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Abstract

This paper deals with the description and assessment of uncertainties in gridded land
use data derived from Remote Sensing observations, in the context of hydrological
studies. Land use is a categorical regionalised variable returning the main socio-
economic role each location has, where the role is inferred from the pattern of occupa-5

tion of land. There are two main uncertainties surrounding land use data, positional and
categorical. This paper focuses on the second one, as the first one has in general less
serious implications and is easier to tackle. The conventional method used to asess
categorical uncertainty, the confusion matrix, is criticised in depth, the main critique
being its inability to inform on a basic requirement to propagate uncertainty through10

distributed hydrological models, namely the spatial distribution of errors. Some exist-
ing alternative methods are reported, and finally the need for metadata is stressed as
a more reliable means to assess the quality, and hence the uncertainty, of these data.

1 Introduction

Land use is an important variable influencing both hydrological and hydrogeological15

processes. Regarding the former, land use affects the volumes of surface runoff and
the velocity of flow that in turn influence infiltration and soil erosion. As for the latter,
land use greatly impacts evapotranspiration and as a result, considering also the afore-
mentioned effects on infiltration, diffuse recharge. Therefore, uncertainties in land use
data may propagate through models and diminish the reliability of their predictions. A20

sound assessment of these uncertainties, if incorporated in the decision-making, would
increase the legitimacy of policy decisions based on those predictions, and then foster
greater stakeholder acceptance of whatever outcome results from these decisions.

The goal of this paper is to raise awareness among practitioners who deal with land
use data in hydrological studies on i) the uncertainties they bear; ii) the limitations of the25

conventional methods used to assess these uncertainties; and iii) alternative methods
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to describe them. After clarifying some concepts on the land use v. land cover and
raster v. vector distinctions, the uncertainties in land use data are characterised and
separated into positional and categorical. The conventional methods to assess them
are briefly described and criticised, and some alternatives are outlined. After this, the
factors that may influence them are examined, and finally, some conclusions are made.5

1.1 Land use and land cover

In this paper, land use is considered a categorical regionalised (spatially distributed)
variable that may adopt as many different values as classes have been defined, the
actual value being dependent on location. Land use classes describe the main socio-
economic role of a given location, such as residential, industrial, agricultural, forestry,10

recreational, and conservancy. These roles shape and at the same time are shaped by
the pattern of occupation of land, i.e. by land cover. The latter refer to what is physically
on the Earth surface such as vegetation, water or sand. Strictly speaking, land cover
should be confined to vegetated and built-up areas. Consequently, classes like bare
soil or sand (desert) describe land itself rather than land cover. However, in practise15

the scientific community is used to describe those situations under the term land cover
(FAO, 1997).

The intimate relationship between land use and land cover fuels some confusion be-
tween both terms. As a matter of fact, they are used interchangeably in many maps
where natural and semi-natural areas are described with land cover concepts and agri-20

cultural and urban areas with land use ones. However, land use is the function of land
cover for human activities, therefore they are not not synonyms. Furthermore, both
domains lack a one-to-one correspondence. For instance, recreational is a land use
class that may be applicable to different land cover classes like e.g. water (an all sports
lake), urban (a funfair), or forest (a periurban park). Confusing both terms leads to in-25

creased ambiguities and incongruities in class definition, therefore they should be kept
apart (Meinel and Hennersdorf, 2002).

Notwithstanding, this paper deals with the common maps currently used by hydrol-
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ogists, which include both land use and land cover concepts in their legend. Hence
it is assumed that land use concepts appearing in the legend can be inferred from
the pattern of occupation of land. This assumption is necessary because the focus of
this paper is on those land use data that are assimilated into models at the catchment
or river basin scale. These are usually derived from Remote Sensing (RS) data, and5

in the latter, human activity (people manufacturing, harvesting, shopping or playing)
cannot be directly observed, at least with current civil satellites. An overview of land
use/land cover mapping can be found in Lins (1996).

1.2 Land use data formats and models

Land use data usually come in the form of maps that depict the distribution over a terri-10

tory of the set of land use classes included in the map legend. The latter must consist
of a fixed number of mutually exclusive and collectively exhaustive classes (each one
represented by a particular label), so that any given terrain unit can be assigned a la-
bel. Land use maps are derived from RS ortho-rectified (i.e. geometrically corrected to
some cartographic projection) imagery, either aerial ortho-photos or satellite multispec-15

tral ortho-images. In the first case, land use units are usually delineated manually by
photointerpretation. This process consists in the identification of semantically homoge-
neous regions in the ortho-photo, and it is based in the visual differences that different
land use classes create. The usual digital representation of maps derived from ortho-
photos is a polygon vector layer, i.e. a mosaic of non-overlapping contiguous units or20

polygons representing patches of land whose label, unlike the next case, is necessarily
different than the ones of adjacent units. These polygons, being unitary and different
from their surroundings, can be regarded as representing geographic objects, thus the
conceptual framework underlying this representation can be regarded as object-based.

