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ABSTRACT 

This paper concerns TCP Westwood (TCPW), a recently developed modification of TCP, in combination 

with random early detection (RED), PI and self-tuning PI queue management. Using the fluid-flow model 

of TCPW and separating the model dynamics through block diagram simplification, it is arrived at an 

approximate and simplified new model. Based on this approximate model, a PI-AQM (Active Queue 

Management) controller is designed. The parameters of considered PI controller are tuned through 

estimating the network parameters. Numerical simulations show that bandwidth utilization and the queue 

stabilization in the self-tuning PI is improved as compared with the PI and RED algorithms. 
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1. INTRODUCTION 

Congestion usually occurs in computer networks routers. There are several reasons for 

its occurrence and propagation. [1] Investigates the cause and conditions of propagating the 

congestion in TCP networks. To overcome the problems caused by congestion, the TCP always 

uses a network congestion avoidance algorithm which includes various aspects of an additive-

increase-multiplicative-decrease (AIMD) scheme, with other schemes such as slow-start in 

order to achieve congestion avoidance. Two such variations are those offered by TCP Tahoe [2] 

and Reno [3].  To Our best knowledge, many researchers have proposed the mathematical 

models describing the behavior of these TCP variations. For example, in [4], an analytical fluid 

flow model for Reno has been proposed and in [5] an AQM controller has been designed. 

  TCP-Westwood (TCPW) has been recently proposed as a source side modification of 

TCP [6-9]. The main target of TCPW is achieving larger portion of the window bandwidth. The 

main idea is to estimate, through the Acks stream, the bandwidth successfully obtained by the 

source. In fact, similar to two previous methods, here, the AIMD method in window 

management is used. In addition, when a packet loss occurs, the sender resets the congestion 

window and slow start threshold based on Rate Estimation (RE) value. In [9], a discrete time 

dynamic feedback model for a simple network with TCPW connections and random early 

detection (RED) gateway is proposed. Also the nonlinear dynamics of the TCPW/RED network 

are analyzed and its parameter sensitivities are studied. Moreover, in [10] the cause and 

conditions of propagating the congestion in TCP networks has been investigated. 

In active queue management (AQM), by maintaining dropping/marking probabilities, 

the routers probabilistically drop or mark packets before the queue is full. In recent 

years, many AQM approaches have been reported in the literature. For example see [10-

14]. In [15] several active queue management algorithms with respect to their abilities of 

                                                
*
 Corresponding author 



International Journal of Computer Networks & Communications (IJCNC) Vol.3, No.2, March 2011 

181 

 

maintaining high resource utilization, identifying and restricting disproportionate bandwidth 

usage, and their deployment complexity are analyzed. 

The main goal of this paper is to design an AQM controller for the router side of the 

TCP Westwood network so that it can overcome the queue variations and instability. Here, we 

use a proportional integral controller with adjustable gains where the considered gains can be 

updated to tolerate the variations in network parameters. As a result, the proposed controller 

will be able to overcome the problem of abrupt changes in network parameters. In [16] the 

behavior of the overall TCP Westwood and queue management system with RED algorithm as 

AQM has been analyzed. However, RED is a classic and simple algorithm and lacks the high 

performance provided by the proportional and Integral controllers (see [5]). Here, we simplify 

the TCP Westwood model through block diagram analysis, and then we design an AQM-PI 

controller to control the congestion in the network. 

The paper is organized as follows. In section 2, dynamical model of TCPW will be 

studied. In section 3, "Windows Widening" and "Windows Narrowing" ratios will be 

introduced. We will also show the important role of these parameters on simplification and 

analytical study of TCP/Congestion dynamics. In section 4, the PI controller will be synthesized 

to effectively set the queue size at the desired level. Next, in the section 5, a self-tuning method 

is used to adjust the PI parameters in order to overcome the variations in network parameters 

(such as the network load and the link capacity). Finally, in the last section, NS simulations are 

performed on RED, PI and self-tuning PI algorithms. In comparison to other algorithms, it is 

shown that the self-tuning PI outperforms in adjusting the queue size as well as maximizing the 

link bandwidth utilization.  

