
������������	
������	

�
�������
������
��	���
�����
����	
����

10.5121/iju.2010.1206 92

TIME SYNCHRONIZATION IN WIRELESS
SENSOR NETWORKS: A SURVEY

 Prakash Ranganathan, Kendall Nygard

 Department of Computer Science, North Dakota State University, Fargo, ND, USA
 prakashranganathan@mail.und.edu

ABSTRACT ___ Time synchronization is a critical piece of infrastructure for any distributed system. Wireless
sensor networks have emerged as an important and promising research area in the recent years. Time
synchronization is important for many sensor network applications that require very precise mapping of gathered
sensor data with the time of the events, for example, in tracking and vehicular surveillance. It also plays an
important role in energy conservation in MAC layer protocols. The paper studies different existing methods,
protocols, significant time parameters (clock drift, clock speed, synchronization errors, and topologies) to achieve
accurate synchronization in a sensor network. The studied Synchronization protocols include conventional time sync
protocols (RBS, Timing-sync Protocol for Sensor Networks -TPSN, FTSP), and other application specific
approaches such as all node-based approach, a diffusion-based method and group sync approaches aiming at
providing network-wide time. The goal for writing this paper is to study most common existing time synchronization
approaches and stress the need of a new class of secure-time synchronization protocol that is scalable, topology
independent, fast convergent, energy efficient, less latent and less application dependent in a heterogeneous hostile
environment. Our survey provides a valuable framework by which protocol designers can compare new and
existing synchronization protocols from various metric discussed in the paper. So, we are hopeful that this paper
will serve a complete one-stop investigation to study the characteristics of existing time synchronization protocols
and its implementation mechanism in a Sensor network environment.

Keywords: Secure-time, Synchronization, MAC Layer

1. INTRODUCTION

The time synchronization problem to synchronize the local clocks of sensor nodes in the wireless network have been
extensively studied in literatures over the last two decades and yet there is no specific time synchronization scheme
available to achieve higher order of accuracy with greater scalability independent of topology and application [1-4].
This reflects the complexity associated with the collaborative nature of sensor nodes, in many sensor networks
causing it to be a trivial problem in itself. One of the basic middleware services of sensor networks is network-wide
time synchronization within the network. Many sensor network applications require time to be synchronized within
the network. Examples of such applications include environmental monitoring, mobile object (target) tracking, data
fusioning, TDMA radio scheduling, message ordering, to name a few. Consider the application of mobile object
tracking, in which a sensor network is deployed in an area of interest to monitor passing objects. When an object
appears, the detecting nodes record the detecting location and the detecting time. Later, these location and time
information are sent to the aggregation (sometime referred as fusion) node which estimates the moving trajectory of
the object. Without an accurate time synchronization scheme, the estimated trajectory of the tracked object could
differ significantly from the actual one. Hence, a precise either global (or localized) timesync service is critical and
must be made available at each of the sensor nodes for any application. In this paper, we study all class of existing
time synchronizing schemes and provide a comprehensive analysis to future researches.

2. TIME SYNCHRONIZATION PROBLEM

The time of a computer clock is measured as a function of the hardware oscillator

������������	
������	

�
�������
������
��	���
�����
����	
����

 93

where

 is the angular frequency of the oscillator, is a constant for that oscillator, and t is the time. The change of the
value leads to the events (or interrupts) that can be captured by the sensor. The clocks in a sensor network can
be inconsistent due to several reasons. The clock may drift due to environment changes, such as temperature,
pressure, battery voltage, etc. This has been a research topic in the operating system and Internet communities for
many years. There are three reasons for the nodes to be representing different times in their respective clocks – (1)
The nodes might have been started at different times, (2) The quartz crystals at each of these nodes might be running
at slightly different frequencies, causing the clock values to gradually diverge from each other (termed as the skew
error), (3) The frequency of the clocks can change variably over time because of aging or ambient conditions such as
temperature (termed as the drift error). All the above said errors are three sources that contribute to different time
within a sensor network. The nodes in a sensor network may not be synchronized well initially, when the network is
deployed. The sensors may be turned on at the different times and their clocks may be running according to different
initial values. The results of events on specific sensors may also affect the clock. For example, the Berkeley Mote
sensors may miss clock interrupts and the chance to increase the clock time value when they are busy handling
message transmission or sensing tasks [1]. We will explore the time synchronization problem due to clock offset by
analyzing some related work on existing time synchronization schemes in the next section.

