
The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

DOI : 10.5121/ijma.2010.2401 1

IMPLEMENTING VIRTUAL AGENTS: A HABA-

BASED APPROACH

Alejandro Garcés1, Ricardo Quirós2, Miguel Chover3 and Emilio Camahort4

1, 2, 3 Department of Computer Languages and Systems, Jaume I University, Castellón,
SPAIN

1agarces@uji.es
2quiros@uji.es
3chover@uji.es

4Department of Computer Systems, Polytechnic University of Valencia, Valencia,

SPAIN
4camahort@dsic.upv.es

ABSTRACT

In recent years developments in gaming technology have focused on Massively Multi-User Persistent

Worlds. This virtual communities host thousands of users interacting with each other through the Internet

in real time. Such communities require new distributed programming paradigms for implementing the

virtual life management. In this work we present a practical methodology to add Virtual Agents to

Massively Multi-User Persistent Worlds. To demonstrate the use of our methodology we present a real-

world application. It adds a set of virtual agents to a 3D chat. The agents survey the users to obtain data

to evaluate the processes and components of the virtual world.

KEYWORDS

Software Agents, Multi-agent systems, Agent-Oriented Software Engineering, Virtual Environments

1. INTRODUCTION

The advances in the new century are causing that complex virtual spaces becomes a reality.
There exist a vast number of Virtual Environments (VEs), each of them bringing its own vision,
with a set of tools [1]. We would define a Virtual Environment (VE) as a three-dimensional
computer representation of a space in which users can move their viewpoint freely in real time
[2].

In the last years, developers have focused on Massively Multi-User Persistent Worlds
(MMPWs). This virtual communities host thousands of users interacting with each other
through the Internet in “real” time. MMPW fall into two broad categories: games like
Everquest, Ultima Online, and Asheron’s Call, and virtual environments or metaverses like
Second Life, Active Worlds or Blaxxun [3]

This new kind of entertainment software is causing new and important advances in certain
technologies; for example the Computer Graphics, the Simulation, the Artificial intelligence, the
Distributed Systems and the Graphical User Interfaces. These innovations have not been only
into the field of the computer science. These advances are going beyond the world of the
entertainment and they are causing a revolution in the development of VEs in the network with
many applications for the education, the commerce, the simulation, among others.

Users are not the only living objects inside an MMPW. Non-Player Characters (NPCs) also co-
exist with regular users, and need their own social behavior. This behavior must be described at

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

2

a semantic level, a level that allows control of the environment’s complexity and dynamic
evolution. Intelligence implementations can be programmed using autonomous components
(agents) that are simpler but use more complex communication protocols.

Agents and multi-agent systems, other than a technology, represent a brand new paradigm for
software development [4]. This paradigm adopts agents as the basic conceptual components of
software systems.

Many researchers are focusing on the human models for the development of Multi-Agent
Systems (MASs). They introduce very abstract theories, which can be successfully used for the
development of some open and complex environments [5]. However, these models are often
inefficient for others real-world applications; for example the web computing.

These issues limit the development of simple practical prototypes of MASs. To address this
problem we define a restrictive class of MASs. It is named Moderately Open Multi-Agent

Systems (MOMASs). It includes a Gaia-based process for the development of MOMAS systems
called Homogeneous Agents Based Architecture (HABA). Our model and development process
have the advantage that they allows both high- and low-level behavior specifications.

To demonstrate the use of our methodology we present a real-world application. It adds a set of
virtual agents to a 3D chat. The agents survey the users to obtain data to evaluate the processes
and components of the virtual world. The whole development process is described by means of
stepwise refinement from the analysis stages to the system implementation.

The remainder of our paper is organized as follows. In the background section we present
related work focusing on Gaia methodology for the analysis and design of MASs. In Sections 3
we introduce our model and development process. Section 4 describes our real-world
application. We conclude our paper with conclusions and directions for future work.