2. TCP WESTWOOD ALGORITHM AND ITS FLUID FLOW MODEL 

TCPW is a source-side only modification of TCP New Reno. Similar to any other 

version of TCP, in TCP Westwood, the sender maintains a congestion window, limiting the total 

number of unacknowledged packets that may be in transit end-to-end. To avoid congestion 

collapse, TCP makes a Slow Start when the connection is initialized. It starts with a window of 

two packets. For every packet ACKed the congestion window is doubled. When the congestion 

window exceeds a threshold (ssthresh), or a packet is lost, the algorithm enters a new state, 

called congestion avoidance. As long as non-duplicate ACKs are received, the congestion 

window is additively increased by one every round trip time [17]. 

In TCP Westwood, the sender computes the rate estimation (RE) value.  RE is defined 

as a share of bottleneck bandwidth achieved by the connection. In other words, RE is the rate at 

which data is successfully delivered to the TCP receiver. More precisely, cwin=RE · RTTmin, 

where RTTmin is the round trip propagation delay and cwin is the current window size. In [16], 

an analytical fluid flow model for TCPW has been proposed. Most previous network bottleneck 

dynamics are modeled with the variables, window size (w) and instantaneous queue size (q) (see 

[5]). In TCPW, RE is also added as a third variable. Dynamical equations describing the system 

are: 
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where N is the number of TCP sessions, R  is the round trip time, C is the link capacity, p is the 

marking probability, d represents propagation delay and T is the time constant of the filter. 

Finally, wR and pR stand for values in one RTT before.   Window dynamic is actually defined 

by: 
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(2) 

  where x=w/R is the average transmission rate of packets by the sender. 

Comparing (2) with the equations given for Reno [5], it is turn out that additive 

increasing portion is unchanged from TCP-Reno while decreasing portion is changed. The 

additive term will increase the window size by 1/w for each positive Ack received and it is 

multiplied by the rate of such Acks ( ( )1
R

x p− ). 

TCPW and Reno differ in decreasing term. For each loss, in TCPW, the window is set 

to RE*d instead of dividing by 2. Equivalently, the window is decreased by *w RE d−  

multiplied by 
R

x p  (the rate of losses). In the third equation of (1), RE is computed based on the 

rate of arriving packets to receiver and is smoothed by a low-pass filter. Senders are assumed to 

be the same in window size. Also, here, it is assumed that only a single link is congested ((1) is 
not valid for the case of multiple congested links).  Figure (1) shows the network for which, (1) 

holds.  

 

Figure 1. Network Topology in describing equations (3) 

3. WINDOWS WIDENING RATIO- WINDOWS NARROWING RATIO 

When the TCP sender receives three duplicate Acks, in Reno action, it halves the window and 

goes to recovery phase. So, we can define the "Windows Narrowing Ratio" in recovery phase to 

be 0.5. Also we define  the value of "Windows Widening Ratio" to be 2. Widening ratio has an 
important role in the performance of TCP algorithm. With fixing the widening and narrowing 

ratio, adaptability for the sender side algorithm will decrease. 

Windows widening ratio in TCPW is not a fixed value. Defining windows widening 

ratio, we get the block diagram shown in Figure (2), in which, window dynamics is separated 

from Rate Estimation (RE) and the queue dynamics. Let h and 1/h be defined as widening and 

narrowing ratios, respectively. According to Reno algorithm, h has the constant value of 2, 

while in TCPW it is a function of window size and RE. Assuming the marking probability p to 

be small and wR /w equals to unity [5], windows dynamics in TCPW may be described by: 
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Apart from h value, (3) is expectedly similar to the window dynamic in Reno. As it is 
mentioned, h is varying in TCPW while it is a constant in Reno. h is directly estimated using RE 

and window size. 

