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The issues of heavy metal adulteration are becoming common in world. Heavy metal toxicity cases are prevailing in mining 
industries, smelters, power plants based on coal burning, agriculture, etc. There are several heavy metals, such as Cd, Cu, Pb, 
Cr, Hg, Ar, etc. These heavy metals are major pollutants of environment, particularly in areas with increasing anthropogenic 
activities. The cumulation of heavy metal in soils is of great concern in agriculture because of the deleterious effects on food 
safety, crop growth and soil organisms’ health. Heavy metals affect several physiological and biochemical processes in plants. 
They diminish crop yield by bringing toxic effects to several physiological processes in plants such as, seed chlorophyll 
reduced by the production of reactive oxygen species, affecting the redox balance and instigating oxidative stress. Lead (Pb) 
is one of the looming heavy metal which is neither essential nor plays any part in the course of cell metabolism. Pb has toxic 
effects on plant which may include inhibition of photosynthesis, disruption of mineral nutrition and water balance, and disturbs 
membrane structure and permeability. Its phytotoxicity can also affect human health and can prove detrimental through food 
chain. However, in order to combat the effects generated by heavy metal stress particularly by Pb, several amelioratives 
can be used. Pb phytotoxicity can be ameliorated by the application of certain phytohormones which can be a part of signal 
transduction pathway, or they may trigger reactions and causative agents to respond to stress. Various signaling molecules 
such as NO, H2S, CO, etc. enhance the activity of antioxidant enzymes, level of secondary metabolites and osmolytes, hence 
scavenge the oxidative stress due to generation of free radicals in response to heavy metal stress.
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INTRODUCTION

Poisonous elements are frequently described as “trace 
metals” or “heavy metals”. Heavy metals are often 
considered as the elements existing in the soils in small 
amounts. However, heavy metals are those toxic metals 
which cause hazardous effects to the plants when uptake 
excessively. Out of naturally occurring elements, 53 are 
stated as heavy metals and the maximum of these metals 
have no vital function in plants. Few heavy metals like 
Zn, Cu, Mn, Ni, Se, Co, Cr and Mo have vital biological 
functions, and consequently have beneficial effects in 
context of agricultural production (Salla et al., 2011). 
Nevertheless, such metals and those lacking any vital 
metabolic activity such as Zr, Sb, As, Pb, Hg and Cd will 
significantly diminish agricultural production if their level 
increases to optimum concentrations (Xiong et al., 2014; 
Pierart et al., 2015).

Pb being one of the impending heavy metal is neither crucial 
element nor plays any part in the course of cell metabolism, 
but is effortlessly engrossed and accrued in several parts 
of a plant. It is extremely moldable, grayish-white trace 
element. Under standard atmospheric conditions, Pb 
occurs in solid state and in comparison, to other metals, it 

is dense, brittle, and also very fragile with poor electrical 
properties. Pb is comprised of 0.002% of earth’s crust and 
is extremely toxic and non-disruptive heavy metal. On the 
basis of rate of incidence, toxic effects, and risk for human 
susceptibility, it is considered as the second most harmful 
element, after arsenic (Agency for Toxic substances and 
Disease Registry 2003). The presence of Pb in natural 
environment is mostly the result of numerous current 
activities and natural events such as breakdown of rocks 
i.e. weathering, erosion of land, volcanic outbreaks, forest 
fires, and disintegration products of radioactive metals. 
Due to the fast-industrial development and various 
human activities like mining and casting of Pb ores, it has 
turned out to be the main atmospheric pollutant (Obiora 
et al., 2016). Ayurveda related medicines are thought to 
contain more concentration of Pb. In latest research, Pb 
amount has been examined in blood samples of Ayurveda 
customers. Out of 115, 40 per cent consumers have been 
found to contain Pb approximately 10μg/dL in their blood. 
Most suitable consumption of this metal in human diet is 
around 25μkg-1 of human body weight (Fang et al., 2014). 
It is found in trace amount in virtually all crops. However, 
its intensity can be significantly increased by growing 
crops on soils polluted by Pb. 
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The accrual of this metal in plant tissues i.e. roots, 
shoots, and leaves have been established by Tangahu 
and colleagues. They proposed that numerous plants 
can accrue Pb in their tissues to about greater than 50 
mg/g dry weight of plant. Even though, it is found in 3 
components of our environment which is soil, water, and 
air in varying amounts. Soil pollution with Pb is measured 
as the most dangerous menaces to human and other life 
forms, and is comprehensively being monitored (Ma et 
al., 2016). Pb is found to cause a large variety of adverse 
effects on living creatures which includes morphological, 
physiological and biochemical hazards. It negatively 
effects crop growth, root length, germination of seeds, 
seedling growth, transpiration, chlorophyll formation, 
chloroplast lamellar organization, and division of 
cell (Gupta et al., 2009; Maestri et al., 2010). The 
negative impact of Pb metal has been shown in 
Eichhornia crassipes, where the growth of plant 
is drastically affected by high concentration of Pb. 
Moreover, it has been found that in Eichhornia sp., 
the activities of antioxidant enzymes are under high 
concentration of Pb (Malar et al., 2014).

