
International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

DOI: 10.5121/ijnlc.2016.5104                                                                                                                        45 

  
A COMPREHENSIVE ANALYSIS OF STEMMERS 

AVAILABLE FOR INDIC LANGUAGES  

 

Harshali B. Patil, B. V. Pawar, and Ajay S. Patil
 

 

School of Computer Sciences, North Maharashtra University, Jalgaon, India 
 

ABSTRACT 

 
Stemming is the process of term conflation. It conflates all the word variants to a common form called as 

stem. It plays significant role in numerous Natural Language Processing (NLP) applications like 

morphological analysis, parsing, document summarization, text classification, part-of-speech tagging, 

question-answering system, machine translation, word sense disambiguation, information retrieval (IR), 

etc. Each of these tasks requires some pre-processing to be done. Stemming is one of the important building 

blocks for all these applications. This paper, presents an overview of various stemming techniques, 

evaluation criteria for stemmers and various existing stemmers for Indic languages.  

 

KEYWORDS 

 
Stemming, light weight, affix removal, HMM, n-gram, Indian languages   

 

1. INTRODUCTION 

 
In 21

st
 century the e-data in regional languages appearing on internet increased drastically. But 

due to the unavailability of NLP tools for these languages, access to this data is limited. The 

scarcity of tools has attracted the attention of researchers and industry persons towards the 

development of efficient systems for IR, text summarization, opinion mining, clustering, 

classifications etc., for regional languages. The inflected nature of a language poses several 

challenges for the automated processing of natural language data. In an information retrieval 

system that does not use any word normalization, search results are directly affected as many 

relevant documents are missed during the retrieval process. For instance, in case of the search 

query “stemmer”, the system will not return documents containing “stemming” or “stem” if the 

documents do not contain the term “stemmer”. Term conflation is the solution to these types of 

problems. In many natural languages several words sharing the same morphological variant (root) 

can be related to the same topic. Stemming is one of the popular term conflation techniques used 

as a preliminary step in many natural language processing tasks. In linguistics stem is the form 

that unifies the elements in a set of morphologically similar words. Stemming is the process 

which determines the stem of the given word. The goal of a stemming algorithm is to reduce 

variant word forms to a common morphological root, called stem [1]. India is a multilingual 

country where there are 22 official languages which belongs to 4 different families of languages. 

Among these 22 languages, 15 languages belong to Indo-Aryan, 4 are Dravidian, 2 are Tibeto-

Burman, and 1 belongs to Munda family.  

 

This paper presents a comprehensive analysis of stemmers available for Indic languages. The 

paper is organized as follows: related work is provided in section 2. Section 3 describes stemming 

process in detail as well as existing stemmers for Indic languages and Section 4 concludes the 

paper. 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

46 

2. RELATED WORK 

 
Stemming is a well known research problem; but in early days of stemming it was studied only 

for English language.  Lovin’s stemmer is one of the oldest stemmer developed for English using 

context sensitive longest match technique. Other most notable stemmers for English includes: 

Porter’s stemmer, Dawson stemmer, Paice and Husk stemmer. Poter’s stemmer has became the 

de-facto standard for English language. Some non-English stemmers were presented during 1990-

2000, but study related to stemming for Indic languages has been started after 2000. The 

subsequent section discusses the work done related to stemmer development for Indic languages. 

Most of the work related to stemmer development has most recently initiated. Sarkar et.al (2012) 

surveyed stemmers for Bengali and has inferred that rule-based stemmers would be more suitable 

for Bengali, whereas suffix strippers may not be sufficient for Bengali. The author also concludes 

that POS tagged data and lexicon may improve performance in Bengali stemmer and accuracy 

based evaluation techniques should be appropriate for measuring stemmer performance [21]. 

