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Abstract 

Malicious software is abundant in a world of innumerable computer users, who are constantly faced with 

these threats from various sources like the internet, local networks and portable drives. Malware is 

potentially low to high risk and can cause systems to function incorrectly, steal data and even crash. 

Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed at 

breaching the security of the system and compromising user privacy. Typically, anti-virus software is 

based on a signature definition system which keeps updating from the internet and thus keeping track of 

known viruses. While this may be sufficient for home-users, a security risk from a new virus could 

threaten an entire enterprise network.  

This paper proposes a new and more sophisticated antivirus engine that can not only scan files, but also 

build knowledge and detect files as potential viruses. This is done by extracting system API calls made by 

various normal and harmful executable, and using machine learning algorithms to classify and hence, 

rank files on a scale of security risk. While such a system is processor heavy, it is very effective when 

used centrally to protect an enterprise network which maybe more prone to such threats. 

Keywords: Malware detection, virus, data mining, Information gain, random forest, machine 

learning, classification, enterprise, network, security. 

 

1. Introduction 

Malware, short for malicious software, consists of programming (code, scripts, active content, 

and other software) designed to disrupt or deny operation, gather information that leads to loss 

of privacy or exploitation, gain unauthorized access to system resources, and other abusive 

behaviour [1]. It is a general term used to define a variety of forms of hostile, intrusive, or 

annoying software or program code. Software is considered to be malware based on the 

perceived intent of the creator rather than any particular features. Malware includes computer 

viruses, worms, Trojan horses, spyware, dishonest adware, crime-ware, most rootkits, and other 

malicious and unwanted software or program [2]. 

In 2008, Symantec published a report that "the release rate of malicious code and other 

unwanted programs may be exceeding that of legitimate software applications.” According to 

F-Secure, "As much malware produced in 2007 as in the previous 20 years altogether.” [3]. 

While these may mean nothing to the average home user, these statistics are alarming keeping 
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in mind the financial implications of such threats to enterprises in case such threats penetrate 

and compromise the large volumes of data stored and transacted upon.  

Since the rise of widespread Internet access, malicious software has been designed for a profit, 

for examples forced advertising. For instance, since 2003, the majority of widespread viruses 

and worms have been designed to take control of users' computers for black-market 

exploitation. Another category of malware, spyware, - programs designed to monitor users' web 

browsing and steal private information. Spyware programs do not spread like viruses, instead 

are installed by exploiting security holes or are packaged with user-installed software, such as 

peer-to-peer applications [4] [5]. 

Clearly, there is a very urgent need to find, not just a suitable method to detect infected files, 

but too build a smart engine that can detect new viruses by studying the structure of system 

calls made by malware. 

2. Current Antivirus Software 

Antivirus software is used to prevent, detect, and remove malware, including but not limited to 

computer viruses, computer worm, Trojan horses, spyware and adware. A variety of strategies 

are typically employed by the anti-virus engines. Signature-based detection involves searching 

for known patterns of data within executable code. However, it is possible for a computer to be 

infected with new virus for which no signatures exist [6]. To counter such “zero-day” threats, 

heuristics can be used, that identify new viruses or variants of existing viruses by looking for 

known malicious code. Some antivirus can also make predictions by executing files in a 

sandbox and analysing results. 

Often, antivirus software can impair a computer's performance. Any incorrect decision may 

lead to a security breach, since it runs at the highly trusted kernel level of the operating system. 

If the antivirus software employs heuristic detection, success depends on achieving the right 

balance between false positives and false negatives. Today, malware may no longer be 

executable files. Powerful macros in Microsoft Word could also present a security risk. 

Traditionally, antivirus software heavily relied upon signatures to identify malware. However, 

because of newer kinds of malware, signature-based approaches are no longer effective [7]. 

Although standard antivirus can effectively contain virus outbreaks, for large enterprises, any 

breach could be potentially fatal. Virus makes are employing "oligomorphic", "polymorphic" 

and, "metamorphic" viruses, which encrypt parts of themselves or modify themselves as a 

method of disguise, so as to not match virus signatures in the dictionary [8]. 

Studies in 2007 showed that the effectiveness of antivirus software had decreased drastically, 

particularly against unknown or zero day attacks. Detection rates have dropped from 40-50% in 

2006 to 20-30% in 2007. The problem is magnified by the changing intent of virus makers. 

Independent testing on all the major virus scanners consistently shows that none provide 100% 

virus detection. The best ones provided as high as 99.6% detection, while the lowest provided 

only 81.8% in tests conducted in February 2010 [25]. All virus scanners produce false positive 

results as well, identifying benign files as malware. 