Uptake and accumulation of Pb in plants

Apart from the specific circumstances where plants 
are grown in proximity of metal concentration, the 
chief route through which plants acquire metals is 
via the soil root absorption (Uzu et al., 2009).Pb is 
believed to possess low solubility and is less available 
to plant for absorption as it undergoes precipitation as 
phosphates and sulphates, which normally occur in the 
plant rhizosphere (Blaylock et al ., 2000). Portion of Pb 
which occurs in the soil water gets adsorbed on the roots 
of plants which then attaches itself to carboxyl groups 
of uronic acid, or directly to the rhizoderm cell surface 
polysaccharides (Seregin and Ivamov, 2001). After the 
adsorption of Pb on the rhizoderm cell surface, it penetrates 
the roots by passive method and pursue channels of water 
translocated (Fig. 1). But Pb uptake is not even through 
the roots of plant because of the concentration gradient of 
the metal that can be measured from root apex. However, 
larger percentage of Pb is observed in apices of root, since 
root cells present here are young and possess thin cell 
walls which promote absorption of roots (Seregin et al., 
2004).

There are some of the factors on which Pb uptake relies 
which includes total concentration of soil, physiological 
and chemical conditions of soil, the plant species 
and concerned genotypes (Alexander et al., 2006). 
Researchers have described the pH variability effect in Pb 
uptake in several species of plants. In the soils with low 
pH of around 3.9, greater movement of Pb is observed 
leading to greater uptake. Corn, beans, lactuca species, 
and radishes are more prone to the toxic effects of lead 
when these are planted on calcareous soils (Bala and 
Setia 1990). However, Pb uptake can be diminished by 

adding phosphate lime, organic matter, and chloride to 
soil (Liebhardt and Koske, 1974). Generally, it is found 
that dicots accrue considerably greater concentration of 
Pb in the roots as compared to monocots. The process 
by which this metal reaches the roots cellular level is 
unidentified. Pb can penetrate the roots by many routes, 
and ionic channel is one of the specific routes. Though, 
uptake of this metal is not a selective process, it still relies 
on the operation of an H+/ATPase pump in order to retain 
a high negative membrane potential in rhizodermal cells 
(Wang et al., 2007). In case of Chinese sumac, it has been 
observed that Pb metal ions are absorbed via roots and 
they remain there, with limited transport to shoot and 
foliar parts of the plant. 

Fig. 1: Mechanism of Pb uptake by plants.