Lakshmi et. al. (2014) reviewed literature related to stemming algorithms for Indian and Non-

Indian languages and found that there is a need to develop a language independent stemmer for 

all languages [27]. Madhurima et.al (2013) analyzed popular stemming algorithms supporting 

information retrieval system and has shown that no perfect stemmer has been designed so far to 

match all the requirements [22]. Kasthuri et. al (2014) comprehensively analyzed stemming 

algorithms for Indian and non-Indian languages, but the analysis focuses on only recent stemmers 

developed during 2010 to 2014 [8]. Bijal et. al overviewed stemming algorithms for Indian and 

non-Indian languages and discussed 9 stemmers related to Indian languages [24].  Rakholia et. al. 

(2014) presented comparative analysis of different stemmers and character recognition algorithms 

for Indian Gujarati script where the author discussed the stemmers available for Gujarati language 

only [25]. Sethi el.al (2014) presented a literature survey related to stemming algorithms for Odia 

language [26]. Patil et.al (2014) presented a part-of-speech tagger for Marathi language using 

limited training corpora and obtained 78.82% accuracy with the rule-based technique [41]. The 

study related to developing links of compound sentences for parsing through Marathi link 

grammar parser was carried out by Vaishali Patil et. al (2014) [42,43]. Nita Patil et.al (2016) 

surveyed the name entity recognition (NER) systems with respect to Indian and foreign languages 

and concludes that very less work on NER is reported for Indian languages like Marathi and 

Guajarati [44]. Juhi et.al (2013) improved the quality of Gujarati-Hindi machine translation 

through part-of-speech tagging and stemmer assisted transliteration and achieved 93.09% overall 

efficiency of the transliteration scheme [45]. Kridanta analysis for Sanskrit has been done by 

Murali et.al (2014) and achieved 92.75% and 95.37% precision and recall for Kridanta analyzer 

[46]. 

 

3. STEMMING 

 
The following section presents the detail information about stemming in terms of techniques used 

to develop stemmers, various types of errors generated while stemming, evaluation criteria for 

stemmers, and the existing stemmers for Indic languages. The major advantages and limitations 

provided by stemming for information retrieval are as given below: 

 
Advantages of stemming 

 

• Use of stemmers in IR decreases index size because for all the terms that belongs to single 

conflation class are reduced to single term. [16, 20]. 

• Reduction in index ultimately reduces the storage space required to store the inverted index 

file. file [16, 47, 48]. 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

47 

• Instead of using term variation if the stem is used for IR it increases the recall of retrieval 

systems. [2, 20]. 

• It is used as an important component for pre-processing in many applications. 

 

Limitations of stemming 

 

• Exceptional cases are also grouped together e.g – university and universal – univers 

• Sometimes decreases the retrieval performance 

 

3.1. Classification of stemming techniques 

 
The stemmers are broadly classified into two types: manual and automatic[48]. Manual stemmers 

stems the terms manually while automated stemmers can be developed by using various 

techniques. Simplest affix removal to a complicated technique like n-gram or Hidden Markov 

Model (HMM) has been used for development of stemmers for various languages. Fig. 1 

classifies the major stemming techniques used for stemmer development. 

 

 
 

Figure 1.  Some automatic stemming techniques 

 

3.1.1. Affix removal Technique    

 
These types of stemmers are also called as rule-based stemmers or suffix stripper. This is one of 

the oldest and simplest techniques used for stemmer development. These types of algorithms uses 

list of suffixes and with each suffix the criteria under which it may be removed from a word to 

leave a valid stem.  The affix removals based on rules are either done based on longest match 

basis or in iterative manner.  Fig 2 shows the procedure for affix removal stemmers. Some Indic 

stemmers developed using this technique includes [3, 5, 9, 12, 38, 39]. 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Affix removal stemming procedure 

 

Stem Stemming 

Affix list Stripping 

criteria 

Term 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

48 

The sample rule related to English affix removal / rule-based stemmer is as given below: 

 

 

 

 

 

3.1.2. Table / Dictionary lookup  

 
In this technique a table of corresponding terms along with their stem is used.  The stemming is 

done by searching the corresponding term in the table and retrieving the stem related to that term 