 

Figure 2. The TCPW congestion structure 

   In order to eliminate high frequency variations, the widening ratio is passed through a low-
pass filter. Then, the dynamic of h is given by: 
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in which  kh is the cut-off frequency of the filter. It is recommended that kh be selected large 

enough to prevent over smoothing h. The complete system dynamics will be as follows: 
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(5) 

Note that above equations are valid during the congestion avoidance phase, where the 

window size is increased each time an Ack is received in a RTT. The decreasing term appears as 

multiplicative factor similar to AIMD algorithm. Equations (5) are actually, the starting point in 

congestion control problem.  By linearizing the nonlinear model around the equilibrium point as 
the following: 
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(6) 

we get the linear model: 
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(7) 

where, (.)δ  is the deviation of variable (.) from the equilibrium point. Figure (3) shows the 

block diagram of linearized model in which dynamics of each variable is separated.  From 

Figure (3) it can be understood that in addition to dynamics of instantaneous queue size and 

window size, the poles 1/T and kh are affecting the behavior of the system. Also, the effect of h0 
parameter in the forwarding transfer function should be noted. 
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Figure 3. System Block Diagram 
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4. AQM-PI ALGORITHM 

PI structures have been previously suggested in the literature; (see [5]). Because of their 

generality and simplicity in design, simple PI controllers seem to be an appropriate candidate 

for active queue management in network routers. The input-output relationship of PI controller 

in Laplace domain is as follows: 
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 As shown in Figure (4), the congestion control problem is a feedback control problem. 

Replacing AQM transfer function by C(S) and after some simplifications, we get the block 

diagram in Figure (4).  

    

( ) ( )

2

0

2

0 0 0

1

1

h

h

R s s
k d T

Ch R R d
s k s

T

+ +
−

 − + + 
 

2

0

1

2N
s

R C
+ 0

N

R

0

1

1
s

R
+

2

0 0

2

0

sRR C
e

h N

−

qδ

pδ

wδ

−

 

Figure 4: Simplified System Block Diagram 

Figures (3), (4) show that the feedback from q to w is not entirely through the AQM 

algorithm and that parameters RE and h have contributions to this feedback as well. With 

appropriately selecting poles in the upper branch of Figure (4) and considering kr  (in (9) ) as a 

small gain, we can neglect the effect of upper branch feedback, resulting in familiar Reno 

diagram.(See Figure (5)). 

( )2

000 dRRCh

dk
k h

r
−

−
=

 
(9) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: System Block Diagram Using TCP-Reno 
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The only difference between TCPReno/AQM and TCPW/AQM diagram is parameter h0 

in the feedforward transfer function. There are two ways of adjusting PI parameters. In the first 

approach, the upper branch needs not to be omitted. The diagram of Figure (4) may be 

simulated by an appropriate simulator.  Ziegler-Nichols algorithm [19] can provide acceptable 
PI parameter values through this method, the control parameters are given by:  
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Kcr is critical state gain and Pcr is the corresponding time period. This is essentially an empirical 

approach for setting the controller parameters and requires correct and precise system response, 

while bearing Ziegler-Nichols deficiencies [19]. 

   The second approach is to use Reno design. PI parameters are computed by:  
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in which βpi is responsiveness factor selected by designer. (0< βpi<0.85) [5]. Validity of the 

parameters given by (11) can be explained by the system diagram of Figure (4), through which 

the open loop characteristic equation is obtained as: 
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Note that we can choose the poles of estimation dynamics (i.e. h and RE estimation) 

such that it will simplify the problem. As mentioned, kr is a small coefficient when the network 

is in a normal condition. We assume this coefficient to be negligible. In this case the low 

frequency open loop system poles are the four poles of window dynamic, queue dynamic, h 

estimation and RE estimation.  Then we can choose the poles kh and 1/T large enough so that 

two other poles of window and queue dynamics have dominant behavior. We can essentially 

assume these dominant poles to be the open loop poles and neglect the effect of kh and 1/T. 

There is an important problem in this approximation that should be noted. The 

coefficient kr is affected by the pole kh. If we choose kh too large to minimize its effect on open 

loop behavior, then kr will increase, too. As result, our approximation will not be precise. 

Therefore, we should select it large enough to limit its effect on open loop behavior of the 
system, but not too large that it will undermine our approximation. By applying the mentioned 

modifications, Figure (4) will become very similar to  Figure (5). These two block diagrams just 

differ in 2/h coefficient in the forward transfer function. To solve this problem, we can simply 

transfer its effect to the AQM controller transfer function. 

 

5. SELF-TUNING ALGORITHM 

AQM behavior is influenced by variations in main network parameters such as link capacity and 

number of TCP sessions. Generally, these parameters do not have static values, but in some 

conditions, it is possible to assume their variations negligible. Most of AQM methods are 

designed for networks with limited parameter variations. 