In the second case (satellite imagery), it is common to apply a semi-automated clas-25

sification to the multispectral image. This process uses pattern recognition methods
to group individual data samples, or signatures, into classes. A signature is an n-
component vector where each component usually is the value taken by a given individ-
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ual pixel in each of n channels or bands. This vector acts as the coordinates of a data
point in an n−dimensional space. The non-uniform arrangement of signatures (which
usually tend to cluster into more or less discontinuous regions) within this space forms
a structure that is seized in the analysis to demarcate the regions of that space occu-
pied by each class of interest. The common digital representation of maps derived from5

satellite images is a raster or grid made of square cells, where the value at each cell
or pixel is the label returned by the automated classifier at that pixel. Hence the basic
(areal) units used in this kind of maps are individual pixels rather than polygons. The
conceptual framework underlying this representation is field-based, since it considers
land use a regionalised variable distributed over the territory, that is, a geographic field.10

An example of a fictitious land use map, which will be used to illustrate some points, is
shown in Fig. 1. The map corresponds to a 19×12 km2 region centred at Canon city,
Colorado, USA, and it has been derived from a Landsat TM image that can be found

in the Tutorial Data CD #2 of the ENVI® (a popular RS image processing package)
distribution.15

This paper focuses on uncertainties in raster land use data derived from digital clas-
sification of RS data, which are more commonly used in water-related studies, since
gridded data can be readily assimilated into distributed hydrological models. Notwith-
standing, uncertainty in polygon land use data is also addressed briefly, since they are
sometimes used in this context by converting them to grid before assimilation. In this20

respect, users should be aware that vector to raster conversion, albeit a straightforward
process, has some implications on the reliability of the result. The conversion not only
involves a change of data format, but also of conceptual framework. The object-based
model has a higher abstraction level than the field-based model (e.g. it uses relational
features between objects that are not applicable in the field-model); hence what could25

be regarded as an error in the latter is simply a necessary generalisation in the former,
as explained next.

An important generalisation mechanism of polygon maps is the minimum mapping
unit (MMU), i.e. the minimum size (or sometimes width, when referred to elongated
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units) that a land parcel must exceed in order to be represented in the map. Isolated
land use units having a size below this threshold are aggregated to the surrounding
unit. Afterwards, there is no trace in the map of such gaps. An exception is the case of
mosaic polygons, which have a compound label representing a mosaic of patches, all
smaller than the MMU, from different classes. In this kind of polygons, the percentage5

cover from each class may be reported, but information regarding their actual distribu-
tion within the polygon is missing as a parsimonious exchange for clarity. In general,
each MMU will yield a different model of the territory, and the larger the MMU, the
greater the fraction of the territory catalogued as mosaic (Castilla, 2003). The conclu-
sion is that when a polygon map is gridded in order to assimilate it into a model, and10

the grid cell size is several times smaller than the MMU, we cannot be certain that all
the cells within a given polygon actually belong to the declared land use class, even if
the reported accuracy of the polygon map was 100%. The only clues to assess this
uncertainty are the MMU and cell size, and the complexity of the mapped territory.

Finally, there is one more point to include polygon land use data in this paper. The15

present widespread availability of very high resolution (<5 m pixel size) RS imagery is
fostering the use of object-based imaged analysis (OBIA) methods to derive land use
maps (e.g. Burnett and Blaschke, 2003). The reason is that, in these images, pixels
are too small to be representative of classes whose biophysical description refers to
a setting that necessarily encompasses more than a few square metres. OBIA meth-20

ods, unlike the conventional pixel-based ones, use image-objects as the basic units of
the analysis. The latter are delimited (typically by an image segmentation algorithm)
regions of the image that are internally coherent and relatively different from their sur-
roundings. By using this kind of units, additional features that cannot be obtained from
individual pixels (such as those derived from the shape of the regions and their mutual25

relations) may be included in the analysis. With such enhanced capabilities, OBIA has
the potential to supersede not only conventional pixel-based methods, but also pho-
tointerpretation (Castilla et al., 2006). Therefore it is likely that in future most land use
data will be derived this way and presented in vector polygon format.
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2 Characterising uncertainty in land use data

In this paper, uncertainty is an indication of the amount of distrust with which the data
should be regarded or used. That is to say that the higher the uncertainty surrounding
a given datum, the more likely is that the actual land use of the piece of terrain to which
this datum refers to is not the one registered. Uncertainty so defined influences the5

extent to which the predictions made by a model using this data are to be believed,
and ultimately the strength with which those predictions may support of justify a given
environmental decision. The relevance for hydrological modelling of uncertainty in land
use data relies in the sensitivity of model output to varying input land use data. There-
fore a sensitivity analysis, typically based on Monte Carlo simulation (e.g. Helton and10

Davis, 2003), may be used to assess the impact of land use data uncertainty on the
hydrological model.

Land use data uncertainty may be characterised using the integrated framework
provided by Brown et al. (2005) (Table 1). Land use may be conceived as categori-
cal regionalised variable, describing the main type of activity each land unit (i.e. the15

footprint of each pixel) is devoted to. Regarding its method of determination, the ac-
tivity is inferred from the particular combination of recurrent elements (such as trees
or buildings) that are typically present in the places where this activity is carried out.
That setting yields a particular joint reflectance profile when observed from faraway.
Such profile can in turn be measured (after accounting for atmospheric interactions)20

by imaging spectrometers mounted on satellites. Hence land use is determined from
pixel signatures through a process called image classification, which consists in de-
marcating the regions of the multidimensional data space associated with each class
of interest ci (i=1,..., m). The classification is carried out with the aid of a set of dis-
criminant functions gi (one for each of m classes), such that given a signature X, gi (X)25

is greater than the other gj when X belong to ci . In other words, X is classified as a
member of class ci if and only if gi (X)≥gj (X) for all j=1,2,... m (Landgrebe, 1999). For
example, the map shown in Fig. 1 is the result of applying a maximum likelihood clas-
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sifier (where the discriminant functions return the probability that the signature belongs
to each class assuming that the statistics for each class in each band are normally
distributed) to the six optical bands of the Landsat TM image.