[48]. This technique is not popular for stemmer development due to limitations related to it: like 

dictionary of term-stem are not available for many languages, the accuracy totally depends on the 

size of dictionary, and dictionary are domain dependent; but this technique can be combined with 

rule-based technique to develop hybrid stemmers and increase the stemming accuracy. Fig. 3 

shows the process of stemming with help of dictionary / table lookup approach. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  Stemming procedure for dictionary / table lookup 

 

3.1.3. Statistical Techniques 

 
These types of stemmers uses some statistical measure for stemmer development like n-gram, 

HMM, clustering-based method, corpus-based method. Some of them are briefly explained in the 

following section. In this approach first the system is trained with the large corpus and then 

inflected forms are submitted to the trained module for stemming.  

 

N-gram: 

 
N-gram is a set of n consecutive characters extracted from a word. In this technique the similar 

words will have a high proportion of n-grams in common. The n-gram based stemmer calculates 

the association measure between the pair of terms based on shared unique diagrams. Then 

similarity measures are determined for all pairs of terms in the database, forming a similarity 

matrix. After that terms are clustered using single link clustering. [40] 

 

HMM: 

 
The HMM is a finite sequence of states, and a set of transitions between states that are taken 

based on the input observations. Each character comprising a word is considered as a state. All 

possible states are divided into two groups (roots and suffixes) Word building process are defined 

by the transitions between states. [29] 

 

 

 

Rule :-     IES ->  I 

E.g. :-    Ponies -> Poni 

 

Corpus 

Documents 

Dictionary Stemming 
Stemmed 

words 

List of words 

to be 

stemmed 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

49 

Clustering-based: 

 
In these types of stemmer first the Equivalence classes are discovered. Then a set of string 

distance measures are defined. The lexicon for a given text collection is clustered using complete 

linkage clustering technique to identify these equivalence classes. For some infrequent cases the 

author uses some post-processing for each cluster. [2]  

 

Corpus-based: 

 
First the set of potential suffixes are formed. Then the equivalence classes are generated by 

combining the common prefix and potential suffix information. Then the common prefix and 

potential suffixes help to recognize the better equivalence classes through mutual agreement. [14] 

 

3.1.4. Hybrid 

 
When any two or more approaches are combined for stemmer development then the stemmer 

becomes hybrid. Most hybrid stemmers were developed by combining lookup table with affix 

removal. They overcome the disadvantages of one technique by combining it with other; for 

example the lookup table based stemmer cannot able to stem if term is not present in the table so 

when this type of stemmer is combine with affix removal then it can be able to stem the term 

which are not present in dictionary. . The work related to hybrid stemmers for Indic languages has 

been reported by [4, 6, 15, 29, 30, 37]. 

 

3.2. Comparison of stemming techniques  

 

Table 1 compares the stemming techniques (rule based, dictionary lookup, statistical and hybrid) 

in terms of advantages and limitations.  

 
Table 1. Comparison of stemming techniques. 

 

 

3.3. Evaluation criteria for stemmers  

 
Stemmer is used as a pre-processing component for various NLP applications. There are several 

criteria that are used for evaluation of stemmers. Some of them include: correctness, retrieval 

effectiveness, and compression performance [48]. Generally stemmer is evaluated based on 

accuracy provided by it for stemming.  Paice has given a method to evaluate stemmers based on 

two types of error counting [33]. Under-stemming errors and over-stemming errors are used to 

Technique Advantages Limitations 

Rule-based Easy to implement, requires less memory, 

dictionary not required and 

fast  

Rule preparation needs to be done 

manually, Over-stemming and under-

stemming error rate is high. 

Dictionary 

lookup 

has capability to work with exceptional 

cases, under and over-stemming error rate 

is reduced and is fast  

Dictionary / table is not available, 

storage and retrieval overhead, 

accuracy depends on dictionary size. 

Statistical 

Technique 

Applicable for wide variety of languages 

 

Requires large corpus to train the 

system, takes more processing time, 

requires significant amount of memory. 

Hybrid  Combination of more than one technique, 

overcomes the drawbacks of each other. 