After uptaki  ng through roots Pb, some part of Pb gets 
accumulated and rest is translocated to theabove ground 
parts of the plant. According to the previous studies it 
was reported that in majority of the plants like Vicia faba, 
Pisum sativum, and Phaseolus vulgaris, more than 95% of 
Pb gets accumulated in the roots and a major portion of it is 
translocated to the aerial parts (Malecka et al., 2008; Shahid 
et al., 2011; Johnson et al., 1977). In the root endodermis, 
a barrier is present that limits the translocation of Pb from 
roots to other plant tissues. It is believed that casparian 
strips present in the endodermis are mainly responsible 
for limiting the transport of Pb through the endodermis 
into vascular tissue (Seregin et al., 2004).Usually, in the 
endodermis, Pb can be precipitated by the casparian strip 
and then undergoes symplastic transport, followed by the 
separation of large fraction of Pb by the detoxification 
system of plants (Kaur et al., 2013); Li et al., (2016) 
explained that accumulation of Pb occurs in root cells 
close to the inner cell wall and the cell gap. Its occurrence 
has been confirmed by means of transmission electron 
microscope (Li et al., 2016). Excessive concentration of 
Pb metal results in plasmolysis, disrupts structure of cell 
membrane, and causes membrane vacuolation. It has been 
reported that translocation of metal to above ground parts 
from roots may need transportation via the xylem vessels. 
Beside the xylem vessels, this metal transportation can 
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also occur through phloem (Rascia and Navari-IZZO, 
2011). This has been confirmed via an X-ray mapping 
method, where it’s been found that a larger proportion of 
Pb accumulation appears close to xylem and phloem cell 
of Prosopis plant (Zhenge et al., 2012).

Effects of lead (Pb) in plants

Pb is known to have deleterious effect on the various 
aspects of plant such as germination rate of seed, growth 
of seedling, dry root and shoot mass, photosynthesis, 
respiration, plant-water relation, mineral nutrition, and 
several enzymatic activities (Munzuroglu and Geckil, 
2002) (Fig. 2). Generally, Pb effects are more prominent 
at greater levels and perpetuation. However, even the 
less concentration of metal may trigger some biological 
processes (Gomes, 2011). These harmful effects are 
generally identified as certain symptoms such as chlorosis, 
necrosis on the surface of leaf, leaf senescence, and 
restricted growth. At greater levels, seed germination is 
severely affected. Root and shoot growth is also inhibited 
in plantlet stage, where roots are more sensitive to this 
effect. It deleteriously affects growth by diminishing the 
absorption and translocation of mineral nutrients in plants 
like, Ca, Fe, Mg, P, and Zn and by the attachment of the 
ions to ion-carriers which results in their unavailability for 
uptake and movement from roots to leaves (Xiong, 1997). 
Hence, various physiological and biochemical processes 
are greatly affected by Pb with photosynthesis as the most 
important (Gomes, 2011).

Fig.2: Diagrammatic representation of Pb toxicity on 
physiological and biochemical processes in plants.

Effects on germination and growth

Harmful effects on germination and growth of plant can 
take place when plants are subjected to Pb even at very 
small levels (Kopittke et al.,2007).Very low levels of Pb 
greatly inhibits seed germination(Islam et al.,2007)in 
several plants such as Hordeum vulgare, Elsholtziaargyi, 
Spartina alterniflora, Pinus halepensis, Oryza sativa, 
and Zea mays, seed germination inhibited by Pb has 

been described (Senger et al.,2009).However, at higher 
levels, Pb can increase the rate of seed germination 
and concurrently causes harmful effects on the radicle 
and hypocotyl length in E.argyi (Islam et al., 2007). 
Intervention of Pb with protease and amylase enzymes can 
be the cause of decreased rate of seed germination (Senger 
et al., 2009). Furthermore, Pb also results in the reduction 
of utilization of stored food which in turn causes reduced 
radicle formation, inhibition of proteolytic activities and 
destruction of osmoregulation in cells that inhibits seed 
germination and plantlet growth. Pb pollution damages 
early development of plants and harmful effect of Pb on 
development of radish plants (Tomulescu et al., 2004).
The biomass of plant is reduced on its contact with larger 
levels of Pb (Singh et al,. 2010). In Prosopis species also 
length of root is considerably repressed (Arias et al., 
2010). Furthermore, as the plants exposed to Pb even at 
lesser levels the development of above ground parts as 
well as plant roots is curbed (Kopittke et al., 2007). But 
the rate at which growth due to this metal is inhibited in 
roots is much greater than rest of the parts of plants (Liu et 
al., 2008). Moreover, harmful effects on seed germination 
and plant growth due to Pb vary from species to species, 
its concentration, developmental phase, and the amount of 
period a metal is exposed to plant (Gul et al., 2018).