Land use belongs to Brown et al. (2005) D3 data category (categorical, varies in time
and space), and its empiric uncertainty is assessed quantitatively through the statistics5

derived from a contingency table of errors (M1 empirical uncertainty category). The
instrument quality, if by instrument we refer to the remote sensors that record the data
from which land use is inferred, is difficult to assess, because these data are only
contingently related to the intensional definition (the set of properties distinguishing a
class from all others) of land use classes. Instead, a set of typical signatures or training10

pixels, usually collected from representative well known locations, is used to construct
a surrogate intensional definition of each class. For example, the training pixels used
for the map of Fig. 1 are the ones included in the file classes.roi of the can tm folder

of the ENVI® Tutorial Data CD #2. Then the region(s) of the multidimensional data
space occupied by each class are demarcated according to this definition. Signatures15

inside that region(s) constitute the extensional definition (the set of instances belonging
to it) of the class. The expected result of this indirect method is that the projection of
this extension onto the territory, i.e. the set of terrain plots that belong to each class,
coincides to a great deal with the one that would have been obtained should the proper
intension (related to human activities) be applied to exhaustive field observations. The20

degree of success is later verified from a set of reserved (not used for training) samples
from known locations. Irrespectively of the particular classifier employed (an overview
of the different methods can be found in Richards and Jia 1999), image classification
is considered a reliable and common method for deriving land use data from RS data,
so it can be assigned to Brown et al. (2005) O3 category.25

Finally, regarding the temporal dimension of land use data uncertainty, it can be
considered as belonging to category L1 (uncertainty information is known to change
over time). Land use maps are snapshots of the territory taken when primary data
(e.g. aerial photographs) were collected. Age decreases the reliability of the informa-
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tion portrayed in the map, since the territory is subject to changes that affect land use,
such as wildfires, the construction of new infrastructures, and shifts from rural to urban
or from agriculture to forestry. The more frequently these changes occur, the more
urgent the need for updating. Since the likelihood of changes is not uniform throughout
the territory (e.g. it is higher in the urban-rural buffer), age affects unevenly the reliability5

of these data. Similarly, it is unusual that all data are coetaneous for a given mapping
project, especially field surveys, so again the temporal reliability is likely to vary from
one sheet to another. An important consequence of temporal uncertainty is that, as
the database is updated, past deductions have to be revised as they may be no longer
valid. This is known as the “belief maintenance problem” (Frank, 2003). For example, a10

conservancy area may have been assessed in an earlier study as having a low erosion
risk, but after a wildfire that assessment may not be true anymore.

3 Positional uncertainty

There are two main uncertainties contended with when dealing with land use data,
positional and categorical (usually termed thematic in the field of RS and GIS) uncer-15

tainty. This distinction is debatable, since a label disagreement at given location could
be interpreted as being due to either positional (e.g. a systematic coordinate error) or
thematic error. However, this separation will be followed here, for two reasons. First,
it is common in the literature. Second, it is useful, for it distinguishes two types of
uncertainty that are associated to two domains very different in nature, namely the20

cartographic domain and the classification domain.
In raster maps, positional uncertainty relates inversely to the degree of confidence

we may have in that the actual location of the plot of terrain represented by a given cell
corresponds acceptably to the coordinates of that cell. Hence positional uncertainty de-
pends mostly on the quality of the geometric correction (ortho-rectification) performed25

on the satellite image from which the map was derived. Positional accuracy is usu-
ally estimated by the Root Mean Square Error (RMSE) of selected points (such as
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crossroads) clearly identifiable in the image and whose precise coordinates are known
from a higher accuracy source (e.g. a high quality topographic map or differential GPS
measurements). RMSE is computed as the square root of the mean of the squared
errors, and is calculated combining both x- and y-directions. Such estimation assumes
that positional errors are random and evenly distributed throughout the imaged scene,5

which may well not be the case, especially in hilly terrain due to relief distortions.
In general, positional uncertainty is far less serious than the categorical one. For

example, in a vegetation mapping study, Green and Hartley (2000) calculated positional
error introduced by georeferencing, digitising and subjective interpretation, and found
that the latter process accounted for 90% of the total error. So to end up the discussion10

with a practical hint, it can be said that RMSE is considered acceptable when it is less
than the pixel size, a fact that is referred to as subpixel accuracy. In practice , the true
location of the centre of a pixel of an image geocorrected at subpixel accuracy can be
safely assumed to lie somewhere within a 3×3 block of pixels surrounding that point
(Goodchild, 1994). For a review on geometric correction of RS images, see Toutin15

(2004).
In polygon maps, positional uncertainty relates inversely to the degree of confidence

we can have in that the boundary between two given polygons lies in the right place. As
previously stated, this uncertainty is inseparable from the categorical one. The reason
is that the boundaries being sought and delineated are only those that differentiate20

the land use classes in the chosen classification scheme (Bie and Beckett, 1973).
Therefore the uncertainty attached to boundary placement is proportional to 1) how
different the classes separated by the boundary appear in that area; and 2) how fast
the transition from one class to the other is, i.e. how sharp the boundary is. Since in any
given RS image some boundaries are softer than others, this variance of uncertainty25

should be estimated independently for each arc in the map.
The estimation could be done through the definition of a probabilistic epsilon band