3. RELATED WORK ON TIME- SYNC SCHEMES
The early time sync protocol used in the internet domain is the Network Time Protocol (NTP) devised by Mills [2].
The NTP clients synchronize their clocks to the NTP time servers with accuracy in the order of milliseconds by
statistical analysis of the round-trip time. The time servers are synchronized by external time sources, typically using
GPS. The NTP has been widely deployed and proved to be effective, secure and robust in the internet. In WSN,
however, non-determinism in transmission time caused by the Media Access Channel (MAC) layer of the radio
stack can introduce several hundreds of milliseconds delay at each hop. Therefore, without further adaptation, NTP
is suitable only for WSN applications with low precision demands [2]. There were other schemes such as Reference
Broadcast schemes proposed by Elson et al. [3] which eliminate the uncertainty of the sender by removing the
sender from the critical path. Many of the time synchronization protocols use a sender to receiver synchronization
method where the sender will transmit the timestamp information and the receiver will synchronize. RBS is different
because it uses receiver to receiver synchronization. The idea is that a third party will broadcast a beacon to all the
receivers (A and B) . The beacon does not contain any timing information; instead the receivers will compare their
clocks (ta and tb) to one another to calculate their relative phase offsets. The timing is based on when the node
receives the reference beacon.

Figure 1: RBS Scheme

 A
 ta

B
tb

Reference Node ack

e
beacon

beacon

������������	
������	

�
�������
������
��	���
�����
����	
����

 94

The simplest form of RBS is one broadcast beacon and two receivers. The timing packet will be broadcasted to the
two receivers. The receivers will record when the packet was received according to their local clocks. Then, the two
receivers will exchange their timing information and be able to calculate the offset [3]. This is enough information to
retain a local timescale. RBS can be expanded from the simplest form of one broadcast and two receivers to
synchronization between n receivers, where n is greater than two. This may require more than one broadcast to be
sent. Increasing the broadcasts will increase the precision of the synchronization. The following figure shows the
exchange of timing information with their neighboring nodes in RBS scheme, as the nodes will then be able to
calculate their offset as seen above in fig 1.

Reference Broadcast scheme (RBS) eliminate the uncertainty of the sender by removing the sender from the critical
path. By removing the sender, the only uncertainty is the propagation and receives time. The propagation time is
negligible in networks where the range is relatively small. It is claimed that the reference beacon will arrive at all the
receiving nodes instantaneously. By removing the sender and propagation uncertainty the only room for error is the
receiver uncertainty. TPSN is a traditional sender-receiver based synchronization that uses a tree to organize the
network topology [4] [5] [6]. The concept is broken up into two phases, the level discovery phase and the
synchronization phase. The level discovery phase creates the hierarchical topology of the network in which each
node is assigned a level. Only one node resides on level zero, the root node. In the synchronization phase all i level
nodes will synchronize with i-1 level nodes. This will synchronize all nodes with the root node. The level discovery
phase is run on network deployment. First, the root node should be assigned. If one node was equipped with a GPS
receiver, then that could be the root node and all nodes on the network would be synced to the world time. If not,
then any node can be the root node and other nodes can periodically take over the functionality of the root node to
share the responsibility [3][4][5].

Once the root node is determined, it will initiate the level discovery. The root, level zero, node will send out the
level_discovery packet to its neighboring nodes. Included in the level_discovery packet is the identity and level of
the sending node. The neighbors of the root node will then assign themselves as level one. They will in turn send out
the level_discovery packet to their neighboring nodes. This process will continue until all nodes have received the
level_discovery packet and are assign a level. Once again all nodes are assigned a level to create a tree type
topology. The root node is level zero continuing down the tree with level one and so on. All nodes of level i will
broadcast the level_discovery with all nodes of level i-1. This is maintained until all nodes are assigned a level [5].

The basic concept of the synchronization phase is two-way communications between two nodes. As mentioned
before this is a sender to receiver communication. Similar to the level discovery phase, the synchronization phase
begins at the root node and propagates through the network.

 Figure 2: Two –way messaging

Figure 2 illustrates the two-way messaging between a pair of nodes. This messaging can synchronize a pair of
nodes by following this method. The times T1, T2, T3, and T4 are all measured times. Node A will send the
synchronization_pulse packet at time T1 to Node B. This packet will contain Node A's level and the time T1 when it

T2 T3

T1 T4

B

LOCAL TIME

LOCAL TIME

A

������������	
������	

�
�������
������
��	���
�����
����	
����

 95

was sent. Node B will receive the packet at time T2. Time T3 is when Node B sends the acknowledgment_packet to
Node A. That packet will contain the level number of Node B as well as times T1, T2, and T3. By knowing the drift,
Node A can correct its clock and successfully synchronize to Node B. This is the basic communication for TPSN.
The synchronization process is again initiated by the root node. It broadcasts a time_sync packet to the level one
nodes. These nodes will wait a random amount of time before initiating the two-way messaging. The root node will
send the acknowledgment and the level one nodes will adjust their clocks to be synchronized with the root nodes.