Photosynthesis effect
 
Decrease in the rate of photosynthesis is the main 
example of phytotoxicity due to Pb resulting in decreased 

crop production (Singh et al., 2010). It has 
been established that this metal hinders the 
production of plastoquinone, carotenoids, 
and electron transport chain (Qufei and 
Fashul, 2009) and damage the working of 
enzymes involved in the fixation of carbon 
dioxide (Mishra et al., 2006). In crops 
developed in Pb stress conditions, both 
stomatal as well as non-stomatal constraints 
are known for the reduction of fixation 
of carbon dioxide (Qufei and Fashul, 
2009). Furthermore, toxic effects due to 
Pb stimulates oxidative stress in plants 
and further increases the production and 
action of enzyme chlorophyllase which is 
responsible for the cessation of chlorophyll 

resulting in reduction of photosynthesis process (Liu et 
al.,2008). Usually, chlorophyll a is less susceptible as 
compared to chlorophyll b (Xiong et al., 2006). Damage 
to the distinctive green color of chlorophyll takes place 
only when the breakdown of the porphyrin ring occur 
(Harpaz-Saad et al., 2007). Pb results in less absorption 
of important minerals like Mg, Fe, etc. which in turn 
affects formation of chlorophyll molecules. The thylakoid 
structure is affected because of empathy of Pb to N- and 
S- ligand proteins (Ahmed and Tajmir-Rahi, 1993).
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Photosynthetic plants on its exposure to Pb, encounter 
deleterious impacts on respiration and ATP composition. 
The impact of Pb on respiration has been reviewed 
a little apart from the photosynthesis (Seregin and 
Ivanov, 2001). The impact of Pb on respiration has been 
conducted mainly on leaves while its impact on roots is 
not known. It is found to have an impact on ribulose-
bisphosphate carboxylase action in C3 plants which is 
responsible for the acclimatization of CO2, with no effect 
on its oxygenase activity. It has been found that divalent 
cations such as Pb, Zn, Cd, and Ni may get attached to 
membrane of mitochondria, causing the ET disruption 
which may result in the phosphorylation decoupling 
(Romanowska et al., 2002, 2006). Pb has been observed 
to inhibit Hill reaction in chloroplasts of spinach, besides 
photophosphorylation. Furthermore, it has a greater 
impact on cyclic photophosphorylation as compared to 
non-cyclic photophosphorylation (Romanowska et al., 
2008).It has been shown that Pb attaches with membranes 
and this attachment results in some physiological impacts. 
Mitochondria from pea leaves with Pb treatment causes 
the oxidation of substrates such as glycine, succinate, and 
malate at greater rate as compared to mitochondria from 
the pea leaves not treated with Pb (Romanowska et al., 
2002).

Plant- water relation effects

Under Pb stress, plants experience changes in plant-water 
relations resulting in lowered turgor pressure (Rucinska-
Sobkowiak et al., 2013). In plants, Pb diminishes the 
elasticity of closes cell wall, as a result of which turgor 
pressure of guard cells is reduced (Pinho and Ladeiro, 
2012). Plants exposed to Pb causes reduction in the 
levels of sugar, amino acids and other molecules which 
are responsible for maintaining turgor pressure of the 
cell (Barcelo and Poschenrieder, 1990). Furthermore, 
a plant hormone abscisic acid is responsible for closing 
the stomata and it has been stated that Pb stimulates 
the formation of abscisic acid which in turn decreases 
transpiration rate (Atici et al., 2005). In several crop 
plants, changes in plant water-relation due to Pb stress has 
been described (Sharma and Dubey, 2005). For example, 
higher levels of Pb diminishes the rate of transpiration 
in Sunflower (Helianthus annus L.), produces water 
deficit conditions and cause the formation of proline to 
manage water stress (Kastori et al., 2008). Nevertheless, 
the plants having more stomatal density are able to cope 
up with such impacts (Elibieta and Miroslawa, 2005). In 
plants under Pb stress, respiration through leaves is also 
affected because of accumulation of waxy layer on leaves. 
It has been seen in soybean. Moreover, such changes 
in respiration and CO2/O2 inequity in plants results in 
oxidative phosphorylation which in turn affects water 
status (Elibieta and Miroslawa, 2005).