The need for adaptability of AQM controller is completely considerable since in some 

conditions it is possible to lose stable control action because of the changes in network 
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parameters. For instance, unresponsive traffics like UDP or short lived TCP flows could be 

mentioned. These traffics change the link capacity experienced by long lived flows. However, 

the physical capacity of link may be fixed like a pipe. But actually it is divided to many virtual 

links by different mechanisms. In this case, the capacity of virtual links will be variable and the 
assumption of fixed link capacity will not be valid anymore. It is also true about TCP load; the 

assumption of static value for the number of TCP sessions will be incorrect, too. Changes in the 

number of TCP sessions cause deterioration of AQM performance.Without online parameters 

updating, the controller has to be designed in a worst case scenario leading to low quality 

performance and weak adaptability. So, the online estimation of network parameters will be 

necessary. 

In this section, we will perform continuous adjusting action for existing AQM design. 

This is the concept of "Self-tuning AQM". The actions to be done in self tuning algorithm are: 

1- parameter estimation (Network parameters are R, N and C) and 2- AQM controller adjusting. 

For actual design of self tuning AQM it will be used of "effective RTT" [20] calculated by 

different mechanisms. Link capacity is obtained directly by keeping track of departed packets. 

Also, term N/R could be estimated by measuring packet marking probability p. From (5) we 

have: 
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(13) 

 

Equation (13) is related to TCPW algorithm and is independent of AQM control rule. However, 

(13) is derived in steady state, we use it to estimate N/RC in transient state. In fact, estimated 

terms are C and N/RC. In [20, 21] two methods of designing adaptive algorithm for congestion 

control have been proposed. In previous section PI coefficients were computed. Using these 

coefficients and the simplified model of TCPW, the design of PI controller could be improved 

to self-tuning scheme. 

As the first step, AQM dynamics should be expressed in terms of network variables. 

Then a method for continuous estimation of parameters and a rule for automatic adjusting of 

controller should be given. We use "certainty equivalence principle" [22] for this purpose. In 

Figure (6), the block diagram of self-Tuning adaptive structure is shown. The AQM-PI 

controller formula is in the form of (8) in which Kp and Ki are obtained from (11) (Ki=Kp/Ti). 

Also, βpi is the AQM responsiveness factor determined by the designer (0< βpi<0.85) [5]. 
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5.1. Link Capacity Estimation 

To estimate actual link capacity, we periodically compute the ratio of departed packets to time 

period of sampling and to smooth high frequency transient variations we use a low-pass filter 

with cut-off frequency Kc as the following:  

C C C C
K K Cθ θ

∧

= − +&  (14) 

5.2. Round Trip Time Estimation 

In the case of small queuing delay, the propagation time could be an estimation of RTT. We 

could use it as the “effective” RTT or an estimate of RTT made from samples of the SYN 

packets. (see [20]).  

 

5.3. Flow Number (TCP Load) Estimation 

Equation (13) is used to estimate N/RC in the TCPW/AQM system. Determining C and N/RC is 

sufficient for adjusting PI controller. Estimation and smoothing the N/RC parameter will be as 

follows (see [20]):  
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where in (15), n

rc
K  is the cut-off frequency of low-pass filter. By determining 

c
θ and n

rc
θ  through 

equations (14) and (15), controller coefficients are computed as below: 
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Figure 6. Block diagram of self-Tuning adaptive structure 
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The overall system equations are rewritten as follows: 
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(17) 

To guarantee the overall stability of (17), the time constant for the self-tuning algorithm 

should be large enough as compared with the time for AQM response [20]. 

 

6. SIMULATION RESULTS: RED, PI AND SELF-TUNING PI SIMULATION 

In order to investigate the effectiveness of the proposed algorithm, we will use NS2 

which is custom in the network simulation. It is assigned ftp type traffic to 60 source nodes. 