The level two node will be able to hear the level one nodes communication since at least one level one node is a
neighbor of a level two node. On hearing this communication the level two nodes will wait a random period of time
before initiating the two-way messaging with the level one nodes. This process will continue until all nodes are
synchronized to the root node. Again the synchronization process executes much the same as the level discovery
phase. All communication begins with the root node broadcasting information to the level 1 nodes. This
communication propagates through the tree until all level i-1 nodes are synchronized with the level i nodes. At this
point all nodes will be synchronized with the root node [4] [5].

3.1. UNCERTAINITY IN THE SYNC PACKET

Any synchronization packet has the four delays discussed in [7] send time, access time, propagation time, and
receive time. Eliminating any of these would be a plus. A hardware RF transreceiver implementation for reception
time is discussed in detail in [7]. Although TPSN does not eliminate the uncertainty of the sender it does, however,
minimize it. Also, TPSN is designed to be a multi-hop protocol; so transmission range is not an issue. Unlike RBS,
TPSN has uncertainty in the sender. They attempt to reduce this non-determinism by time stamping packets in the
MAC layer. It is claimed that the sender's uncertainty contributes very little to the total synchronization error. By
reducing the uncertainty with low level time stamping, it is claimed that TPSN has a 2 to 1 better precision than
RBS and that the sender to receiver synchronization is superior to the receiver to receiver synchronization. [2]. RBS
also is limited by the transmission range. It was stated that RBS can ignore the propagation time if the range of
transmission was relatively small. If it is a large multi-hop network, this is not the case. RBS would have to send
more reference beacons for the node to synchronize. TPSN on the other hand was designed for multi-hop networks.
Their protocol uses the tree based scheme so the timing information can accurately propagate through the network.

Lightweight Tree-based Synchronization (LTS), proposed by Greunen and Rabaey [8] is distinguished from other
work in the sense that the aim is not to maximize accuracy, but to minimize the complexity of the synchronization.
Thus the needed synchronization accuracy is assumed to be given as a constraint, and the target is to devise a
synchronization algorithm with minimal complexity to achieve given precision. This approach is supported by the
claim of authors that the maximum time accuracy needed in sensor networks is relatively low (within fractions of a
second), and therefore it is sufficient to use a relaxed, or lightweight, synchronization scheme in sensor networks.
The algorithm is a centralized algorithm, and needs a spanning tree to be constructed first. Then pair wise
synchronization is done along the n - 1 edges of the spanning tree. In the centralized algorithm, the reference node is
the root of the spanning tree and has the responsibility of initiating a resynchronization" as needed. Using the
assumption that the clock drifts are bounded, and given the required precision, the reference node calculates the time
period that a single synchronization step will be valid. Since the depth of the spanning tree affects the time to
synchronize the whole network, and also the precision error at the leaf nodes, the depth of the tree is communicated
back to the root node so that it can use this information in its resynchronization time decision [8].

Another time-sync class of protocol is Flooded Time Sync protocol (FTSP) [9]. This protocol is similar to TPSN,
but it improves on the disadvantages to TPSN. It is similar in the fact that it has a structure with a root node and that
all nodes are synchronized to the root. The root node will transmit the time synchronization information with a
single radio message to all participating receivers. A Radio Channel cannot be accessed simultaneously by two or
more nodes that are in a radio interference range—neighboring nodes may cause “conflict” or signal interference at
some nodes if transmitting at the same time on the same channel. In wireless sensor networks, controlling access to
the channel, generally known as medium access control (MAC), plays a key role in determining channel utilization,
network delays, and, more important, power consumption, also influencing congestion and fairness in channel
usage.

������������	
������	

�
�������
������
��	���
�����
����	
����

 96

The message contains the sender's time stamp of the global time at transmission. The receiver notes its local time
when the message is received. Having both the sender's transmission time and the reception time, the receiver can
estimate the clock offset. The message is MAC layer time stamped, as in TPSN, on both the sending and receiving
side. To keep high precision compensation for clock drift is needed. FTSP uses linear regression for this. FTSP was
designed for large multi-hop networks. The root is elected dynamically and periodically reelected and is responsible
for keeping the global time of the network. The receiving nodes will synchronize themselves to the root node and
will organize in an ad hoc fashion to communicate the timing information amongst all nodes. The network structure
is mesh type topology instead of a tree topology as in TPSN. Typical WSN operate in areas larger than the broadcast
range of a single node; therefore, the FTSP provides multi-hop synchronization. The root of the network—a single,
dynamically (re) elected node—maintains the global time and all other nodes synchronize their clocks to that of the
root. The nodes form an adhoc structure to transfer the global time from the root to all the nodes, as opposed to a
fixed spanning-tree based approach. This saves the initial phase of establishing the tree and is more robust against
node and link failures and dynamic topology changes.