Genotoxicity or DNA damage

Components causing harm to the genetic material of cells 
that occur inside the nuclei or outside the nuclei, like DNA 
are known as genotoxic agents or mutagens. Pb is one such 
mutagen and causes cancer in humans (Shahid et al., 2011). 
It acts as a strong toxic in mitosis which is responsible for 
causing spindle fibers disruption (Patra et al., 2004). In 
plant cells, cytoskeleton and nucleus disruption, damage 
of DNA strand, formation of micronucleus (Kumar et 
al., 2017), chromosomal abnormalities, variability in 
simple sequence repeats and depolymerization of micro 
tubule are some of the dangerous impacts suffered in the 
existence of Pb. Under low levels, mitosis is not affected 
by Pb, however causes certain abnormalities, damage to a 
centric DNA fragments during meiotic division, breaking 
of chromosomes, and micronucleus formation (Shahid 
et al., 2011). Pb can make its entrance into the nucleus 
(Maleckaet al., 2008) and attach either to the DNA or 
to protein. When Pb attaches itself to DNA, it interrupts 
DNA repair and replication processes. It is not responsible 
for direct genotoxic effects, unless it binds to naked 
DNA. The conformation of enzymes responsible for 
polymerization of nucleotides in DNA synthesis is also 
disrupted as a result of which their role also gets affected 
(Pourrut et al., 2011a). Newly, Cenksi et al. (2010) with 
the help of RAPD Assay described the effect of Pb on the 
constancy of template DNA strand in Brassica rapa.

Oxidative stress and lipid peroxidation

General cell metabolism in chloroplast results in the 
production of reactive oxygen species. The ROS like 
superoxide radicals and hydrogen peroxide are produced 
after being exposed to evident agents of environment. 
Among several ROS, hydrogen peroxide has the ability to 
pass via cell membrane, as result of which plays direct role 
in cell signaling (Pitzschke et al., 2006). This generation 
of ROS in plant cells which causes oxidative stress is a 
common attribute of the toxic heavy metals, comprising 
Pb also (Grover et al., 2010; Singh et al., 2010). ROS after 
depleting the stores of cell antioxidants may quickly strike 
and oxidize various types of biomolecules like nucleic 
acids, proteins, and lipids (Wang et al., 2007; Yadav, 2010). 
These strikes can cause permanent metabolic dysfunction 
and cell death. Pb is responsible for causing significant 
modifications in the composition of lipid of several cell 
membranes (Yan et al., 2010; Singh et al., 2010). The 
polyunsaturated fatty acid and the esters that occur in 
lipids are highly susceptible to ROS (Gupta et al., 2010). 
Certainly, ROS causes the removal of hydrogen from 
unsaturated fatty acids and produces lipid radicals and 
aldehydes which are sensitive, eventually resulting in the 
disruption of the lipid bilayer (Mishra et al., 2006). It has 
been seen that the activity of redox enzymes is decreased 
in presence of sufficient amount of Pb (Lamhamdi et al., 
2013). Pb results in rigorous modification of lipids of 
plasma membrane (Grover et al., 2010; Yan et al., 2010) 
which in turn leads to the development of anomalous cell 
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framework (Gupta et al., 2009).In Z.mays, modifications 
in lipid composition and K+ ion seepage due to Pb have 
been described (Malkowski et al., 2002).It has been found 
that Pb ions cause lipid peroxidation, lower the amount of 
saturated fatty acids, and higher the level of unsaturated 
fatty acid of cell membranes in various species of plant 
(Singh et al., 2010).

