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Abstract 
 

The purpose of this retrospective study is to measure machine learning models' ability to predict glaucoma 

drainage device failure based on demographic information and preoperative measurements. The medical 
records of 165 patients were used. Potential predictors included the patients' race, age, sex, preoperative 

intraocular pressure (IOP), preoperative visual acuity, number of IOP-lowering medications, and number 

and type of previous ophthalmic surgeries. Failure was defined as final IOP greater than 18 mm Hg, 

reduction in intraocular pressure less than 20% from baseline, or need for reoperation unrelated to normal 

implant maintenance. Five classifiers were compared: logistic regression, artificial neural network, 

random forest, decision tree, and support vector machine. Recursive feature elimination was used to shrink 

the number of predictors and grid search was used to choose hyperparameters. To prevent leakage, nested 

cross-validation was used throughout. With a small amount of data, the best classfier was logistic 

regression, but with more data, the best classifier was the random forest. 

 

1. INTRODUCTION 
 

Glaucoma Drainage Devices (GDDs) are typically utilized in the management of glaucoma 

refractory to maximal medical therapy or prior failed glaucoma surgery. The devices can be 
divided into two categories: non-valved (e.g. Molteno and Baerveldt) and valved (e.g. Ahmed). 

Non-valved GDDs have been shown to be more effective in lowering intraocular pressure (IOP) 

and have lower rates of reoperation than valved GDDs, but experience more frequent failure 
leading to dangerously low IOP or reduction of vision to the point of absolute blindness.1 

However, there have been no studies directly comparing the two main types of non-valved GDDs 

despite their significantly different device profiles and implantation technique.  

 
The accuracy of machine learning models in predicting GDD outcomes based on a minimal 

feature set provides a unique strategy to understand differences between these devices. Previous 

studies have predicted individual outcomes for other ophthalmic surgeries using machine learning 
and logistic regression. Achiron et al. used extreme gradient boosted decision forests to predict 

the efficacy (final VA/starting VA) of refractive surgery.2 Rohm et al. compared five algorithms 

to predict postoperative VA at 3 and 12 months in patients with neovascular age-related macular 
degeneration.3 Valdes-Mas et al. compared an artificial neural network with a decision tree to 

predict the occurrence of astigmatism and found the neural network superior.4 Mohammadi et al. 

used neural networks to predict the occurrence of posterior capsule opacification after 

phacoemulsification.5 Gupta et al. used linear regression to determine post-operative visual acuity 
based on patient demographics and pre-operative predictors.6 Koprowski et al. compared 

hundreds of artificial neural network topologies to predict corneal power after corneal refractive 

surgery.7 McNabb et al. used OCT (optical coherence tomography) to predict corneal power 
change after laser refractive surgery.8 Bowd et al. used Relevance Vector Machines to predict 
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visual field progression in glaucoma patients based on SAP (standard automated perimetry) and 
CSLO (confocal scanning laser ophthalmoscope) measurements.9 More recently, Lee et al. used 

random forests and extremely randomized trees to predict glaucoma progression specifically in 

pediatric patients, also using SAP data.10 Similar to our own study, Baxter et al. used machine 

learning techniques (random forest, artificial neural network, and logistic regression) to predict 
surgical intervention for POAG (primary open-angle glaucoma) based on structured EHR data. 

They identified high blood pressure as a factor increasing the likelihood of surgical intervention, 

and several categories of ophthalmic and non-ophthalmic factors decreasing the likelihood of 
surgery.11 In contrast to their study, this one predicts implant failure instead of the need for 

surgical intervention, and includes more classifiers and types of glaucoma. 

 
When comparing the Molteno and Baerveldt GDDs, demographic predictors included race, sex, 

and age at surgery. A total of seven clinical predictors were considered including: 

 

Implant Type: Identified by type of implant (Molteno or Baerveldt) and implant plate surface 
area. 

 
VA (log MAR): “Visual Acuity (Logarithm of the Minimum Angle of Resolution.)” A more 

reproduceable visual acuity measurement often used in research. As Snellen visual acuity is more 
often collected in the clinic setting, conversion to log MAR allows easier statistical analysis.  

 
IOP: Intraocular pressure. Elevated IOP is the major risk factor for development of glaucoma. 