3.2. SECURE TIME SYNCHRONIZATION

The primary functionality of wireless sensor networks is to sense the environment and transmit the acquired
information to base stations for further processing with secure time information. Studies and experiences (e.g., [10-
14, 22-24]) have shown that considering security in the design stage is the best way to provide security for sensor
network routing. Several recent contributions to the literature have addressed security and privacy issues in sensor
networks [9-13,16] for routing, but it is difficult to implement along with existing time synchronization approaches
because they require lots of computations for routing. Thus, the existing time synchronization schemes in sensor
networks were not designed with security in mind, thus leaving them vulnerable to security attacks in addition to
establishing the need of secure time sync for individual sensor nodes. Security in RBS Scheme is vulnerable and it is
prone to many attacks [11]. Taking the RBS scheme as an example, an attacker may launch different kinds of attacks
to break the protocol.

In [11], the authors discuss four different type of attacks. The first attack is called masquerade attack. Suppose a
node A sends out a reference beacon to its two neighbors B and C. An attacker E can pretend to be B and exchange
wrong time information with C, disrupting the time synchronization process between B and C. A second attack is
called replay attack. Using the same scenario in the first attack, the attacker E can replay B’s old timing packets,
misleading C to be synchronized to a wrong time. A third attack is called message manipulation attack. In this
attack, an attacker may drop, modify, or even forge the exchanged timing messages to interrupt the time
synchronization process.

For the message dropping attack, the attacker can selectively drop the packets and thus prolong the converging time
of the synchronization process. This can be done on a random or arbitrary basis, making it more difficult to be
detected. For the message forging attack, the attacker can forge many reference beacon messages and flood the
network. This not only incorrectly synchronizes the neighbors, but also causes those nodes to consume power to
process these unwanted and faked timing messages. If some nodes run out of power, coverage holes or network
partitions may appear. The last type of attack is the Delay attack, where, the attacker deliberately delays some of the
time messages (e.g., the beacon message in the RBS scheme) so as to fail the time synchronization process. It is
noted that this attack cannot be defended against by cryptographic techniques. We can certainly employ some
cryptographic techniques [12][13] to address the aforementioned attacks. For example, providing authentication of
every exchanged message will prevent an outside attacker from impersonating other nodes or altering the content of
an exchanged message. Adding a sequence number to beacon messages or other messages will prevent message
replay attacks.

For RBS, an attack on the synchronization can be executed easily. RBS works by receiver to receiver
synchronization in which both nodes receive the reference beacon and then calculate their offset with one another.
An attack would be as simple as compromising one of the nodes with an incorrect time. The non compromised node
will then calculate an incorrect offset during the exchange period. Remember TPSN is a sender to receiver tree
based protocol with two phases, the level discovery phase and the synchronization phase. Both of the phases are
initiated by the root node. In the synchronization phase the level number and the time are both sent through the tree.

������������	
������	

�
�������
������
��	���
�����
����	
����

 97

An attack would simply be to compromise a non-root node with the incorrect time. This will propagate through the
tree and the closer the compromised node is to the root node, the more incorrect synchronization will occur. Also a
node could lie about its level. That would cause other nodes to request synchronization information in which it could
give inaccurate information. That node also could refuse to participate in the level discovery phase, which could
eliminate its children from the network. The fundamental problem in FTSP [9] is that it allows for any node to elect
itself the root after a period of time of not receiving the synchronization information. A corrupt node could claim
itself to be the root and now the other nodes will respond to its timing information instead of the correct information
from the real root node. The will of course propagate through the network until all nodes have incorrectly calculated
their skew and offset. Since none of the protocols were designed with security in mind, attacks on the
synchronization are easily executed by following the rules of the protocol. In the sender to receiver synchronization,
an attack will institute more damage because it will propagate through the network. Several papers have studies on
security issues [8-13] in sensor network which are attack resilient.