2. BACKGROUND

Many different architectures and methodologies for the development of agent-oriented systems
have been presented in the specialized literature: for example BDI [6], MAS-CommonKADS
[7], MaSE [8] and Ingenias [9], among others. However, in this work we are particularly
interested in Gaia methodology [10]. A review of AOSE methodologies is beyond the scope of
this paper. The reader can see some important papers, which survey many of these
methodologies (for example, [11] and [12]). Also, Cernuzzi, Cossentino and Zambonelli [13]
focus on process models for the agent-oriented software development. They survey the
characteristics of a number of agent-oriented methodologies, as they pertain to software
processes. Winikoff [14] briefly review the current state of play in the area of agent-based
software engineering, and then he consider “what next?”.

The MAS technology has been applied by some practitioners to implement intelligence in
games or virtual environments. Barella et al. [15] include intelligence in computer games using
the JADE platform. Davies et al. [16] use BDI to specify the behavior of Virtual Agents. Also,
there are many works about agents and multi-player online games (for example, [17], [18], [19],
[20]). A very important approach is related with the Agent Organizations [21] [22]. Some
methodologies for development of MASs allow this approach. One of them is the Gaia
methodology for the analysis and design of MASs.

Gaia was the first complete methodology for the analysis and design of MAS. It is based on the
organizational metaphor. The system is conceived like a computational organization of agents.
Each agent has certain roles in the organization. The agents cooperate to achieve the common

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

3

objectives of the application. Gaia deals with both the macro (societal) level and the micro
(agent) level aspects of design.

Instead of an implementation framework Gaia only defines a conceptual framework suitable for
analyzing and designing agent-based systems. Gaia has certain disadvantages from a practical
point of view. Its design methodology is so abstract that it does not provide a clear relationship
between the design specification and the final system implementation.

There are a lot of theoretical studies of Gaia [5] [23], all emphasizing its strengths and
weakness. Moreover, Akbari and Faraahi [24] present an evaluation framework for agent-
oriented methodologies. They have used this framework to evaluate the Gaia methodology to
identify its principal characteristics. Its limitations have fostered the development of many
variants of Gaia. For example, in [23] three different variants are presented. They overcome
some conceptual problems and extend the developing of MAS to complex open environments.
Still, none of them proposes how to implement MAS on real platforms. Independently of these
weaknesses, GAIA is considered one of the most promising methodologies for agent-oriented
analysis and design. In the context of our work, GAIA focuses on the use of high-level
abstractions, which are based on the organizational metaphor. It is very important for the
development of a MMPW.

3. MODERATELY OPEN MULTI-AGENT SYSTEMS

The MOMAS technology has been developed for a class restrictive of Multi-Agent Systems.
MOMAS model focuses on a class of software agents: the stationary agents. These software
agents execute only on the system on which it begins execution; they may typically use a
communication system such as remote procedure calling. A stationary agent is implemented as
a code component and a state component. Agents need an execution environment at all involved
computers.

3.1. Multi-Agent System Architecture

Our programming environment allows prototyping MOMAS with the below architecture (figure
1). Applications have a static structure since agent classes and their relationships do not change
during execution. Services provided by the agents are also static. Agents are clustered into
communities called packages. A management module within the MAS handles the life cycle of
packages and agents, their communication, and the social state’s public information. This
module is a special agent that interfaces between the social state, the agents and the user in
charge of running the system [25].

Figure.1. Architecture of a Moderately Open Multi-Agent System

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

4

3.2. The HABA Development Process

To overcome the problems of Gaia and its extensions we propose a new MAS development
process called HABA [26]. This process can be used for the analysis, design and
implementation of agent-oriented systems. Its main difference from GAIA is the type of
systems they can model. HABA can model MOMAS as defined in previous section. The three
main concepts in HABA are: Roles, Agent Classes and Agents. Roles are the basic modeling
structure. Agent Classes are made of roles, and Agents are instances of Agent Classes. The
HABA.DM methodology for the analysis and design of systems, the HABA.PL programming
language, and the HABA.PM project manager are the structural elements of the HABA
development process we propose. The relation between the different HABA models is shown in
figure 2.

