracy (PA) and the
overall accuracy (OA) were calculated for two models. Thereby,
the PCA-feature-reduced model the UA, the PA, and the OA
were found to be 72%, 76%, and 72%, respectively. Similarly,
the UA, the PA and the OA in the non-reduced original
topographic model, was 74%, 77% and 74%, respectively.

Using the initial seven PCA components instead of all 20
original topographic attributes do not significantly change
identification accuracy but reduce the computational time. The
tests were performed on the relatively small study area (2.8 km?)
and the classification for the seven PCA components took 32
minutes while for the non-reduced model 65 minutes.

Authors will continue research in further studies on this topic
taking into account an extended test sites. Nevertheless, based
on the results achieved in this study, the proposed procedure,
which combines the DEM-derivatives and the SVM algorithm,
can effectively identify landslide areas in the region of the
Carpathian Mountains.  Moreover, applying PCA for the
DEM-derivatives effectively decrease the computational time in
the semi-automatic landslide mapping presented in this study.
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