We now discuss another class of sync protocol called the Gradient Time Synchronization Protocol (GTSP) which is
a completely distributed time synchronization protocol [14]. In this sync method, nodes periodically broadcast
synchronization beacons to their neighbors. Using a simple update algorithm, they try to agree on a common logical
clock with their neighbors. It can be shown by theoretical analysis that by employing this algorithm, the logical
clock of nodes converges to a common logical clock. GTSP relies on local information only, making it robust to
node failures and changes in the network topology. Experiments on a test bed setup of 20 Mica2 nodes and
simulations showed that the remaining synchronization error between neighbors is small while still maintaining an
acceptable global skew. Furthermore, the authors have shown that GTSP can improve the synchronization error
between neighboring sensor nodes compared to tree-based time synchronization protocols. The FTSP clock
synchronization algorithm exhibits an error that grows exponentially with the size of the network, for instance [9].
Since the involved parameters are small, the error only becomes visible in midsize networks of about 10-20 nodes.
In contrast, the authors of another class of sync protocol PulseSync, discussed a new clock synchronization
algorithm that is asymptotically optimal. They evaluate PulseSync on a Mica2 testbed, and by simulation on larger
networks. On a 20 node network, the prototype implementation of PulseSync outperforms FTSP by a factor of 5.
Theory and simulation show that for larger networks, PulseSync offers an accuracy which is several orders of
magnitude better than FTSP [9].

Figure 3: Synchronization error in (µS) vs number of Hops for FTSP and PulseSync

 FTSP PulseSync

Distance (Hops) Distance (Hops)

 S
yn

ch
ro

ni
za

tio
n

er
ro

r
(µ

s)

������������	
������	

�
�������
������
��	���
�����
����	
����

 98

To round off the presentation, the PulseSync, investigate several optimization issues,e.g. media access and local
skew[15].Furthermore, the authors of PulseSync claim that PulseSync converges rapidly to a common logical time
since the time information is flooded in a single round from the reference node to all other nodes throughout the
network. The authors proved that the PulseSync and FTSP have the same message complexity (one message per
node and synchronization period), the fast flooding approach of Pulse-Sync achieves significantly improved
synchronization accuracy on the same network topology. Furthermore, their experiments confirm with a finding that
the synchronization error to root node must increase exponentially when using FTSP, while PulseSync performs
better as shown in above figure[15].

3.3. ENERGY CONSUMPTION OF SYNCHRONIZATION SCHEMES
Most wireless sensor networks to date employ nodes with limited power, processing, storage, and communication
capabilities. Additionally, they typically include relatively simple sensors (e.g., light, temperature, pressure,
magnetometer, etc.). In these deployments, energy consumed by sensing-related tasks is relatively low, which means
that the communication subsystem (i.e., the radio) dominates energy consumption. RBS and TPSN both achieve
accurate clock synchronization within a few microseconds of uncertainty. However, they are both designed for
networks with a small number of sensors and are not specifically geared towards energy conservation; although
these algorithms will work for larger networks, their energy consumption becomes inefficient and network
connectivity is not maintained once nodes begin losing power. Simulating each of these methods shows that
synchronizing a large sensor network requires an unnecessarily large number of transmissions, which will quickly
deplete sensors and reduce the network’s coverage area.

The hybrid algorithm proposed in [7] chooses RBS over TPSN based on receiver threshold and number of receivers.
The results from Table 3.1. show that RBS’s energy consumption is more dependent on the density of sensors in a
given area. In contrast, TPSN and the hybrid algorithm are less affected by the size of the network. When the
network size increases from 250 sensors to 500 sensors (for the same area of 1 km2), RBS becomes less energy
efficient than TPSN. The hybrid algorithm outperforms TPSN by 15.7%, while outperforming RBS by 20.8%. Once
the network increases to 750 sensors, RBS clearly becomes less efficient than TPSN. The hybrid algorithm still
outperforms TPSN by 12.7%. Since RBS consumes more energy, the hybrid algorithm now outperforms it by 32%.
Hybrid algorithm, the power reduction is even more drastic in large multi-hop sensor networks.
The method also improves upon these algorithms by maintaining a large area of coverage even when some
sensors lose power [7][17]. Please see Table 3.1 for the savings on energy in milliWatts range with no of sensors
used[]. For the MICA2Dot platform [18], a reception uses approximately 24 mW of power, while a transmission
requires 75 mW at -5 dBm.