Figure 2. Models in the HABA Process

3.2.1. Analysis and Design of MOMAS: The HABA.DM Methodology

ENVIRONMENT: <MOMAS name>

OBJECTS:

 <Environmental Objects>

CONSTRAINTS:

 <Constrains on Objects>

(a)

ROLE SCHEMA: <Role name> in <Subdivision>

DESCRIPTION: <Short description of role>
PROTOCOLS & ACTIVITIES:

<Protocols and activities in which the role

plays a part>

PERMISSIONS: <Rights associated to the role>

RESPONSIBILITIES:

Liveness <Liveness responsibilities>
Safety <Safety responsibilities>

(b)
Figure 3. (a) Components of Environmental model. (b) Components of Preliminary role model.

In the analysis stage we obtain a set of models that represent the organization structure, the
environment, a preliminary description of the roles, and the interaction protocols of the
MOMAS [27]. Modeling the environment implies identifying its basic features, the resources
that can be found in the environment, and the way via which agents can be interact with it. The
environmental model (see figure 3a) contains the computational resources of the MAS.

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

5

Our preliminary role model (see figure 3b) defines the generic behavior of entities within an
organization, and it provides a high degree of reusability. The interaction model (see figure 4) is
like Gaia’s model, but has some subtle differences from the semantic point of view. Due to the
scope of our methodology, we limit the interaction between components to controlled ask-reply
communications. This is the kind of interaction supported by the programming language
HABA.PL.

<Protocol Name>

<Sender>
<Receiver> <input>

<Description> <output>

Figure 4. Components of Interaction model.

The analysis stages can be summarized by means of the following steps:

(i) Identify the goals of the organization goals and its subdivision in sub organizations.

(ii) Identify the environmental model of the MOMAS, defining computational objects
(variables) and constraints between them.

(iii) Build the preliminary role model using the environmental model,. This process is similar
to the one performed in GAIA, but we associate a global or local scope to each role
according to the subdivision of the organization.

(iv) Identify protocols in the preliminary role model and build the interaction model. Each
protocol defines an interaction between two roles. More complex interactions between
roles and the environment must be modelled with the shared resources of the MOMAS
environment (Social State, see figure 1).

In HABA.DM, the design stage produces the social objects model, the role model, the agent
model and the structural model [27]. A social object model (see figure 5a) describes the
information resources that belong to the social state of the MOMAS. These resources are types,
variables and constraints managed by the MOMAS Management Module (see figure 1). The
social object model is derived from the environmental model produced by the analysis stage.

SOCIAL OBJECTS: <Momas Name>

TYPES: <Types on design>

OBJECTS: <Environmental Objects>

CONSTRAINTS: <Constrains on Objects>

(a)

ROLE: <Role Name> in <Subdivision>

DESCRIPTION: <Short description of role>

SERVICES: <Service schemata>

ACTIVITIES: <Activity schemata>

PERMISSIONS: <Rights associated to the role>

RESPONSIBILITIES

Liveness <Liveness responsibilities>

Safety <Safety responsibilities>

(b)

Figure5. (a) Components of Social objects model. (b) Components of Role model

The role model (figure 5b) describes each role of the MOMAS using four basic components: the
activities, the services, the properties and the permissions. Properties can be active or safe. This
role model derives directly from the preliminary role model and the interaction model.

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

6

The agent model (figure 6a) specifies the agent classes used in the MOMAS. Instances of these
classes are the agents that the system creates at runtime. Figure 6b shows how the MOMAS
system is built using packages.

<Agent Class>

<Role>

(a)

PACKAGE: <Package name>

<agent instances>

(b)

Figure 6. (a) Agent model. (b) Structural model: A Package

The design stages can be summarized by means of the following steps:

(i) Given environmental model produced by the analysis stage, create the social object
model.