(Honeycutt, 1987) within which the “true” boundary between two polygons has a prob-
ability of 99% of being located. The rationale behind epsilon bands is the following.
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Assuming a correct classification of polygons, one could argue that a point precisely
on the boundary could equally well belong to either class (Blakemore, 1984). Moving
away from the boundary towards the centre of the polygon increases the probability
of a correct classification, while at the same time the probability that this is where the
boundary should lay decreases. The manner in which this probability drops off mainly5

depends on the two factors mentioned above.
Unfortunately, the epsilon band, being boundary-dependent and arc-specific, is

rarely, if ever, computed. Following the example in Green and Hartley (2000), a gen-
eral procedure for the estimation of the error due to subjective interpretation could be
obtained by overlaying several photointerpretations of the same area carried out by dif-10

ferent equally-skilled interpreters. After intersecting the vector layers produced by each
interpreter, some boundaries will be very consistent, whilst others will vary markedly,
resulting in dozens of sliver (i.e. spurious) polygons. The width of the epsilon band
corresponding to a given soft boundary would be the mean distance between the inner
and outer wrapping lines encompassing the set of sliver polygons existing along that15

boundary.
Unfortunately again, not only the above procedure is hardly feasible within the con-

text of a mapping project, but it is grounded on an unrealistic assumption. Vg. it as-
sumes that given a territory and both a categorical and a spatial level of detail, it can
be achieved an egg-yolk representation (Cohn and Gotts, 1996) of that territory. In the20

latter, each polygon is like a fried egg that has a yolk (i.e. a core area free of sliver poly-
gons) and a white (the set of sliver polygons surrounding that core), the white being
the epsilon band. Such representation assumes that any two high quality photointer-
pretations of that territory would create the same set of geographic objects but with
slightly different boundaries. However it will not be unusual to find that there are some25

polygons drawn by interpreter A that are crossed in the middle by an arc delineated by
interpreter B, and vice versa.

A more feasible alternative for assessing the positional uncertainty of arcs is to ex-
press it as a combined measure of boundary distinctness both from the radiometric and
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semantic points of view. For a given arc, radiometric distinctness could be estimated as
the mean gradient magnitude of pixels crossed by the arc. Semantic distinctness could
be equated to the value of some biophysical similarity index between the classes being
separated by the arc. In addition, positional accuracy could be assessed polygon-
wise, preferably for the same sample of polygons that is used to evaluate categorical5

accuracy, which for the reasons stated in the previous paragraph should consist of
non-adjacent polygons. The question to be answered for each polygon in the sample
would be: are the boundaries of this polygon delineated in such a way that it can be
conceived as representing a coherent land use unit under the view supplied by the
classification scheme? The answer could be given qualitatively using a nominal scale,10

or even quantitatively by computing an epsilon band derived from several interpreters
who are given separately the task of improving the delineation of that polygon.

It is worth noting that the former procedure has not been tested operationally. In
practice, positional accuracy is estimated through the RMSE of sample points along
vector arcs that correspond to sharp boundaries in the image from which the map15

was derived. This estimation is biased towards man-influenced features, such as the
edge between a woodlot and a paddock, since “natural” boundaries are less clear-cut.
Therefore, the RMSE method is not suitable to assess how well polygon boundaries
represent landscape structure, rather it is an indication of the steadiness of the inter-
preter’s hand (and of the visualisation scale she used).20

4 Categorical uncertainty

Categorical uncertainty is inversely related to the degree of confidence we can have
that if we visit the plot of terrain corresponding to a given map unit, it would be devoted
to the land use class indicated in the map. This uncertainty is commonly assessed us-
ing a contingency table of agreement between predicted and observed values, which25

is usually called the confusion matrix (Table 2). Note that accuracy, which is term usu-
ally employed in RS literature, may be considered the antonym of uncertainty in this
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context, i.e. the more accurate the map is, the less uncertainty it has. For a review on
accuracy assessment of land cover maps, see Foody (2002). For a nice example of an
accuracy assessment of a national landcover map, see Stehman et al. (2003). The lat-
ter is based on the methodological framework put forward by Stehman and Czaplewski
(1998), which divides the accuracy assessment in three components: sample design,5

response design and analysis.
The first component is the protocol used to determine the number, location, spa-

tial support and nature (e.g. aerial photos or field plots) of the sample units that will
populate the confusion matrix. The second is the protocol for assigning a label to each
sample unit, including the procedures to collect the information used in the assignment.10

And the last component is the protocol for deriving accuracy statistics from the confu-
sion matrix. Unfortunately, this framework is not worked out explicitly neither reported
in most maps. Without such explicitation, users can hardly appreciate how close the
accuracy estimates can be expected to be to the “true” map accuracy, and how robust
or repeatable they are. A nice example on how to develop a sound accuracy assess-15

ment framework, including some useful hints in key decisions that have to be made,
can be found in Wulder et al. (2006a).

In practice, the confusion matrix is computed from a subset of pixels from known
areas that were not used as training pixels, and it compares for each land use class
the predicted class with the actual one on the ground. There are a number of methods20

to measure accuracy from this table, the simplest being the percent correctly clas-
sified, usually called itself “accuracy” (95.72% in the example). The recommended
accuracy threshold, below which the resulting map should be discarded for operational
purposes, is 85% (Anderson et al., 1976). Another common measure is the kappa
index, similar to the former but it ranges from 0 to 1 and is not biased by chance agree-25

ment (i.e. it takes into account the expected rate of agreement between predicted and
actual datasets based on chance alone). Kappa values over 0.75 indicate very good
correspondence between the two datasets, while values below 0.50 indicate poor cor-
respondence. Individual class accuracy may be reported either from the map user’s
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or producer’s perspective, or both (Story and Congalton, 1986). The first one relates
to errors of commission (to confuse some class with the one reported), whereas the
second one is a measure of the omission error (to confuse the class with some other)
associated with the class.