If dictionary lookup is combined then 

extra overhead for storage. 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

50 

evaluate the stemmer. Section 3.4 discusses these two types of errors. In IR few studies has 

evaluated stemmers as a method for index compression while some discuss the improvement in 

precision and recall for IR.  

 

Frakes and Fox has given the stemmer strength metrics. [31,32]  The degree to which a stemmer 

changes words that it stems is called stemmer strength. Some ways to measure stemmer strength 

are: 

•  The number of words per conflation class. 

•  Index compression factor. 

• The number of words and stems that differ. 

• The mean number of characters removed in forming stems. 

• The median and mean modified Hamming distance between words ad their stems. 

 

3.4. Types of errors in stemming 

 
Generally two types of errors i.e over-stemming and under-stemming errors are generated while 

stemming. [33] 

 

3.4.1. Over-stemming  

 
Over-stemming errors refers to the words that should not be grouped together by stemming but 

they are grouped together.  These types of errors will affect on precision of IR. 

 

3.4.2. Under-stemming  

 
Under-stemming refers to words that should be grouped together by stemming, but that are not 

grouped together. These type of errors tend to decrease the recall  in an IR search. 

 

3.5. Existing stemmers for Indic languages 

 
Significant work related to stemmer development has been done for non-Indic languages like 

English, Arabic, etc. whereas stemming work is in progress for Indic languages. The work related 

to stemmer development for various Indic languages has started after 2000. Till 2010, not much 

work related to stemmer development has been reported for Indic languages. India is a 

multilingual country where there are 22 official languages. Among these languages stemmers are 

available for 13 Indic languages. Some language independent stemmers are also available. Table 

2 presents the existing stemmers for Indic languages. 

 
Table 2.  Existing stemmers for Indic languages. 

 

Sr. 

No. 
Language 

Author & 

Reference  
Year Approach Accuracy / Results 

1 

Hindi 

 

Ramanathan 

el al [9] 
2003 

Suffix 

removal 

Results are favourable and 

can be used effectively in 

information retrieval 

2 Pande et. al 

[36] 
2008 Unsupervised 

89.90% 

3 

Dolamic 

et.al [11] 
2010 

Light and 

aggressive 

Improvements over no 

stemming: 19.3% with light 

stemmer, 27.6% with 

aggressive stemmer 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

51 

4 Mishra et. al  

[37] 
2012 

Hybrid 91.59% 

5 Gupta [5]  2014 Rule –based 83.65% 

6 

Bengali 

 

Sarkar et. al  

[39] 
2008 

Rule-based 89% and above 

7 Zahurul et. 

al [10] 
2008 

Lightweight 90.80% 

8 

Dolamic 

et.al [11] 
2010 

Light and 

aggressive 

Improvements over no 

stemming: 13.7% with light 

stemmer , 17.7% aggressive 

stemmer 

9 Das et.  Al 

[12] 
2011 Rule-based 

0.4748 (Mean Average 

Precision) 

10 

Punjabi 

 

Kumar et. al 

[13] 
2010 

Brute  force 

algorithm 

80.73% 

11 Gupta et.al 

[38] 
2011 Rule-based 

87.37% 

12 Joshi et.al 

[6] 
2014 Hybrid 

95.6% 

13 

Marathi 

 

Dolamic et. 

al [11] 
2010 

Light  and 

aggressive 

Improvements over no 

stemming: 13.9% with light 

stemmer , 41.6% with 

aggressive stemmer 

14 
Majgaonkar 

et. al [3] 
2010 

Rule -based 

and 

unsupervised 

80.7% for rule-based  

82.5% for unsupervised 

15 

Tamil 

 

Ramchanrda

n et. al [19] 
2012 

Suffix 

stripping 

84.79% 

16 Thangarasu 

et. al  [20] 
2013 

Light  

stemming  

83.28% 

17 
Odia 

 