 
Number of medications: Include usage of beta-blockers, alpha-adrenergic agonists, 
prostaglandin analogs, or carbonic anhydrase inhibitors. The number of medications was 

calculated from patient records at each visit. 

 
Number of previous surgeries: Glaucoma drainage implants are typically placed after less-
invasive treatments fail but may incidentally be utilized following other ophthalmic surgeries 

(e.g. phacoemulsification of cataracts or retinal surgeries). 

 
Type of previous surgeries: Include phacoemulsification or extracapsular cataract extraction 
(ECCE), trabeculectomy, pars plana vitrectomy, penetrating keratoplasty, Ex-PRESS shunt, 

iStent, or diode laser cyclophotocoagulation (dCPC). 

 
Diagnosis: Causes for glaucoma included open-angle, neovascular, uveitic, angle-closure, 

secondary to trauma, secondary to PKP, pseudoexfoliation, and combined mechanism.  

 

2. DATA DESCRIPTION 
 

2.1. Train Set 
 

The train dataset contained 84 patients, of whom 64 had failure/no failure labels. Two additional 

patients were removed due to missing values.  

 
Of 62 patients analyzed, 26 (41%) were determined to have device failure. The mean (± SD) 

follow-up time was 573±245.45 days, (range 133-1037 days). Patient samples were balanced 

between male and female. White race was three times more common than Black race and there 
was only one Asian patient (Tables 1 and 2). Implant failure was defined as having final IOP was 

greater than or equal to 18, IOP reduction of less than 20% from pre-operative levels, or repeat 
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surgery for glaucoma (this did not include in-clinic procedures that did not indicate failure of the 
device itself). By the last recorded appointment, 35% (22) of patients had a failing IOP and 19% 

(12) required additional surgery. No patients in this group experienced loss of light perception.  

 
Table 1: Number of Participants by Race and Sex: Train Data 

 
Race Male Female Total 

Asian 1 0 1 

Black 8 8 16 

White 24 21 45 

Total 33 29 62 

 
Table 2: Average Age at Surgery (Mean ± SD) by Race and Sex: Train Data 

 
Race Male Female Average 

Asian 72±0 (1 total) - 72±0 (1 total) 

Black 61.9±9.7 (8 total) 68.9±6.53 (8 total) 65.4±8.1 (28 total) 

White 65.8±12.2 (24 total) 69.4±6.53 (21 total) 67.6±9.4 (58 total) 

Average 65.0±11.22 (33 total) 69.2±6.53 (29 total) 67.1±8.9 (62 total) 

 
A total of 42 patients received a Baerveldt GDD (67%) and 20 received a Molteno implant 

(27%). Forty-eight (77%) patients had surgery prior to placement of a GDD. Twelve patients 
(19%) required repeat surgery after initial placement of a GDD. Open-angle glaucoma was the 

most common underlying diagnosis (61%, n = 38) with combined mechanism (11%, n = 5) and 

chronic angle-closure (8%, n = 5) being less common. There were also individual patients with 

either neovascular, uveitic, traumatic, or pseudoexfoliation glaucoma. A diagnosis of "Other" was 
given for 8% of the patients, which indicated a singular diagnosis was not able to be determined 

from chart review. 

 

2.2. Test Set 
 

The dataset from which the test set was taken originally contained 122 patients, but after patients 
who also appeared in the train dataset or had missing values were removed, the final number of 

patients was 89 (Table 3). 

  
The characteristics of the test set were similar to the train set. 39 of those patients (44%) were 

determined to have device failure. The mean (± SD) follow-up time was 626±284 days (range 

107-1334 days). Patient samples were still relatively balanced between male and female, as in the 
train set. The racial makeup of this population was more balanced than the train set, with only 

twice as many white patients as black. The test set contained two Asian patients (Table 3). 

 
Table 3. Number of Participants by Race and Sex: Test Data. 

 
Race Male Female Total 

Asian 0 2 2 

Black 13 15 28 

White 25 33 58 

Other 1 0 1 

Total 39 50 89 
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Table 4. Average Age at Surgery (Mean ± SD) by race and sex: Test Data. 