Sensors 250 500 750 1000 1250 1500
RBS 466 1046 1844 2762 3756 5060

TPSN 511 983 1434 1885 2331 2770
Hybrid 404 828 1253 1672 2095 2514

Savings over RBS 9.29% 20.8% 32.0% 39.4% 44.2% 50.3%

Savings over TPSN 20.8% 15.7% 12.7% 11.2% 10.1% 9.2%

TABLE 3.1: AVERAGE ENERGY CONSUMPTION (mW) IN RBS, TPSN & HYBRID SYNC METHODS

������������	
������	

�
�������
������
��	���
�����
����	
����

 99

3.4. POST-FACTO SYNCHRONIZATION

To save energy in a sensor network, it is a desirable to keep nodes in a low-power state, if not turned off completely,
for as long as possible. Sensor network hardware is often designed with this goal in mind; processor have various
“sleep” modes or are capable of powering down high-energy peripherals when not in use. In post-facto scheme
proposed by Jeremy Elson and Deborah Estrin [3], nodes' clocks are normally unsynchronized. When a stimulus
(signal) arrives, each node records the time of the stimulus with respect to its own local clock. Immediately
afterwards, a “third party” node acting as a beacon broadcasts a synchronization pulse to all nodes in the area using
its radio. Nodes that receive this pulse use it as an instantaneous time reference and can normalize their stimulus
timestamps with respect to that reference. This kind of synchronization is not applicable in all situations, it is limited
in scope to the transmit range of the beacon and creates only an “instant” of synchronized time as discussed in the
paper [3].

This makes it inappropriate for an application that needs to communicate a timestamp over long distances or times.
However, it does provide exactly the service necessary for beam-forming applications, localization systems, and
other situations in which we need to compare the relative arrival times of a signal at a set of spatially local detectors.
Post-facto sync method need to be tested in real WSN.

3.5. GLOBAL CLOCK SYNCHRONIZATION

Many emerging sensor network applications require that the sensors in the network agree on the time. A global
clock in a sensor system will help process and analyze the data correctly and predict future system behavior. For
example, in the vehicle tracking application, each sensor may know the time when a vehicle is approaching. By
matching the sensor location and sensing time, the sensor system may predict the vehicle moving direction and
speed. Without a global agreement on time, the data from different sensors cannot be matched up. There are several
algorithms developed and studies in literatures [19] [20] using global sync messages such as the basic and popular
all-node approach by Qun Li and Rus [19] shown in Figure 4. The main idea of their algorithm is to send a message
along a loop and record the initial time and the end time of the message. Then by using the message traveling time,
we can average the time to different segments of the loop and smooth over the error of the clocks. But the all node
method are not scalable for very large networks. The initiating node may encounter failure and thus the approach is
not fault tolerant. The nodes that participate in the synchronization must execute the related code approximately at
the same time, which may be too hard in a large system.

 Figure 4: Qun Li’s - All-node method

There are also approaches which uses diffusion techniques [21] either they diffuse low or high or average clock
readings from one node to next or neighboring node. The average diffusion based algorithm is more robust and
reasonable, Since they use global average value as the ultimate synchronization clock reading. The main idea of the

������������	
������	

�
�������
������
��	���
�����
����	
����

 100

algorithms is to average all the clock time readings and set each clock to the average time. A node with high clock
time reading diffuses that time value to its neighbors and levels down its clock time. A node with low time reading
absorbs some of the values from its neighbors and increases its value. After a certain number of rounds of diffusion
the clock in each sensor will have the same value, but these methods use global time information sent to all the
nodes and thus they are not scalable for very large networks. The initiating node may encounter failure and thus the
approach is not fault tolerant. The nodes that participate in the Synchronization must execute the related code
approximately at the same time, which may be too hard in a large system. Diffusion techniques may avoid this
scalability problem, where synchronization is done locally by spreading the local synchronization information to the
whole system. It can choose various global values to synchronize the network provided that each node in the overall
network agrees to change its clock reading to the consensus value. An easy and possible way is to choose the highest
or lowest reading over the network. Several paper contributions were made on diffusion techniques [21].

A master-slave protocol assigns one node as the master and the other nodes as slaves. The slave nodes consider the
local clock reading of the master as the reference time and attempt to synchronize with the master. In general, the
master node requires CPU resources proportional to the number of slaves, and nodes with powerful processors or
lighter loads are assigned to be the master node. Mock et al. [25] have adopted the IEEE 802.11 clock
synchronization protocol due to its simple, non-redundant, master/slave structure. Ping’s protocol [26] also adheres
to the master-slave mode.

Nazemi et.al [27] used passive clustering and linear regression Scalable Light weight Time Sync protocol (SLTP) to
reduce the energy consumption of network nodes and also decrease the overhead of creating and maintaining the
clusters. Moreover SLTP uses linear regression to compute the time. Therefore, it can calculate the clock skew and
offset between each node and its cluster head in order to estimate the local time of remote nodes in the future or the
past. Simulation results using NS2 Simulator show that the SLTP can gain considerable improvements in power
consumption, accuracy and scalability in comparison to similar algorithms [27][15]