The main drawback of this matrix is that it only captures the average error over the5

entire mapped area, whereas the likelihood of misclassification may vary markedly from
one place to another (Goodchild, 1994). For example, in a recent study on spatially
constrained confusion matrices derived from the same image, Foody (2005) reported
that while the global accuracy for the whole image was estimated to be 84%, local es-
timates varied from 53% to 100%. In addition to the often biased spatial distribution of10

errors, there are usually significant differences in error rates among the classes (Davis
and Simonett, 1991), albeit this aspect is well displayed in the confusion matrix. The
selection of the sample pixels used in the construction of the matrix may also bias opti-
mistically the accuracy estimates (as it actually occurs in the example used throughout
this paper), since they are usually picked up in blocks rather than individually (Fig. 2).15

Blocks usually correspond to homogeneous areas far from boundaries between differ-
ent land use units. In this way, mixed pixels, which are prone to be misclassified, are
systematically excluded from the sample (Plourde and Congalton, 2003). The block
sampling procedure also violates the independency assumption of statistical sampling,
because near pixels are usually correlated and therefore tend to show similar values.20

Another aspect that the usual confusion matrix neglects is the seriousness of the
misclassification. In many maps, the errors observed in a classification are between
relatively similar classes and sometimes these may be unimportant while other errors
may be highly significant (Foody, 2002). For example, it is more serious to confuse a
lake with a forest than the latter with sparse woodland. A possible method to account25

for this is to use a nominal scale to evaluate map v. field comparisons, from “absolutely
right” to “absolutely wrong”, going through “understable but wrong” and “reasonable
assignment” (Gopal and Woodcock, 1994). This scale would easily allow weighing the
degree of disagreement between the map and field observations.
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It is also worth noting another flaw regarding the source of “ground truth”, that is,
the reference data upon which the classification results are validated. Many times,
because of financial and logistic constraints, these are not ground data derived from
field surveys but aerial photos of higher resolution and/or previously compiled maps,
available at some limited parts of the extent covered by the larger map, which are5

deemed to possess the highest accuracy. In the latter case, caution should be used
when interpreting the results of the comparison, due to the likely different concep-
tual and averaging filters that each map applies to the territory, especially if the areal
units of the reference map are polygons (Wulder et al., 2006b). For example, Finke et
al. (1999) compared the CORINE landcover map with the Landcover database of the10

Netherlands and concluded that the former contains considerable errors, reporting that
69% of the area covered by (semi)natural vegetation was misclassified in a combined
soil/vegetation map. Such disagreement probably comes from different map legends,
spatial support and minimum mapping unit, rather than to shear “error” in the less de-
tailed map. Indeed, mapping errors are “forcible deviations between a representation15

and actual circumstances” (Chrisman, 1991). But the actual circumstances of a terri-
tory must be described at a given scale of observation using a given set of concepts
– the map legend. Therefore, in order to estimate error in a map by means of a more
detailed map, the latter should use the same concepts than the former, and prior to
comparison, it should be upscaled to the same resolution than the former. Otherwise20

the map uncertainty may be overestimated as in the example.
This problem of the sensitivity of analytical results to the type of the areal units from

which data are collected has been conceptualized by Openshaw (1984) as the Modi-
fiable Areal Unit Problem, or MAUP, which is akin to the Change Of Support Problem
(COSP) identified in Geostatistics (Cressie, 1996). It arises from the fact that these25

units are arbitrarily defined and eventually modified to form larger units. Therefore, if
the areal units are arbitrary and modifiable, then the soundness of any model based
upon them may be rightly questioned. MAUP was identified in the context of socio-
economical geography, but is has been also found in Landscape Ecology and Remote
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Sensing. Marceau (1999) gives a comprehensive review on the issue.
In conclusion, despite the confusion matrix is widely used as the standard accuracy

assessment for RS-derived maps, it is clearly insufficient for propagating land use un-
certainties through a distributed model, as it does not take into account the spatial
distribution of errors. To illustrate this point, Fig. 3a visually presents the uncertainty5

landscape (where the altitude of each point is proportional to the accuracy of the class
it has been assigned to) that could be inferred from the confusion matrix of Table 2.
This landscape conspicuously differs from the more realistic one derived from the out-
put of the Maximum Likelihood (ML) classifier (Fig. 3b), in which the altitude of each
point is proportional to the estimated probability that the point actually belong to the10

class it was assigned to. There are two already proposed alternatives that may tackle
this deficiency of the confusion matrix.

One is the general error model proposed by Goodchild et al. (1992). In their model,
each pixel is associated with an m-component vector of probabilities giving the prob-
ability that the pixel belongs to each class 1 through m. The classes allocated to the15

pixels in the map represent one realization of a stochastic process defined by these
vectors. That is to say that over a large number of realizations, the proportion of times
a pixel is assigned to each class will converge on each class’s probability at that pixel.
In addition, within any given realization, the outcomes in neighbouring pixels are cor-
related, so that the model also includes parameters describing the level of spatial de-20

pendence. Sample realizations can be obtained as the outcome of a classification
performed using a randomly selected subset of training pixels. The parameters of the
model can be calibrated by adjusting them so that the range of outcomes matches
reasonably the range observed in reality. An example of its application can be found in
Horttanainen and Virrantaus (2004). Despite being an interesting alternative, and as25

these authors note, the crux of this method is how to define the parameter that controls
the level of spatial dependency. This is not easy since there is no analytical method for
defining it, as no single variogram can adequately capture how spatial autocorrelation
varies across the image.
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Another alternative would be the computation of spatially constrained confusion ma-
trices to characterize the spatial variation of accuracy throughout the scene (Foody,
2005). Given a set of n predefined locations of interest situated well apart from each
other, n confusion matrices could be computed from the k nearest samples to each
location. The approach assumes that enough samples are available around the lo-5

cations of interest, which may not be always the case. Also, different choices in the
selection of these locations and the number of samples per location will in all likelihood
produce different accuracy estimates. However, it is a simple an inexpensive means of
extending the conventional approach with information on how classification accuracy
varies across the mapped territory. Further details can be found in Foody (2005).10