 
Race Male Female Average 

Asian - 66.0±13.0 (2 total) 66.0±13.0 (2 total) 

Black 67.1±9.4 (13 total) 66.7±11.5 (15 total) 66.9±10.6 (28 total) 

White 67.1±13.2 (25 total) 63.4±12.4 (33 total) 65.0±12.9 (58 total) 

Other 39.0 ± 0.0 (1 total) - 39.0 ± 0.0 (1 total) 

Average 66.4±12.7 (39 total) 64.52±12.27 (50 total) 67.1±8.9 (62 total) 

 
The Average age at surgery (mean ± SD) by race and sex of test data is shown in Table 4. The 

clinical makeup of the test set was very similar to the train set. A total of 59 patients received a 

Baerveldt GDD (66%) and 20 received a Molteno GDD (22%). 62 patients (70%) had surgery 
prior to placement of a GDD. Open-angle glaucoma was the most common underlying diagnosis 

(57%) with traumatic (13%) glaucoma being less common.  

 

3. METHODOLOGY 
 

3.1. Overview 
 
This study was approved by the Human Research Protection Office at Washington University 

School of Medicine in Saint Louis, MO and was in adherence to the Declaration of Helsinki. A 

retrospective chart review was performed for patients having undergone an uncomplicated 

Molteno or Baerveldt tube shunt surgery from July 01, 2013 to May 01, 2017. 
 

All models in this study were validated using three-fold stratified cross validation, and all but the 

neural net were developed using recursive feature elimination and grid searches. To prevent data 
leakage, final validation, grid searching, and feature selection were performed in separate cross 

validation loops, as recommended by Krstajic et al.12  In the outer loop, the final model was 

tested; in the middle loop, the best hyper parameters were chosen; and in the inner loop, the best 
feature subsets were selected. Within each loop, three-fold stratified cross-validation was used. 

Scaling and centering for continuous variables was performed as part of the model fitting 

procedure. The Logistic Regression, SVM, Decision Tree, and Random Forest classifiers were 

implemented in Python using Scikit-Learn,13 and the Neural Network classifier was implemented 
in R using the caret package.14 
 

3.2. Logistic Regression 
 

Logistic regression, traditionally used for modeling, determines the class of each input variable 

by multiplying each feature by a constant, adding a bias term, and applying the logistic function. 

Any outcome above 0.5 is rounded to 1; any outcome below 0.5 is rounded to 0. When cross-
validated on the train set, the optimal logistic regression classifier used L2 regularization and a C 

parameter of 1, and had an accuracy of 0.66±0.08 and a ROC (Receiver Operating Characteristic) 

of 0.67±0.08. Based on the coefficients of the logistic regression model listed in Table 3, Black 
race and initially taking beta-blockers is associated with implant failure. 
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Table 3: Feature Coefficients of Logistic Regression Classifier 
 

Feature Sign Coefficient 

Black race + 0.83 

Initially taking Beta Blockers + 0.63 

White - 0.37 

Initially taking Carbonic Anhydrase - 0.36 

Baerveldt 350 mm2 - 0.28 

 

 

3.3. Support Vector Machine (SVM) 
 
A Support Vector Machine uses several data points (support vectors) to find the hyperplanes 

separating data classes that allow identification of a hyperplane giving the maximum margin. The 

best classifier had a cost parameter of 0. Table 4 shows the feature coefficients of SVM 

classifier.15 
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Table 4: Feature Coefficients of SVM Classifier 

 
Feature Sign Coefficient 

Combined tube placement and 

phacoemulsification - 2 

Black race + 1.41 

No previous surgeries - 1 

Baerveldt 350 mm2 - 0.7 

Previous Phacoemulsification or ECCE - 0.6 

Initially taking beta blockers + 0.59 

Primary Open-Angle Glaucoma + 0.49 

Previous Trabeculectomy - 0.36 

Initially taking carbonic anhydrase inhibitor - 0.34 

Initial VA (logMAR) + 0.28 

 

 
Like regression, race and initially taking beta-blockers have the most weight in causing implant 

failure. Primary Open-Angle Glaucoma show possibility of implant failure too. The SVM 

classifier had an accuracy of 0.61%±0.03 and a ROC AUC of 0.62±0.03. 