Time intervals between file transfers are chosen to be NS random. Bottleneck link bandwidth is 

0.5Mbps and the other bandwidths are 1000Mbps. Reference queue size for PI and Self-tuning 

PI methods is 175 packets. Propagation delay of link in which AQM is done  is 70ms and other 

links have the delay of 20 ms. Buffer size of the router and average packet size are limited to 

800 packets and 500 bytes, respectively. In other links drop-tail is used as queue control 

algorithm. For the RED algorithm gentle property [23] is active. minth and maxth will be 150 

and 200 packets and other RED parameters are set to be the default values in NS. The ideal 
performance of each method is when the queue length is fixed and the maximum available 

bandwidth is achieved. The fluctuation in queue available bandwidth is also undesirable.  

Consider three different scenarios defined as follows: 

 

a) Change in Link Capacity      
The initial capacity of the bottleneck link is 3750 packets per second (equals to 15Mbps). PI 

parameters will be adjusted to keep the queue size at 175 packets.  The simulation time is 200 

sec. We run two experiments: first, at time t=100sec we change the capacity to 90 Mbps and 

second, the capacity is set to 7.5 Mbps. Figures (7) and (8) show queue size variations and 

output queue bandwidth variations in the bottlenecked router. Superior performance of Self-

tuning PI as compared with rather weak performance of RED in achieving bandwidth and queue 

size control is shown in Figure (7) and (8). In the first case, when we change the link capacity to 

7.5 Mbps, PI and Self-tuning PI act well. But in the second experiment (link capacity set to 90 
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Mbps) only Self-tuning PI can keep the queue size at desired level and utilizes the available 

resource in good manner.  

b) Change in TCP load (flow numbers or TCP sessions)  
 In this experiment, the link capacity will be kept fixed at 15Mbps and at time t=100s 
the number of flows changes from 60 to 30. Figure (9) shows the performance of the three 

methods in this situation. 
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Figure 7. Queue size and bandwidth variations 
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(At time t=100s the link capacity is changed to 7.5Mbps) 
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(c) PI queue bandwidth 

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Time(sec)

Q
u
e
u
e
 S

iz
e
(p

a
c
k
e
t)

(d) PI queue size 
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Figure 8. Queue size and bandwidth variations 

(At time t=100s the link capacity has changed to 90Mbps) 
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 Figure (9) shows again the better performance of PI and Self-tuning PI as compared with the 

poor performance of RED in the case of TCP load variation. The load variation cause that the 

predefined parameters of RED and PI could adjust the queue and achieve the bandwidth. It can 

also be seen from Figure (9) that the PI performance is still better than RED.  
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(a) RED queue bandwidth 
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(c) PI queue bandwidth 
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(e) Self-tuning PI queue bandwidth 
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(f) Self-tuning PI queue size  
 

Figure 9. Queue size and bandwidth 

(At time 100s TCP flow number has changed from 60 to 30) 
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c) Link Capacity and Flow Number both Changed  

Here, both of the link capacity and flow number are changing. At time t=100s link capacity is 

changed to 90Mbps and number of flows is set to 30. Figure (10) shows the queue size and 

bandwidth variations for the three algorithms. 
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(e) Self-tuning PI queue bandwidth 
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Figure 10. Queue size and bandwidth 

(At time t=100s TCP flows number is set to 30 and link capacity is changed to 90 Mbps) 
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As seen in Figure (10), when there are drastic changes in network parameters, only self-

tuning algorithm can almost keep the queue size at desired level and utilizes the existing 

bandwidth. In this situation, PI and RED totally loose the control of the queue length. 

As results, they cannot effectively achieve the available bandwidth. In fact, Figure (10) 

clearly shows the effect of self-tuning property on the performance of the AQM 

methods. Also, as Figure (10) shows, PI acts better than RED. It is because the PI gains 

design method is rather robust in comparison with that of RED. 

7. CONCLUSION 

In this paper, we proposed an effective approach to simplify the TCPW model and tuning the 

AQM/PI controller. To this end, first two parameters window widening/narrowing ratios were 

defined. Then TCPW dynamics were separated and an effective approach to easily determine 

the PI controller coefficients was presented. Also, an adaptive self-tuning approach was 

introduced to automatically adjust the PI parameters due to changes in network conditions. It 

was shown that PI and self-tuning PI have a superior performance in comparison with weak 

performance of RED in achieving bandwidth and queue size control. The NS results also 

clarified that in drastic changes in network parameters it is just self-tuning PI which can fix the 

queue size at desired level and efficiently utilize the available bandwidth. 
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