Chaupattnai

k et. al [17] 
2012 

Suffix  

stripping 

88% 

18 Sethi [18] 2013 Light  weight 85% 

19 Assamese 
Saharia et. 

al.  [29] 
2013 

Hybrid (rule-

based and 

HMM) 

92% 

20 

Gujarati 

Patel el.al 

[4] 
2010 Hybrid 

67.86% 

21 
Suba et.al 

[30] 
2011 

Hybrid and 

rule-based 

90.70% for hybrid 

70.70% for rule-based 

22 Kannada Bhat [16] 2013 
Statistical  

technique 

88.82% 

23 Kokborok 
Patra et. al 

[23] 
2012 Rule –based 

80.02% for minimum suffix 

stripping, 85.13% for 

maximum suffix stripping  

24 Malayalam 
Prajitha et. 

al [35] 
2013 

Suffix  

stripping 

Computationally inexpensive 

and domain independent. 

25 Manipuri 
Meitei et. 

al.[15] 
2015 Hybrid 

86.29% 

26 Telugu Kumar[34] 2013 Unsupervised  85.40% 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

52 

27 Urdu 
Gupta 

et.al[28] 
2013 Rule-based  

86.50% 

28 

Language 

independent 

 

Majumder 

et. al [2] 
2007 

Clustering -

based  

Improvement in the recall for 

information retrieval 

29 
Paik et. al 

[14] 
2011 

Statistical 

technique 

Outperformance observed 

over the well known rule-

based stemmers for all 

languages under study 

30 Husain [7] 2012 

Length-based 

and 

frequency-

based 

unsupervised 

approach 

Length based 79.63% (Urdu), 

82.6% (Marathi), frequency 

based 84.27% (Urdu), 63.5% 

(Marathi) 

 

Various techniques were used for the evaluation of stemmers as mentioned in section 3.3. It is 

observed that the percentage accuracy provided by the stemmer was generally used to evaluate 

the stemmers. Form the literature review related to Indic languages stemmer development it is 

found that there is a difference in the accuracy levels provided by various types of stemmers.  

Table 3 presents the percentage accuracy obtained by using various approaches for Indic 

languages stemmer development.  

 
Table 3. Accuracy ranges for stemming techniques 

 

Sr. No. Technique 
Accuracy range        

(%) 

1 Rule –based 80.02 – 89 

2 Statistical 63.5 - 89.9 

3 Hybrid 67.86 - 95.6 

 

From table 3 it is observed that the maximum accuracy level provided by rule-based and 

statistical techniques are nearly same but there is lots of difference between the minimum 

accuracy levels achieved by both of these techniques. The maximum accuracy reported for Indic 

languages are obtained by the use of hybrid technique.  

 

4. CONCLUSION 

 
Stemmer is an important and basic component in many natural language processing applications. 

The accuracy of the stemmer strongly affects the results of the system in which it is used.  

Various stemmer development techniques are being explored and studied for different languages 

across the world. This paper surveyed the stemmers available for Indic languages. From literature 

survey it is observed that the work related to stemmer development for some of the Indic 

languages like Mizo, Santhali, etc has not been reported. The rule-based and light stemming 

techniques are widely used for stemmer development for languages like Hindi, Marathi, Tamil, 

etc. Hybrid approaches are also used by some researchers to avoid limitations of using single 

technique. Hybrid technique has reported more accuracy than the other techniques for some of the 

Indic languages. Though some work related to Indic stemmer development has been reported still 

much work needs to be done. The techniques like dictionary lookup or hybrid approach needs to 

be evaluated for the languages like Marathi, Hindi, etc. We intend to develop a stemmer for 

Marathi language that will be used for efficient information retrieval. The survey of the existing 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

53 

techniques will be helpful in deciding the applicability of these techniques for Marathi stemmer 

development. 

 

ACKNOWLEDGEMENTS 

 
The authors are thankful to University Grants Commission (UGC), New Delhi, India, for 

financial assistance for the research study under the scheme of Special Assistance Programme 

(SAP) of Departmental Research Support (DRS) Phase I. 