Turning now to the case of polygon maps, the comparison between predicted and
actual land use class should consider the polygon as a whole. This becomes trouble-
some if the validation method consists of field surveys, because it is difficult to infer the
polygon label from plot or transect data due to the inevitable heterogeneity of polygon
interiors. This difficulty may be tackled using field plots larger than the MMU, but this15

may hinder the cost-effectiveness of the sampling design, or simply be unfeasible when
the MMU is larger than say 1ha. Also, if there is considerable variability in polygon size,
care should be taken when selecting the sampling design (Stehman and Czaplewski,
1998), since error estimates should be referred to total area rather than to the number
of polygons.20

5 Factors that influence land use data uncertainty

The main factors influencing the reliability of (raster) land use data can be identified as
1) the quality of the image(s) used as input for classification; 2) the quality of the train-
ing pixels used to define quantitatively the classes; 3) the degree of correspondence
between the proper definition of classes and their radiometric definition.25

Satellite images are measurements, distributed at a fixed ground sampling interval
(equal to the pixel size), of regionalised variables. These variables are usually related
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to some electromagnetic property of the Earth surface and the atmosphere, such as
the radiance recorded by optic sensors at several bands of the spectrum. The latter
depends not only on the reflectance of the surface, but also on atmospheric conditions
and on incidence and viewing angles. So the clearer the atmosphere and the flatter the
terrain, the more can be expected that reflectance estimates derived from the recorded5

values are equally good for all the pixels in the image. Assuming that the image either
fulfils these requirements or has been adequately corrected for atmospheric and relief
effects, each pixel can then be considered as a sample introduced in a desktop spec-
trometer. The resulting signature is then compared to the ones of selected samples
(training pixels) of each material that can be found in the imaged territory – scene. Af-10

ter comparison (i.e. classification), the material having the most similar signature(s) to
the one under analysis is selected as the class to which that pixel belongs.

This discourse can be extended to cases where signatures are not spectral, like
e.g. crop classification using multitemporal radar images. The key point is that the
set of images used in the analysis allows for a good discrimination between classes,15

i.e. that no two signatures from different class are similar. In order words, in order
for the classification to be successful, signatures should clump into clusters in the n-
dimensional data space, where each cluster is composed of signatures of a prevailing
class, and where clusters from different classes are separated by quasi-empty space.
Conversely, the greater the overlap between two given classes, the higher the probabil-20

ity that they will be confused (Schowengerdt, 1997). Therefore a high quality multiband
image in this context is one where signatures are segregated in the data space ac-
cording to their class, enabling an accurate classification. As explained earlier, the
latter consists in locating the regions of the data space where each class prevails. The
demarcation is performed with the aid of a set of known signatures, the training pixels.25

An issue related to image quality is what is the best combination, in type and num-
ber, of images that can be used to analyse land use, from a given data set. This is a
classic problem of pattern recognition, called feature selection (where feature stands
for band), consisting of two inter-related parts: feature extraction (the transformation
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and/or combination of the original images/bands into new ones) and feature reduction
(the reduction of the dimensionality of the data set by selecting the smallest subset of
bands providing an acceptable discriminative power). Feature selection is generally
considered a process of mapping the original measurements into more effective fea-
tures. Unfortunately, in many applications, the important features are nonlinear func-5

tions of original measurements. Since there is no general theory to generate mapping
functions and to find the optimum one, feature selection becomes very much problem
oriented (Fukunaga, 1972). In any case, the two main approaches used are class
separability analysis and eigenanalysis (Mausel et al., 1990).

Regarding training pixels, the accuracy of image classifications depends heavily on10

their quality, even more than on the actual classifier used (Buttner et al., 1989). More-
over, the same classifier is likely to produce different results on the same image when
trained with a different set of training pixels (Smits et al., 1999). As a consequence,
the result is prone to reflect inconsistencies in the selection of training samples. Thus
“good” training pixels must be fully representative of their respective class, so that a15

good number of instances of the set of typical signatures of that class are included.
This implies e.g. that they should be well distributed across the scene, as there may be
“local varieties” of the material, where each variety may conform a separate cluster in
the data space.

Another requirement is that the piece of terrain over which the measurement is made20

is large enough as to include a representative number of the elements constituting the
biophysical definition of the class (Woodcock and Strahler, 1987). For example, if
the class forest is defined as “an area densely covered by trees”, a forest pixel must
include at least several trees so as to represent a typical forest signature. Since each
class has a specific minimum spatial support (from the few decimetres of grassland25

to the hundred of meters of urban), the conclusion is that the classification should be
performed at several resolutions. One way to achieve this while keeping fixed the pixel
size is to segment the image into differently sized homogeneous regions, and then
extract average signatures from those regions. Another way is to incorporate some
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texture measure as an adjunct to the spectral ones, in the hope that classes requiring
a support larger than the pixel size will show a particular textural pattern that may help
to discriminate them.