 

3.4. Decision Tree 
 
A decision tree repeatedly picks a threshold to divide data until it places all data items in groups 

(mostly) of the same class. First, it finds the threshold for all features dividing data most cleanly. 

Then it chooses features producing the cleanest split and repeats the process separately for the 

data on each side of the split. The algorithm stops when the data divide into pure groups or when 
the number of points in each group is too small to divide further without overfitting15. We used a 

minimum of three data points per leaf node and the Gini impurity measure. 
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Table 5: Patient Groups Created Using Decision Tree 

 

Feature Importance 

Initial IOP 0.19 

Black 0.17 

In-Surgery Phacoemulsification 0.16 

Age at Surgery 0.14 

Molteno 245 mm2 0.14 

Baerveldt 350 mm2 0.07 

Initial VA (logMAR) 0.06 

Primary Open-Angle Glaucoma 0.04 

Initial Number of Medications 0.02 

Previous Ex-Press Shunt 0.01 

 

As described in Tables 5 and 6 and Figure 1, IOP and race are the most important factor in device 

failure. Combined GDD placement and phacoemulsification, age, and usage of the 245 mm2 
Molteno GDD are other factors. Despite regression and SVM, initially taking beta-blockers does 

not appear in decision tree. The decision tree's overall accuracy was 0.5±0.05, and its ROC AUC 

was 0.45%±0.04. Low accuracy makes the efficiency of this method less than previous methods. 
 

 
 

Figure 1: Decision Tree of Glaucoma Data 
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Table 6: Patient Groups Created Using Decision Tree 

 

 Group Characteristics Patient Features 
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3.5. Artificial Neural Network 

 

 
 

 Figure 2: Neural Network Architecture 
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Table 7: Importance of Features in Neural Network Classifier 
 

Feature Importance Feature Importance 

In-surgery Phacoemusification 7.413775 No previous surgeries 3.987791 

Chronic angle-closure glaucoma 5.810634 Open-Angle Glaucoma 3.899654 

Initially taking Beta Blockers 5.167789 Previous Phaco or ECCE 3.894626 

Previous Express Shunt 5.097406 Molteno 185 mm2 3.866003 

Baerveldt 350 mm2 4.649922 Number of Previous Surgeries 3.782343 

Black 4.559001 Age at Surgery 3.535026 

Combined Mechanism 

Glaucoma 
4.380725 Starting VAlogMAR 3.53318 

Molteno 245 mm2 4.3772 
Initially taking Carbonic 

Anhydrase 
3.298634 

Initially taking Prostaglandins 4.180157 Previous Trabeculectomy 3.234256 

Starting Number of Medications 4.155031 White 2.994674 

Initially taking Alpha Agonists 4.114784 Baerveldt 250 mm2 2.98814 

Male 4.096719 Initial IOP 2.982531 

 

A feed-forward artificial neural network imitates biological neural tissue using sequential layers 

of "neurons" that transform the underlying data and pass it on to the next layer. The root of a 
neural net is a perceptron: two or more inputs connected to a neuron, which then multiplies each 

input by a weight, adds an intercept, and applies an output function to the result. In a single-layer 

neural network, many perceptrons extract information from the underlying features, and a final 

neuron (or more for multiclass classification) combines the output from these nodes15.  A single-
layer network with 25 hidden nodes (Fig. 2) was trained on the data. Combined GDD placement 

and phacoemulsification was indicated as the most important factor in failure. Chronic angle-

closure glaucoma and initially taking beta-blockers were also associated with therapy failure, 
though to a lesser extent. Race with importance = 4.6 shows high effect on failure. The accuracy 

was 0.53±0.11 and the ROC AUC was 0.52±0.10. 
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3.6. Random Forest 
 

 
 

Table 8: Importance of Features in Random Forest Classifier 

 

Feature Importance 

Age at Surgery 0.25 

Initial IOP 0.2 

Initial VAlogMAR 0.12 

Black 0.07 

Molteno 245 mm2 0.07 

Initial Number of Medications 0.06 

On beta-blocker prior to surgery 0.06 

Combined device and 

phacoemulsification 

0.06 

Number of Previous Surgeries 0.05 

Primary Open-Angle Glaucoma 0.03 

On CAI prior to surgery 0.02 

Previous Ex-Press Shunt 0.01 

 

A random forest averages the predictions of multiple decision trees trained on subsets of the 

data15. Using ten decision trees, the algorithm identified age at surgery, initial IOP, and visual 
acuity as the most important factors determining device failure. Race and utilization of the larger 

Molteno device (245 mm2) were associated with device failure, though to a lesser degree. The 

overall ROC AUC was 0.58±0.1, and the overall accuracy was 0.58±0.13. 
 