 

REFERENCES 

 
[1] M. Bacchin, N. Ferro, & M. Melucci (2002) “The Effectiveness of a Graph-based Algorithm for 

Stemming”, E.-P. Lim et. al (Eds.): ICADL 2002,  LNCS, 2555, pp 117-128. 

[2] P. Majumder, M. Mitra, S. K. Parui, and G. Kole , P. Mitra and K. Datta, (2007) “YASS: Yet Another 

Suffix Stripper”, ACM Transactions on Information Systems, Vol. 25, No. 4, Article 18. 

[3] M. M. Majgaonkar & T. J. Siddiqui, (2010) “Discovering Suffixes: A Case Study for Marathi 

Language”, Int. Journal on Computer Science and Engineering Vol. 02, No.08, pp 2716-2720. 

[4] P. Patel, K. Popat & P. Bhattacharyya, (2010) “Hybrid Stemmer for Gujarati”, Proc. of the 1st 

workshop on South & Southeast Asian Natural Language Processing, pp 51-55.  

[5] V. Gupta, (2014) “Hindi Rule-based Stemmer for Nouns”, International Journal of Advanced 

Research in Computer Science and Software Engineering, Vol. 4, No.1, pp 62-65. 

[6] G. Joshi & K. D. Garg, (2014) “ Enhanced Version of Punjabi Stemmer using Synset”, Int. Journal of 

Advanced Research in Computer Science and Software Engineering, Vol. 4, No.5, pp 1060-1065. 

[7] M. S. Husain, (2012) “An Unsupervised Approach to Develop Stemmer”, Int. Journal on Natural 

Language Computing Vol. 1, No.2, pp 15-23. 

[8] M. Kasthuri & S. B. R. Kumar, (2014) “A Comprehensive Analysis of Stemming Algorithms for 

Indian and non-Indian languages”, Int. Journal of Computer Engineering and Applications, Vol. 7, 

No. 3, pp 1-8. 

[9] A. Ramanathan, D. D Rao, (2003) “A Lightweight Stemmer for Hindi”, Proc. of the EACL. 

[10] M. D. Zahurul Islam, M.D.N. Uddin & M. Khan, (2007) “A Light Weight Stemmer for Bengali & Its 

Use in Spelling Checker”, Proc. of Ist Int. Conference on Digital Communications & Computer 

Applications. 

[11] L. Dolamic, J. Savvo, (2010) “Comparative Study of Indexing and Search Strategies for the Hindi, 

Marathi and Bengali Language”, Special Issue of ACM Transaction on Asian Language Information 

Processing on IR for Indian Languages Vol. 9 No. 3. 

[12] S. Das, P. Mitra, (2011) “A Rule Based Approach of Stemming  for Inflectional and Derivational 

Words in Bengali”, Students' Technology Symposium IEEE No. Date: 14-16 Jan. 2011 pp 134 - 136 

Kharagpur. 

[13] D. Kumar, P. Rana, (2011) “Stemming of Punjabi Words by Using Brute Force Technique”, Int. 

Journal of Engineering Science and Technology Vol. 3 No. 2 pp. 1351-1358. 

[14] J.H. Paik, & S. K. Parui, (2011) “A Fast Corpus Based Stemmer”, ACM Transactions on Asian 

Languages Information Processing Vol. 10, No. 2, Article No. 2. 

[15] S. P. Meitei, B. S. Purkayastha & H. M. Devi, (2015) “Development of a Manipuri Stemmer: A 

Hybrid Approach”, Int. Symposium on Advanced Computing & Communication 2015. 

[16] S. Bhat, (2013) “Statistical Stemming for Kannada”, The 4th Workshop on South and Southeast 

Asian NLP, Int. Joint Conference on Natural Language Processing, pp 25-33. 

[17] S. Chaupattnaik, S. S. Nanda, S. Mohanty, (2012) “A Suffix Stripping Algorithm for Odia Stemmer”, 

Int. Journal of Computational Linguistics and Natural Language Processing. 