Regarding the last factor, classes are defined quantitatively through the signatures
of training pixels. In doing so, it is assumed that there is a bijection between location in5

data space and location in the categorical space defined by the classification scheme
of the map. In other words, if a signature is located in a region of the data space
that belongs to the class forest, it is expected that the plot of terrain from which that
signature was extracted is “densely covered by trees”. In addition, the signature of
any given place densely covered by trees is expected to lie within some cluster of10

the data space that has been allocated to the forest class. Such correspondence
does not depend alone on the quality of both the image and training pixels, but also
on the very definition and number of classes. The more adapted the set of classes
to the structure of the data space, the better the correspondence and therefore the
accuracy. Conversely, if we include in the map legend two classes that share the same15

tracts of the data space, the classification results will be poor. In general, the higher
the number of classes, the higher the number of both attributes (bands) and training
samples (pixels) required for a good classification.

In any case, the correspondence cannot be perfect, as the classes must fulfil some
conflicting requirements. On the one hand, classes must be meaningful for users and20

meet their needs, covering exhaustively all the possible land uses that can be found in
the mapped territory. On the other hand, classes must be separable to an adequate
degree in the data space. For example, there will always be some patterns of occupa-
tion that lie in between the definition of two classes. Vg. a given area may have such
a tree density that it cannot be considered a forest, but neither a sparse woodland. If25

such areas are common in the mapped territory, it would be advisable to create a new
class, say open forest. But it is likely that the signatures of the new class will overlap
with the ones of the former classes, so that the accuracy of the map is decreased.

In a similar way, there always are pixels that are crossed by an edge separating
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different land patches, the so called mixed pixels. Their signature consists of a mixture
of two (or more) classes and may be located in tracts of the data space occupied by
other classes. For example, a Landsat pixel situated between a corn field and a bare
field has a mixed signature that may be confused with the signature of a class having
a low green cover fraction, such us sparse woodland. The abundance of mixed pixels5

depends on the resolution of the image and the complexity of the landscape (Markham
and Townshend, 1981), so that the odds of a correct classification decreases with
decreasing patch size and increasing heterogeneity (Smith et al., 2003). Since, in
addition to other factors, the problem of mixed pixels is inversely related to the problem
of the spectral heterogeneity of classes, it is impossible to achieve a 100% accuracy.10

For instance, the proportion of mixed pixels may be reduced by decreasing the pixel
size, but at the expense of increasing intraclass variability. In short, classes should
be defined in such a way that can be distinguished with the satellite data used to
map them. Attempting to include classes that consists of instances with radiometric
signatures very different among them (e.g. the class urban in Landsat imagery) and15

similar to the ones of other classes (e.g. wheat and barley) will result in a poor and
inconsistent map.

Finally, in the case of polygon land use maps derived from photointerpretation, the
last two factors mentioned in the beginning of this section may be replaced with the
quality of the interpretation. This depends in turn on the skills and experience of the20

interpreters, and on the time allocated for interpretation (and even on the interpreter’s
mood during that time). Since this quality may change from sheet to sheet due to
different interpreters doing the job, it is of outmost importance to standardise observa-
tional techniques (e.g. digitising scale) and criteria (through e.g. a photointerpretation
key consisting of several examples for each class) among interpreters (Lillesand et al.,25

2003).
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6 Conclusions

The confusion matrix is the standard means for assessment of categorical uncertainty
in RS-derived land use raster maps. An example of an accuracy assessment protocol
based on it can be found in Stehman et al. (2003). Unfortunately, this matrix does
not take into account the fact that land use is a regionalised variable, i.e. is does not5

provide the spatial distribution of errors. There are two already proposed alternatives
to tackle this deficiency. One is the error model of Goodchild et al. (1992), an applied
example of which can be found in Horttanainen and Virrantaus (2004). The other is the
local characterisation of classification accuracy though spatially constrained confusion
matrices (Foody, 2005). In any case, despite the apparent objectivity of the quantitative10

estimates derived from any given method, it is important that they are interpreted with
care, since there are many factors that may result in a misleading interpretation drawn
from an apparently objective uncertainty statement (Foody, 2002).

For this reason, quantitative analytical results must be complemented with qualitative
insights on how reliable the map is. The whole picture could be gained by a thorough15

inspection of (well documented) metadata. The latter would provide users with a sense
of the amount of distrust with which the data should be used. In order to make such
intuitive assessment, metadata should not only describe comprehensively the material
–images and ancillary information- used in the compilation of the map, but the methods,
including the location of training and/or verification samples (Stehman and Czaplewski,20

1998). This is relevant as current maps metadata tend to be poor, and user awareness
of this need would increase producer care about metadata. Within this scope, the
International Metadata Standard for Geographic Information ISO 19115 defines more
than 300 metadata elements structured into 14 packages, most of which can be applied
optionally. Metadata are usually stored in XML format, which can be accessed with25

standard text editors. If for a given map the package related to Data Quality Information
is not empty, then the user may have information on the accuracy of the map. An
example of how that package may look like can be found in Table 3. In this example,
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overall accuracy is 59%, meaning that this map is not reliable for most operational
applications.