TABLE 3.2: A COMPARISON CHART OF VARIOUS TIME SYNC SCHEMES AND METRICS

Time Sync
methods

Accuracy Energy
Efficiency

Complexity Scalability Fault
Tolerance

Byte
Alignment

1. RBS Low, 29.1µs is the average
error per hop

High High Good No Note Handled

2. TPSN 16.9µs per hop High Low Poor No Not Handled

3. FTSP 1.48 µs per hop High High Average No Handled

4. GTSP Average network wide
error, 14µs,
Avg. neighbor sync error
is 4µs

High Average Good Yes Not Handled

5. PulseSync 4.4µs (compared to
23.96µs for FTSP between
any two nodes)

High High Good No Unknown

6.All-node Low Low Low No No No

7.Diffusion
techniques

Average Average High Good No No

8. Mock et.al High Low Low NA Yes Unknown

9 .Ganeriwal [4, 5] High Average Low Good Yes No

10 .Ping High High Low Good Yes Unknown

11.SLTP High High Average High No NA

������������	
������	

�
�������
������
��	���
�����
����	
����

 101

4. GROUP SYNCHRONIZATION

All current approaches use the technique of pair wise synchronization but this is insufficient in cases where a group
of nodes need to be synchronized for instance in tracking application. In a group sync model, a single beacon
beacons, all receivers respond with their offset to the beacon. The beacon has one measurement to relate each pair of
nodes which either form a sender-receiver (sender-receiver) pair or a receiver-receiver (receiver-receiver) pair. This
approach will have a 4 times extra cost but will result in only one measurement between any pair of sensor nodes
resulting in achieving better accuracy readings. One way to do this through beam-forming arrays, which can perform
“spatial filtering”, receiving only signals arriving from a certain direction. This depends on the relative time offsets
of the array’s sensors. Another problem in Synchronization algorithm is duplicate detection of events. The time of
an event helps nodes in the cluster determine if they are seeing two distinct real-world events, or a single event seen
from two vantage points. If they are indeed seeing the same event, they can further fuse their observations to get
much meaningful information about the event. All these applications will function accurately only if the
synchronization error between nodes in a group is bounded. So far, all the existing work in the research literatures
concentrates on establishing pair wise relationships between a pair of nodes at a given instant of time. However,
there is need of developing a unified framework that uses one optical beacon to synchronize all nodes in group or
network wide at the instant of time[16][15][17].

5. CONCLUSION

A family of existing time synchronization algorithms are studied and a comparative summary has been presented in
the paper. As increasing demand in use and promising application of sensor network are emerging, the need of very
precise secure clock measurement algorithms are vital for error free clock time measurements whether it is loosely
or densely packed or it is deployed in star or mesh or any other framework. The authors strongly believe that using
this comparative survey paper, it will make future researchers to explore existing time sync approaches with much
easier and will give them a choice to implement their application based on our study on various time sync protocols.

6. ACKNOWLEDGEMENTS

The authors are thankful to all synchronization papers that are credited as references below. This is a comprehensive
study paper on synchronization algorithms or approaches collectively in one paper form cited from various
contributions from the authors mentioned below.

REFERENCES

[1] S. Ganeriwal, M. Srivastava, “Timing-sync Protocol for Sensor Networks (TPSN) on Berkeley Motes,” NESL, 2003.

 [2] NTP: The Network Time Protocol, http://www.ntp.org/.

[3] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchronization using reference broadcasts. In ACM OSDI
2002,Boston, MA, December 2002.

[4] Kay Romer. Time synchronization in ad hoc networks. In ACM
MobiHoc, Long Beach, CA, Oct. 2001.

[5] S. Ganeriwal, R. Kumar, M. Srivastava. “Timing Sync Protocol for Sensor Networks,” ACM SenSys ’03, 2003.

 [6] Chipcon CC1000 Radio Datasheet,http://www.chipcon.com/files/CC1000_Data_Sheet_2_1.pdf

[7] T Robert Akl Yanos Saravanos, The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC'07) Hybrid Energy – aware Synchronization algorithm in Wireless sensor networks, 2007.

[8]. J.V. Greunen, and J. Rabaey, Lightweight Time Synchronization for Sensor Networks", Proceedings of the 2nd ACM International
Conference on Wireless Sensor Networks and Applications(WSNA), San Diego, CA, September 2003.

[9] Maroti, M., Kusy, B., Simon, G., and Ledeczi, A., The Flooding Time Synchronization Protocol, Proc. of the 2nd ACN Conf. on Embedded
Networked Sensor Systems (SenSys), Baltimore, Maryland, 2004, pp. 39–49

������������	
������	

�
�������
������
��	���
�����
����	
����

 102

[10] C. Karlof and D. Wagner, “Secure Routing in Sensor Networks:Attacks and Countermeasures,” Proc. 1st IEEE Int’l.Wksp. Sensor Network
Protocols and Apps., 2003.

[11] H. Chan and A. Perrig, “Security and Privacy in Sensor Networks,” Computer, vol. 36, no. 10, Oct. 2003, pp. 103–05.