[18] D. P. Sethi, (2013) “Design of Lightweight stemmer for Odia Derivational Suffixes”, Int. Journal of 

Advanced Research in Computer and Communication Engineering, Vol. 2,No. 12.  

[19] V. A. Ramchandran and I Krishnamurthi, (2012) “ An Iterative Suffix Stripping Tamil Stemmer”, 

Proceedings of the International Conference on Information Systems Design and Intelligent 

Applications, Advances in intelligent and Soft  Computing, Vol 132.  pp 583-590.  

[20] M. Thangarasu & R. Manavalan, (2013) “Stemmers for Tamil language: Performance Analysis”, M. 

Thangarasu et. al./ Int. Journal of Computer Science & Engineering Technology, Vol. 4, No. 7. 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

54 

[21] S. Sarkar, & S. Bandyopadhyay, (2012) “On the Evolution of Stemmers: A Study in the Context of 

Bengali Language”, Int. Journal of Computational Linguistics and Natural Language Processing, Vol. 

1, No. 2, pp 51-59. 

[22] Madhurima V., T. V. N. Rao, & L. S. Bhargavi, (2013) “ Analysis of Popular Stemming Algorithms 

Supporting Information Retrieval system”, Int. Journal of Computer Organization Trends, Vol. 3, No. 

9, pp 377-385. 

[23] B. G. Patra, K. Debbarma, S. Debbarma, D. Das, A. Das, S. Bandyopadhyay (2012) “A Light Weight 

Stemmer in Kokborok”, Proc. of the 24th Conference on Computational Linguistics and Speech 

Processing, pp -318-325. 

[24] D. Bijal, & S. Sanket, (2014) “Overview of Stemming Algorithms for Indian and Non-Indian 

Languages”, Int. Journal of Computer Science and Information Technologies, Vol. 5, No. 2, pp 1114-

1146. 

[25] R. M. Rakholia & J. R. Saini, (2014) “A Study and Comparative analysis of Different Stemmers and 

Character Recognition Algorithms for Indian Gujarati Script”, Int. Journal of Computer Applications, 

Vol. 106, No. 2, pp 45- 50. 

[26] D. P. Sethi, & S. K. Barik, (2014) “A Literature Survey: Stemming Algorithm for Odia Language”, 

Int. Journal of Advanced Research in Computer Engineering & Technology, Vol. 3. No. 1 pp 9- 11. 

[27] R. V. Lakshmi, & S. B.R. Kumar, (2014) “ Literature Review: Stemming Algorithms for Indian and 

Non-Indian Languages”, Int. Journal of Advanced Research in Computer Science & Technology, Vol. 

2, No. 3, pp. 349-352. 

[28] Gupta V., Joshi N., Mathur I. (2013), “Rule Based Stemmer in Urdu”, Proc. of 4th Int. Conference on 

Computer and communication Technology, pp 129-132. 

[29] N. Saharia, K. M. Konwar, U. Sharma, J. K. Kalita, (2013)  “An Improved Stemming Approach using 

HMM for a Highly Inflectional Language”, A. Gelbukh (Ed). CICLing 2013, part I, LNCS 7816, pp 

164-173. 

[30] K. Suba, D. Jiandani, & P. Bhattacharyya (2011) “Hybrid Inflectional Stemmer and Rule-based 

Derivational Stemmer for Gujarati”, Proc. of 2nd Workshop on south & Southeast Asian Natural 

Language Processing, pp 1-8.  

[31] S. R. Sirsat, V. Chavan, & H. S. Mahalle (2013), “Strength and Accuracy Analysis of Affix Removal 

Stemming Algorithms”, Int. Journal of Computer Science and Information Technologies, Vol. 4, 

No.2, pp 265-269. 

[32] Frakes W. B., & Fox C. J. (2003) “Strength and Similarity of Affix Removal Stemming Algorithms”, 

ACM SIGIR Forum, Vol. 37, No.1, pp 26-30. 