Notwithstanding, the overall accuracy estimate derived from a confusion matrix of a
land use map could in general be used when propagating uncertainty in e.g. a hydro-
geological model that uses that map as one of the input layers to estimate evapotran-5

spiration (ET). But in order for this propagation to make sense, the model must just
give an overall ET estimate for the whole study area, i.e. it should be a non-distributed
model, unless we are ready to assume that accuracy is uniformly distributed through-
out the map. A better alternative for propagating uncertainty due to land use data in a
distributed model would be a distributed error model associated to the land use data,10

which unfortunately is not provided by mapmakers in current compilations. Neverthe-
less, if in this latter scenario we had the confusion matrix of the map, we could, having
class-specific ET estimates, propagate uncertainty in the distributed model. However,
in doing this we would be relying again on a unrealistic assumption, that is, that errors
are randomly distributed in space.15

Finally, in the sadly common case of a land use map for which accuracy information
is lacking, a possible solution would be, using the threshold proposed by Anderson
et al. (1976), to grant the map a 85% overall accuracy, on the assumption that the
agency that entrusted the map uses high standards that in turn were followed by the
contractor, and apply it to all the cells within the model. If that solution can be regarded20

as reasonable by both managers and stakeholders, then the outcome of the uncertainty
propagation exercise may well be wrong, but at least it will be legitimate (the research
by Hofmann and Mitchell (1998) supports this kind of approach). In short, the key
question when assessing uncertainty in land use maps is to what degree the map
allows managers/models to make decisions/computations that do not differ significantly25

from those that they would have made if they had a direct knowledge/perfect map of
that territory. Current practice does not provide a full answer to this question. The gaps
may be filled by common-sense assumptions, preferably based on metadata, which
should seem reasonable for stakeholders/experts. A final recommendation for users is
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to compel map producers to compile well documented standard metadata files, on the
grounds that no map is acceptable as input to a numerical model without them.
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Table 1. Characterisation, following the method by Brown et al. (2005), of land use data quality
and uncertainty.

Variable name Land use

Method of determination Semi-automated classification
Data category D3 (categorical variable that varies in space and time)
Type of empiric uncertainty M1 (mean classification error derived from a contingency matrix)
Instrument quality I2 to I3 (instruments well fitted to not well matched,

depending on spectral and spatial resolution)
Sampling strategy S2 (limited number of both training and verification samples)
Overall method O3 (Reliable method common within discipline)
Longevity of uncertainty info. L1 (change over time)

3466

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/3439/2006/hessd-3-3439-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/3439/2006/hessd-3-3439-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 3439–3472, 2006

Uncertainties in land
use data

G. Castilla

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 2. Sample confusion matrix for the fictitious map of Fig. 1.

Class agriculture forest barren Total User Acc. %

agriculture 275 8 1 284 96.83
forest 27 459 2 488 94.06
barren 1 6 273 280 97.50
Total 303 473 276 1052
Prod. Acc.% 90.76 97.04 98.91 95.72
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Table 3. Sample package (Data Quality Information) from the metadata file of a landcover
mapping project. (http://sdrsnet.srnr.arizona.edu/data/azgap99/metadata/azgapveg.html).

Attribute Accuracy:
Attribute Accuracy Report: A comprehensive accuracy assessment was performed. Overall

map accuracy is 58.8%. See the special technical report, The Arizona Gap Project Final
Report for more information on per class accuracy.

Logical Consistency Report: Polygon topology was built on 2003-04-22.
Completeness Report: The map covers the entire state of Arizona.
Positional Accuracy:

Horizontal Positional Accuracy Report: minimum mapping unit of 40 ha
Lineage:

Source Information:
Publication Date: 1991 with some 1990 and 1992 scenes
Title: Landsat Thematic Mapper imagery
Source Scale Denominator: 30 m resolution
Source Contribution: used in unsupervised classification

Source Information:
Publication Date: fall 1991, summer 1992
Title: Airborn video of Arizona
Other Citation Details: Airborn video imagery (1/3 to 1/2 mile horizontal swath width

in wide angle, with interval zooms to 12X occurring approximately every 9 s, or
1500 m) was flown in the fall 1991 and summer 1992. Most video transects were
spaced approximately 30 km apart in an E-W trajectory.

Source Contribution: used in supervised classification
Process Step:
Process Description: Landsat Thematic Mapper imagery was digitally classified using a

hybrid unsupervised and supervised classification methodology. First, 3 input
bands (NDVI, a 5/4 band ratio indicating moisture content of vegetation, and a
local texture band built from the NDVI) were used in an unsupervised maximum
likelihood classification procedure. The result of the unsupervised classification
was then used with DMA elevation data as input for a supervised classification
procedure in which buffered GPS-referenced airborne video sample points
indicating vegetation association were used as training sets. The resulting
image was then edited manually to correct classification errors, then converted to
ARC/Info vector format. A series of Arc eliminate and dissolve operations were
used to get the map to GAP program-mandated minimum mapping unit of 100 ha
for upland vegetation types, and 40 ha for riparian vegetation types. Vegetation
descriptions are based on a modified Brown, Lowe, and Pase classification
system, and will be cross-walked to a UNESCO coding scheme for National GAP
Program purposes.

Process Date: 1995
Process Step:

Process Description: Converted from grid to vector. Added JBK classification.
Reprojected from NAD27 to NAD83.

Process Date: 1998
Process Step:

Process Description: Dropped extraneous fields (L. Graham classification). Dissolved
on JBK classification. Eliminated state boundary polygons (relict from conversion
of grid to vector).

Process Date: 2003-04-22
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Fig. 1. Fictitious land use map with three classes, agriculture (green), barren (red), and forest
(blue).
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Fig. 2. Location of ground truth pixels used to construct the confusion matrix of Table 2.
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Fig. 3a. Uncertainty landscape derived from the confusion matrix of Table 2.
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Fig. 3b. Uncertaintty landscape derived from ML classifier.
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