[12] H. Chan, A. Perrig, and D. Song, “Random Key Predistribution
Schemes for Sensor Networks,” Proc. 2003 IEEE Symp. Sec. and Privacy, May 2003, pp. 197–213.

[13] D. Liu and P. Ning, “Establishing Pairwise Keys in Distributed Sensor Networks,” Proc. 10th ACM Conf. Comp. and Commun. Sec., 2003,
pp. 52–61.

[14] Philipp Sommer, Roger, Wattenhofer, Gradient clock synchronization in wireless sensor networks, Proceedings of the International
Conference on Information Processing in Sensor Networks,2009

[15] Optimal Clock Synchronization in Networks, Christoph Lenzen et al., Sensys 2009.

[16] Saurabh Ganeriwal, Srdjan Capkun, Chih-Chieh Han, Mani B. Srivastava , Secure Time Synchronization Service for Sensor Networks,
WiSE’05, September 2, 2005, Cologne, Germany

[17] G. Asada, M. Dong, T. Lin, F. Newberg, G. Pottie, W. Kaiser, and H. Marcy. Wireless Integrated Network Sensors: Low Power Systems on
a Chip. In Proceedings of the European Solid State Circuits Conference, 1998.

[18] Crossbow MICA2Dot Wireless Microsensor Mote, Document Part Number 6020-0043-05 Rev A, http://www.xbow.com/Products/
Product_pdf_files/Wireless_pdf/MICA2DOT_Datasheet.pdf.

[19] Qun Li, Daniela Rus “Global Clock Synchronization in Sensor Networks, IEEE INFOCOM 2004

[20] Cheng Liao, Margaret Martonosi, and Douglas W. Clark. Experience with an adaptive globally-synchronizing clock algorithm. In ACM
SPAA, pages 106–114, New York, June 1999.

[21] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: A scalable and robust communication paradigm for
sensor networks. In MobiCOM 2000, Boston, Massachusetts, August 2000.

[22] H. Song, S. Zhu, and G. Cao, “Attack-Resilient Time Synchronization for Wireless Sensor Networks,” Proc. 2nd IEEE Int’l. Conf. Mobile
Ad Hoc and Sensor Sys.,Washington, DC, Nov. 2005.

[23] N. Gura et al., “Comparing Elliptic Curve Cryptography and RSA on 8-Bit CPUs,” Proc. 6th Int’l. Wksp. Cryptographic Hardware and
Embedded Sys., Boston, MA, Aug. 2004.

[24] D. Malan, M. Welsh, and M. D. Smith, “A Public-Key Infrastructure for Key Distribution in TinyOS Based on Elliptic Curve
Cryptography,” Proc. 1st IEEE Int’l. Conf. Commun. and Networks, Santa Clara, CA, Oct. 2004.

[25] M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Continuous Clock Synchronization in Wireless Real-time Applications.Proc. 19th IEEE
Symposium on Reliable Distributed Systems (SRDS-00), pp. 125–133, Oct. 2000.

[26]S. Ping. Delay Measurement Time Synchronization for Wireless Sensor Networks. Intel Research, IRB-TR-03-013, June 2003.

[27] SLTP: Scalable Lightweight Time Synchronization Protocol for Wireless Sensor Network Sepideh Nazemi Gelyan, Arash Nasiri Eghbali,
Laleh Roustapoor, Seyed Amir Yahyavi Firouz Abadi, and Mehdi Dehghan, Springer-Verlag Berlin Heidelberg 2007.

Authors

Prakash Ranganathan is a faculty in Electrical Engineering at University of North Dakota, Grand Forks. He earned his undergraduate degree from
University of Madras, India and graduate degree from North Dakota State University, Fargo. He is currently teaching Electric Circuits, Computer
Aided Measurements and controls. His research interests are in Sensor Networks, Smart Grid technologies and Engineering Education. He is
active member of IEEE and ASEE.

Kendall E. Nygard is Professor of Computer Science and Operations Research at North Dakota State University where he has served on the
faculty since 1977. From 1996 to 2005 he served as Department Chair. In 1986 and 1987 he was on the adjunct faculty in operations research at
the Naval Postgraduate School in Monterey, California. In 1994 and 1995 he was Director of the Scientific Computing Center at the University of
North Dakota in Grand Forks. In 1984 he was a visiting scientist at the Air Force Logistics Command at Wright-Patterson AFB in Ohio. In 2000
he was a research fellow at the Air Vehicle Directorate of the Air Force Research Lab. His research areas involve combinatorial optimization
methods, with applications to management of networks and sensor networks, cooperative mission control for unmanned air vehicles (UAVs),
computer-based transportation analysis, and bioinformatics.

