Archive \ Volume.13 2022 Issue 3

Changes in the Correlation Between Peripheral Blood Cells and Membrane Charge in Brain Gliomas and Meningiomas

, , , , , , , , ,

Abstract

Mechanism of tumor progression in malignant gliomas and other tumors of the body were studied to identify the main pathogenetic link. Indicators of the charge of cell membranes, including the membranes of blood cells, can be considered in vein. These indicators are universal for any type of tumors, and not tissue-specific. Indicators of many significant processes in the body depend on the level of cellular charge, which emphasizes its dominant role. Interaction of reparative processes of inflammatory genesis with regenerative processes carried out by blood stem cell in relevant studies and in this study by mesenchymal blood stem cells. The interaction is under the control of the epidermal-mesenchymal transition depends on a large extent on the cellular charge of blood cell membranes. The paper presents the correlation features between the pools of cells of inflammatory and regenerative origin (leukocytes, lymphocytes, granulocytes, and monocytes), the charges of their membranes in gliomas of III grade of malignancy and meningiomas of I grade of malignancy studied in vitro. Membrane charges were determined indirectly, through the level of aggregation of blood cells, using the surface plasmon resonance method where the aggregation expressed in arbitrary SPR units. To detect a latent correlation, low concentrations of verapamil hydrochloride (10,000-fold dilution) were added to the blood samples before determining the level of cell aggregation and the samples were exposed to low-level laser radiation with an oscillation frequency of 1.2 Hz. Results indicate the great importance of maintaining a normal, rather than reduced, level of cell membrane charge.


Downloads: 252
Views: 773

How to cite:
Vancouver
Pedachenko Y, Gridina N, Rozumenko V, Samoylov A, Khrystosenko R, Zvyagintseva T, et al. Changes in the Correlation Between Peripheral Blood Cells and Membrane Charge in Brain Gliomas and Meningiomas. Arch Pharm Pract. 2022;13(3):92-7. https://doi.org/10.51847/HfbILJutsJ
APA
Pedachenko, Y., Gridina, N., Rozumenko, V., Samoylov, A., Khrystosenko, R., Zvyagintseva, T., Gryazov, A., Myronchenko, S., Kot, L., & Ganna, K. (2022). Changes in the Correlation Between Peripheral Blood Cells and Membrane Charge in Brain Gliomas and Meningiomas. Archives of Pharmacy Practice, 13(3), 92-97. https://doi.org/10.51847/HfbILJutsJ

Download Citation
References

1.      Pedachenko EG, Моrozov АM, Gridina NY, Glavatsky AY, Kot LA, Uschenin YVC, et al. Correlations Between Indicators of Blood Cells Aggregation Level and the Number of Lymphoblasts and Monocytes in Patients with Glioblastomas. Online J Neurol Brain Disord. 2021;5(4):506-10. doi:10.32474/OJNBD.2021.05.000220

2.      Pedachenko EG, Моrozov АM, Gridina NY, Rozumenko VD, Kot LA, Ushenin YV, et al.  Dissociation of Correlations Between Aggregation Indicators and the Number of Peripheral Blood Cells with Regenerative Potential Contributes to an Increase in Life Expectancy et Glioblastomas. Online J Neurol Brain Disord. 2021;13(9):1-7. doi:10.32474/OJNBD.2021.05.000220

3.      Ribatti D, Tamma R, Annese T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl Oncol. 2020;13(6):100773. doi:10.1016/j.tranon.2020.100773

4.      Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15(2):117-34. doi:10.1007/s10911-010-9178-9

5.      Massara M, Persico P, Bonavita O, Mollica Poeta V, Locati M, Simonelli M, et al. Neutrophils in gliomas. Front Immunol. 2017;8:13-49. doi:10.3389/fimmu.2017.01349

6.      Mason M, Maurice C, McNamara MG, Tieu MT, Lwin Z, Millar BA, et al. Neutrophil-lymphocyte ratio dynamics during concurrent chemo-radiotherapy for glioblastoma is an independent predictor for overall survival. J Neuro-Oncol. 2017;132(3):463-71. doi:10.1007/s11060-017-2395-y

7.      Lopes M, Carvalho B, Vaz R, Linhares P. Influence of neutrophil-lymphocyte ratio in prognosis of glioblastoma multiforme. J Neuro-Oncol. 2018;136(1):173-80. doi:10.1007/s11060-017-2641-3

8.      Han S, Liu Y, Li Q, Li Z, Hou H, Wu A. Pre-treatment neutrophil-to-lymphocyte ratio is associated with neutrophil and T-cell infiltration and predicts clinical outcome in patients with glioblastoma. BMC Cancer. 2015;15:6-17. doi:10.1186/s12885-015-1629-7 

9.      Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436-44. doi:10.1038/nature07205

10.   Rodini CO, Gonçalves da Silva PB, Assoni AF, Carvalho VM, Oswaldo KO. Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget. 2018;9(37):24766-77. doi:10.18632/oncotarget.25346

11.   Tanno T, Matsui W. Development and maintenance of cancer stem cells under chronic inflammation. J Nippon Med Sch. 2011;78(3):138-45. doi:10.1272/jnms.78.138

12.   Feng Y, Wang J, Tan D, Cheng P, Wu A. Relationship between circulating inflammatory factors and glioma risk and prognosis: a meta‐analysis. Cancer Med. 2019;8(17):7454-68. doi:10.1002/cam4.2585

13.   Andrade FSSD, Clark RMO, Ferreira ML. Effects of low-level laser therapy on wound healing. Rev Col Bras Cir. 2014;41(2):129-33. doi:10.1590/s0100-69912014000200010

14.   Shirshov YM, Kostyukevich KV, Khristosenko RV, Gridina NY, Kostyukevich SA, Ushenin YV, et al. Optical control of the distribution boundary between the gold surface and blood cell samples. Optoelectron Semicond Technol. 2021;56:134-55. doi:10.15407/iopt.2021.56.134

15.   Gridina NY. Utilizing SPR as a novel technique to measure cell aggregation for ketamine treated brain gliomas. Cancer Oncol Res. 2013;1(1):1-5. doi:10.13189/cor.2013/010101, http://www. Hrpub.org.

16.   Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL. The time course of glutamate in the synaptic cleft. Science. 1992;258(5087):1498-501. doi:10.1126/science.1359647 

17.   Nikolić D, Mureşan RC, Feng W, Singer W. Scaled correlation analysis: A better way to compute a cross‐correlogram. Eur J Neurosci. 2012;35(5):742-62. doi:10.1111/j.1460-9568.2011.07987.x, Available from:  http://www.danko-nikolic.com/wp-content/uploads/2012/03/Scaled-correlation-analysis.pdf.

18.   Lachmann N, Ackermann M, Frenzel E, Liebhaber S, Brennig S, Happle C, et al. Large-scale hematopoietic differentiation of   human induced pluripotent stem cells provides granulocytes or macrophages for cell replacement therapies. Stem Cell Reports. 2015;4(2):282-96. doi:10.1016/j.stemcr. 2015.01.005

19.   Ungefroren H, Hyder A, Schulze M, Fawzy El-Sayed KM, Grage-Griebenow E, Nussler AK, et al. Peripheral blood monocytes as adult stem cells: molecular characterization and improvements in culture conditions to enhance stem cell features and proliferative potential. Stem Cells Int. 2016;2016. doi:10.1155/2016/7132751

20.   Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. PNAS. 2003;100(5):2426-31. doi:10.1073/pnas.0536882100


 

 


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.