Amelioration of Pb toxicity in plants

Amelioration by phytohormones

Plant hormones are the biological constituents which 
are responsible for controlling growth and development 
of plants. Various forms of hormones are produced by 
plants such as auxins, cytokinins, gibberellins, abscisic 
acid, salicylic acid, ethylene, jasmonates, and peptides. 
It has been believed that phytohormones take part in 
signal-transduction pathway or their existence can trigger 
reactions which are either signal or causal means for stress 
retorts (Leyser 2010; Qin et al., 2011). Phytohormones 
in the form of signal molecules control cell processes 
in target cells as well as when transported to other parts 
of the plant. Hormones are very important for plants 
growth and development and also for several biotic and 
abiotic stress retorts. Moreover, it has been shown that 
the treatment of hormones exogenously increases stress 
forbearance to heavy metals in plants (Krishnamurthy and 
Rathinasabapathi, 2013; Srivastava et al., 2013). Generally, 
auxin has intense impact on the growth; abscisic acid 
effects dormancy of bud, and closing of stomata; cytokinin 
defers senescence; gibberellic acid plays important role in 
germination of seed; and brassinosteroids control growth 
and differentiation in plants (Jaillais and Chory, 2010; Sun 
et al., 2005). Moreover, whether the hormones like SA, 
ET, JA and ABA act synergistically or antagonistically, 
they help in regulating the different ecological stresses in 
plants (Fujita et al., 2006). Ethylene, Jasmonic acid and 
Salicylic acid are mainly involved in providing resistance 
to several environmental stresses (Lorenza and Solano, 
2005). SA also plays an important job in regulating 
reactive oxygen species, amount of antioxidant enzymes 
and stimulation of several genes to get expressed (Hossain 
et al., 2012).Moreover, Sharaf et al. (2009) described the 
role of gibberellic acid in alleviating the harmful impacts 
of Cd and Pb on broad bean and lupin plants by controlling 
the proteases, catalases, and peroxidases activity (Sharaf 
et al., 2009).

Amelioration by Antioxidant defense system

Plants cannot break out abiotic stresses as they are unable 
to move. Capability of larger plants to combat the lethal 
aspects of reactive oxygen species acts as vital factor to 
resist several abiotic stresses. The plants have antioxidant 
defense system to forage the lethal effects of reactive 
oxygen species and prevent any kind of harm due to 
oxidative stress in order to maintain the well-being of a 
plant (Kanazawa et al., 2000).This antioxidant defense 

system of plants is made up of enzymatic (superoxide 
dismutase, catalase, ascorbate peroxidase) and non- 
enzymatic (tocopherol, glutathione) antioxidants which 
efficiently forage reactive oxygen species produced due 
to oxidative stress (Gondim et al., 2012). It has been 
seen that Superoxide dismutase acts as a major enzyme 
in safeguarding the plant from oxidative strain in several 
plants. Superoxide dismutase has a prominent job in 
protecting a plant from damage due to oxidative strain 
by capturing superoxide radical (Myouga et al., 2008). It 
has been observed that the action of superoxide dismutase 
increases in barley which is resilient to cadmium stress 
than the one which is susceptible (Chen et al., 2010a, 
b). The peanut varieties resulted in enhancing the level 
of antioxidative enzymes like superoxide dismutase, 
ascorbate peroxidase, Glutathione S- transferase and 
glutathione reductase in presence of Pb. Moreover, 
the intensity peaks of isoenzymes such as superoxide 
dismutase, ascorbate peroxidase has been observed to be 
constant if any changes occur in the actions of antioxidant 
enzymes (Nareshkumar et al., 2015). In case of Triticum, 
reactive oxygen species amount is under the control 
of antioxidative defense system which contains both 
enzymatic and non-enzymatic antioxidative molecules as 
described above. Proline which belongs to non-enzymatic 
category has defensive role in response to Pb stress by 
inhibiting the peroxidation of lipids (Mehta and Gaur, 
1999) and high levels of proline may be regarded to give 
protection under high Pb concentrations.

Amelioration by secondary metabolites and osmolytes

A wide range of secondary metabolites are generated 
in plants. Secondary metabolites such as flavanoids, 
alkaloids, phenols take part in directing the growth in 
plants, production of pigments, possess antioxidant role, 
and help in inhibiting enzyme action (Mikkelsen et al., 
2015). Among secondary metabolites, phenolics play 
very essential role under heavy metal stress. It has been 
found that the production of secondary metabolites in 
plants increases in presence of heavy metals. Common 
bean produces more phenolics on its exposure to Cd 
metal (Winkel-Shirley, 2002). Production and accrual 
of aminoalkanoic acid can combat the adverse effects 
generated due to several environmental stresses (Di 
Martino et al., 2003). Therefore, accumulation of 
aminoalkanoic acid in plants under Pb stress can provide 
protection against adverse effects of Pb metal (Sharma 
and Dubey, 2005), that remained constant in Prosopis 
plant while the amino acid concentration enhances.