4. CONCLUSION 
 
Table 9: Accuracy and ROC score across all models. Red: high effect, Orange: low effect 

 

Methods Black race 
Beta 

Blockers 
Age  Initial IOP 

Molteno 
245 mm2 

Cataract 
removal 

Logistic 

Regression 
      

SVM       

Random Forest       

Neural Network       

Decision Tree       

In
-s
ur

ge
ry

 P
ha

co
em

us
if
ic
at

io
n

C
hr

on
ic
 a
ng

le
-c

lo
su

re
 g
la
uc

om
a

In
it
ia
lly

 t
ak

in
g 
B
et

a 
B
lo
ck

er
s

P
re

vi
ou

s 
E
xp

re
ss
 S
hu

nt

B
ae

rv
el
dt

 3
50

 m
m

2

B
la
ck

C
om

bi
ne

d 
M

ec
ha

ni
sm

 G
la
uc

om
a

M
ol
te

no
 2
45

 m
m

2

In
it
ia
lly

 t
ak

in
g 
P
ro

st
ag

la
nd

in
s

St
ar

ti
ng

 N
um

be
r 
of

 M
ed

ic
at

io
ns

In
it
ia
lly

 t
ak

in
g 
A
lp
ha

 A
go

ni
st
s

M
al
e

7,41

5,81
5,17 5,1

4,65 4,56 4,38 4,38 4,18 4,16 4,11 4,1



International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.11, No.1, January 2021 

11 
 

Comparing results from different models identified Black race as the strongest factor associated 
with device failure. This finding aligns with existing research in the ophthalmology literature.16 

Such failure rates are believed to be due to genetic differences in wound healing and proliferation 

of fibrovascular tissue.17 Use of topical beta-blockers pre-operatively was also associated with 

device failure. In treating glaucoma medically, prostaglandin analogs are often first-line with 
beta-blockers used second-line or as a reasonable alternative first-line agent. Alpha-agonists and 

carbonic anhydrase inhibitors are often added next, though they can cause intolerable allergic 

reactions and discomfort on instillation, respectively.18 These side effects can lead to drop 
intolerance and serve as an impetus for surgery. Therefore, it is perhaps not unsurprising that 

patients would be on beta-blockers when surgical intervention is needed as they are usually well-

tolerated in those without respiratory problems. Nonetheless, beta-blockers association with 
implant failure in several models may be an area of further investigation. Placement of the larger 

Molteno GDD was associated with device failure, though this was a weaker association and 

found in weaker models. Again, this warrants further investigation given the devices function 

similarly. Lastly, age, increased IOP, and phacoemulsification at the time of GDD implantation 
were associated with failure in weaker models. Overall, the most accurate model was logistic 

regression, followed by a support vector machine model with a linear kernel. Our findings 

suggest machine learning techniques can accurately determine important features leading to 
failure of GDD implants from a large dataset of common clinical descriptors. 

 
Table 11. Accuracy and ROC score across all models 

 
 Cross-Validation on  Train Test  

Methods 

ROC AUC 

(mean ± SD)  

Accuracy 

(mean ± SD) 
ROC AUC Accuracy  

Logistic Regression 0.67±0.08 0.66±0.08 0.64 0.58 

SVM 0.62±0.03 0.61±0.03 0.68 0.64 

Random Forest 0.53±0.10 0.58±0.13 0.85 0.74 

Neural Network 0.52±0.10 0.53±0.11 0.55 0.57 

Decision Tree 0.45±0.04 0.50±0.05 0.38 0.53 

 
 

Based on  Table 11, the logistic regression classifier had the best cross-validation performance on 

the train dataset. However, the random forest classifier benefited from training on all of the 

available train data, and had the highest performance in the test set. 
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