3. Our Approach 

As we have seen, current antivirus engine techniques are not optimum in detecting viruses in 

real time. They may be useful in controlling viruses once they infect systems, which is again, 

fateful for enterprises [9] [10]. This research is thus aimed at a central solution that works at the 

firewall level of the enterprise network. The complete system diagram is shown in Figure 1 and 

our process diagram is shown in Figure 2. 
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Figure 1: Network Diagram of the entire system 

 

 

Figure 2: Process Diagram of our System 

 

Portable Executable (PE) 

This format is a file format for executables, object code and DLLs, used in 32-bit and 64-bit 

versions of Windows operating systems [23]. The term "portable" refers to the format's 

versatility in numerous environments of operating system software architecture. The PE format 

is a data structure that encapsulates the information necessary for the Windows OS loader to 

manage the wrapped executable code. This includes dynamic library references for linking, API 

export and import tables, resource management data and thread-local storage data. On NT 

operating systems, the PE format is used for EXE, DLL, SYS (device driver), and other file 

types. 
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A PE file consists of a number of headers and sections that tell the dynamic linker how to map 

the file into memory. An executable image consists of several different regions, each of which 

requires different memory protection. The Import address table (IAT), which is used as a 

lookup table when the application is calling a function in a different module. Because a 

compiled program cannot know the memory location of the libraries it depends upon, an 

indirect jump is required whenever an API call is made. As the dynamic linker loads modules 

and joins them together, it writes actual addresses into the IAT slots, so that they point to the 

memory locations of the corresponding library functions. 

In our research, we extracted the PE Header from numerous infected and normal executables 

and using the IAT, extracted various API calls and stored them into a data mine [11] [12]. We 

then derived Information Gain (IG) for each function. 

 

Algorithm for Information Gain: 

The entropy of a variable X is defined as: 

  

 

Where in H(P), the  P(X) is as follows: 
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And the entropy of X after observing values of another variable Y is defined as: 

  

 

The amount by which the entropy of X decreases reflects additional information about X 

provided by Y is called information gain, given by: 

IG(X | Y) = H(X) - H(X | Y) 

Machine learning, a branch of artificial intelligence, is a scientific discipline concerned with the 

design and development of algorithms that allow computers to evolve behaviours based on 

empirical data, such as from sensor data or databases [14]. A learner can take advantage of data 

to capture characteristics of interest of their unknown underlying probability distribution. Data 

can be seen as examples that illustrate relations between observed variables. A major focus of 

machine learning research is to automatically learn to recognize complex patterns and make 

intelligent decisions based on data [15]. 

Further, we apply the Random Forest Algorithm (RFA) [16]. This is a machine learning 

classification algorithm to construct the classifier to detect malware. A Random Forest is a 

classifier that is comprised of a collection of decision tree predictors. Each individual tree is 

trained on a partial, independently sampled, set of instances selected from the complete training 

set. The predicted output class of a classified instance is the most frequent class output of the 

individual trees [17] [18]. 

4. Obtained Results 

To determine whether our method can provide successful results, we extracted data from over 

5000 executables. These have been a combination of normal and infected files [19] [22] [24]. 
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The first step was to create a hash map of all the executables and functions (Figure 2). After 

that, the information gain algorithm is used to choose only the top 80% of the functions (Figure 

3), which are most likely to be present in harmful files [20]. The Information Gain is further 

corrected by using this formula: 

 

This formula helps in correcting the error by adding or subtracting the average value from the 

information gain value calculated. This is similar to the error correction using a standard 

deviation. 

 

The results of the same are shown below: 

 

Figure 3: Hash Map of EXEs and API Functions 

 

After running the information gain algorithm, these are the top functions: 

 

Figure 4: Information Gain values of API Functions 
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Using this data, we run the Random Forest Algorithm, yielding the following functions: 

Total Instances        4500 

Correctly Classified Instances         4470  99.5556 % 

Incorrectly Classified Instances        30  0.4444 % 

Table 1: Experiment Results 

Algorithm TP FP DR ACY 

Decision Tree 0.9 0.1 90      % 90    % 

Naive Bayes 0.95 0.05 95  % 95% 

Random Forest 0.97 0.03 97  % 97% 

Our Proposed Method 0.996 0.003 99% 98% 

 

5. Conclusion 

In this research, we have proposed a malware detection module based on advanced data mining 

and machine learning. While such a method may not be suitable for home users, being very 

processor heavy, this can be implemented at enterprise gateway level to act as a central 

antivirus engine to supplement antiviruses present on end user computers. This will not only 

easily detect known viruses, but act as a knowledge that will detect newer forms of harmful 

files. While a costly model requiring costly infrastructure, it can help in protecting invaluable 

enterprise data from security threat, and prevent immense financial damage. 
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