[33] Paice C. D. (1996) “Method for Evaluation of Stemming Algorithms Based on Error Counting”, 

JASIS, Vol. 47, No.8, pp 632-649. 

[34] A. P. Siva Kumar, Dr. P. Premchand, & Dr. A. Govardhanv (2011) “TelStem:An Unsupervised 

Telugu Stemmer with Heuristic Improvements and Normalized Signatures”. Int. Journal of 

Computational Linguistics and Applications ,Vol. 2, No. 1 , pp 13-23. 

[35] Prajitha U., Sreejith C, P. C. R. Raj (2013) “LALITHA: A Light Weight Malayalam Stemmer using 

Suffix Stripping Method”, Int. Conference on Control Communication and Computing, pp 244-248. 

[36] A. K. Pandey ,T. J Siddiqui, (2008) “An Unsupervised Hindi Stemmer with Heuristic Improvements”,  

Proc. of the Second Workshop on Analytics for Noisy Unstructured Text Data ACM, pp. 99-105. 

[37] U. Mishra, C. Prakash (2012) “MAULIK: An Effective Stemmer for Hindi Language” Int. Journal on 

Computer Science and Engineering Vol. 4. No. 5 pp. 711 – 717 

[38] V. Gupta, G. S. Lehal (2011)  “Punjabi Language Stemmer for Nouns and Proper Names”, Proc. of 

the 2nd Workshop on South and Southeast Asian Natural Language Processing, pp. 35-39. 

[39] S. Sarkar, S. Bandyopadhyay (2008) “Design of a Rule-based Stemmer for Natural Language Text in 

Bengali”, Proc. of the IJCNLP – 08 Workshop on NLP for Less Privileged Languages, pp 65 -72. 

[40] J. Mayfield ,P. Mcnamee, (2003) “Single N-Gram Stemming”, Proc. of the 26th Annual Int. ACM 

SIGIR Conference on Research and Development in Information Retrieval. 

[41] H. B. Patil, A. S. Patil and B. V. Pawar (2014) “ Part-of-Speech Tagger for Marathi Language using 

Limited Training Corpora”,  IJCA Proc. on National Conference on Recent Advances in Information 

Technology NCRAIT(4) , pp 33-37. 

[42] Vaishali. B. Patil & B. V. Pawar (2015) “Modeling Complex Sentences for parsing through Marathi 

Link Grammar Parser”, Int. Journal of Computer Science Issues, Vol. 12, Iss. 1, No 2, pp 108-113. 



International Journal on Natural Language Computing (IJNLC) Vol. 5, No.1, February 2016 

 

55 

[43] Vaishali. B. Patil & B. V. Pawar (2014) “Developing Links of Compound Sentences for Parsing 

Through Marathi Link Grammar”, Int. Journal on Natural Language Computing, Vol. 3, No 5/6, pp 

108-113. 

[44] Nita Patil, Ajay S. Patil & B. V. Pawar (2016) “Survey of Named Entity Recognition Systems with 

respect to Indian and Foreign Languages”, Int. Journal of Computer Applications, Vol. 134, No. 16, 

pp 21-26. 

[45] Juhi Ameta, Nisheeth Joshi & Iti Mathur (2013) “Improving the Quality of Gujarati-Hindi Machine 

Translation through Part-of-Speech Tagging and Stemmer Assisted Transliteration”, Int. Journal on 

Natural Language Computing, Vol. 2, No.3, pp 49-54. 

[46] N. Murali, Dr. R.J. Ramasreee & Dr. K.V.R.K. Acharyulu (2014) “Kridanta Analysis for Sanskrit”, 

Int. Journal on Natural Language Computing, Vol. 3, No.3, pp 33-49. 

[47] C. Moral, A. Antonio, R. Imbert & J. Ramírez (2014) “A Survey of Stemming Algorithms in 

Information Retrieval”, Information Research, Vol. 19, No. 1. 

[48] William B. Frakes and Ricardo Baeza-Yates (1992) Information Retrieval: Data Structures & 

Algorithms, Prentice Hall 

 