Osmolytes can be stated as solute molecules that provides 
protection for various environmental stresses together 
with heavy metal contamination (Dhir et al., 2012). 
Glycinebetaine, trehalose and proline have been found 
increasing when a plant is exposed to Pb metal. Such 
increasing level of GB, proline and trehalose contents 
have also been reported in rice seedlings and runner 
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bean plants which were grown under cadmium, nickel 
and copper strain (Sharma et al., 2013). Increasing 
level of osmolytes acts as an essential indicator of metal 
contamination. Elevation in concentration of osmolytes is 
considered as an important marker indicating heavy metal 
stress and therefore plays necessary part in alleviation of 
metal stress.

Amelioration by signaling molecules

Characteristically, ROS are generated in plants in 
response to several environmental strains (Jaspers and 
Kangasjarvi, 2010). When reactive oxygen species are 
generated, nitric oxide shows interaction with several 
signal molecules so that it can keep the amount of reactive 
oxygen species (Vranova et al., 2002). NO plays major 
role in increasing the activity of antioxidant enzymes 
that further assist in controlling the undesirable effects 
of such heavy metal on plants, as a result enhancing the 
forbearance of plants to heavy metal stress (Singh et al., 
2016). It has been described that NO can oppose the toxic 
effects of Pb in plants. Treatment of cowpea seeds with 
SNP as donor of NO before exposing it to Pb proved 
to be effective against toxic effects of Pb resulting in 
enhancement of the chlorophyll level, RWC, and rate of 
photosynthesis by enhancing the activities of antioxidant 
enzymes (Sadeghipour, 2015).It has been shown that the 
use of Pb concentrations especially 500μM is responsible 
for decreasing the dry weight of Melissa officinalis. But 
concurrent use of less concentration of NO (about 100 μM) 
increases the dry weight and height of Melissa officinalis. 
Thus, total dry weight of plant shows the inhibition of 
development due to Pb. Same response to the application 
of Pb has been previously described in several plants 
(Brunet et al., 2009). The another signaling molecule that 
can help in mitigating the adverse effects of Pb stress is 
hydrogen sulphide (H2S). Investigation have been carried 
out regarding the role of NaHS (donor of hydrogen 
sulphide) on germination and growth of cauliflower seed 
in presence of Pb (C2H3O2)2..Pb concentrations of about 
0.25, 0.5 mM resulted in inhibiting the germination and 
development of cauliflower seed. However, the inhibitory 
effect can be suppressed with the treatment of sodium 
hydrogen sulphide (Chen et al., 2018). In Rapeseeds, 
grown in Pb contaminated soil, the application of 
hydrogen sulphide resulted in increasing the growth of 
plant, accumulation of more micro and macro- nutrients 
and improved the activity of antioxidative enzymes (Ali et 
al., 2014). Besides NO and H2S, there are other signaling 
molecules like H2O2, CO, etc. that can be used to combat 
the effect of Pb toxicity in plants.

CONCLUSION

Heavy metal pollution in soil is one of the serious 
concerns regarding the environment and human health. 
Heavy metals are present naturally on earth however, 
human activities have reallocated them from earth’s 

crust to various components of atmosphere. After heavy 
metals get circulated in the soil, they have a great impact 
on quality of environment and damage crop production. 
Accrual of heavy metals in plant cells results in reduction 
of germination of seed, reduced elongation of root, 
lower biomass of plants, and stoppage of biosynthesis 
of chlorophyll. Whereas, Pb has a great impact on plants 
photosynthesis, respiration, enzymatic reactions, mineral 
nutrition, and various other physiological aspects. 
Among several effects of heavy metal toxicity in plants, 
generation of ROS is most common, which occurs 
because of the intervention of heavy metal with electron 
transport actions. Plants have developed various methods 
for detoxification in order to withstand the more ROS 
production. Moreover, in order to mitigate the toxic effects 
produced by heavy metals, various amelioratives can be 
used such as NO, hydrogen sulphide, plant hormones, 
secondary metabolites, etc. NO regulates antioxidant 
systems and associated expression of gene and activity of 
protein to improve heavy metal toxicity. Such visions may 
help us in future for better crop development and design 
plans, eventually resulting in the production of improved 
varieties of crops. 
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