(ii) Given the preliminary role model and the interaction model build the role model defining
the different services and their potential clients.

(iii) Create the agent model as by creating the agent classes, and assigning roles to the
different agent classes.

(iv) Build the structural model, grouping the agents in packages according to the MOMAS
architecture.

3.2.2. Development framework

The HABA process presents a framework for fast prototyping of MOMAS systems. It provides
a language to program roles, agents, social state and communication protocols, which is named
HABA.PL. It allows the definition of all components and the centralized execution of the
systems (for more detail [25]).

4. MODELLING AN INTELLIGENT VIRTUAL ENVIRONMENT

Adding AI to Virtual Agents (VAs), is the most important application of AI to MMPW. The
VAs can be introduced into a layer in the design of a whole MMPW [28].

We describe and demonstrate the use of MOMAS model and development framework adding a
set of agents to a 3D Chat. Our goal is to survey the users of the chat about the quality of the
services of an educational institution. The results of the surveys are used to plan organizational
improvements. We design a set of questions that the users can freely answer in different ways.

In order to incorporate intelligence in the virtual world we use our MOMAS development
model and framework. We included an abstract layer (see Figure 7), which is an MOMAS
system. This layer has a static structure since agent classes and their relationships do not
change during execution. Services provided by the agents are also static. Agents are clustered
into communities called packages. A management module within the MAS handles the life
cycle of packages and agents, their communication, and the social state’s public information.
This module is a special agent that interfaces between the social state and the agents in charge
of running the MOMAS subsystem. Moreover, it allows the interaction among the virtual agents
and the users through of the chat server application.

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

7

Figure 7. Architecture of an intelligent MPMM

The 3D chat has a client-server architecture [29]. The user runs the client application that is in
charge of rendering and communication with two server applications. One of those servers
manages the positions of all the avatars. It is called Avatar Location Server. The other server,
called Chat Server, handles the Chat services. Virtual agents are organized in the MOMAS
application that also communicates with these two servers. Communication between the
MOMAS application and the servers allows the following features. Using avatars it allows
customizing the abstract life of the agents inside the environment. It also allows feedback from
the environment to the MOMAS application.

The Chat server uses a telnet connection. The Avatar Location Server monitors the state of each
client (name, position, orientation) and sends that information to the other clients of the servers:
human users (players) or virtual agents (non-players from the MOMAS application). The client
application is in charge of rendering the world by drawing the avatars in their positions. It also
handles the communication with the servers to show the events happening in the Chat.

4.1. Application Description

Here we describe and demonstrate how our application works combining a set of agents from
our MOMAS system with a 3D chat. The goal is to survey the users of the chat about the quality
of the services of an educational institution. The results of the survey will be used to develop an
improvement plan for the institution’s organization. We have a set of questions that the users
can freely answer using either natural language or choosing from multiple choices. The
questions are asked by a set of individuals (surveyors) that are represented by avatars in the
virtual world. The actions of these surveyors correspond to autonomous agents with a high level
of abstraction running inside the MOMAS application layer.

Collecting Data from the Application Domain

The virtual world is a university campus where the users of the 3D chat move around. Its size is
big and its topology complex. It contains multiple teaching areas, as well as academic service
areas like, for example, a library. In some of these areas, like a classroom, surveying is not
appropriate. Therefore, our example only considers leisure areas where the users can be
approached in an informal way (see Figure 8).

SERVER

CHAT AVATARS

INTERFACE
EVENT

HANDLE

GAME

ENGINE

CLIENT

MOMAS APPLICATION (Intelligent Layer)

SOCIAL

STATE

MANAGEMENT
MODULE

PACKAGES

INTERNET

LOCAL / LAN

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

8

Figure.8. Partial view of the virtual campus

Let B=<B1, B2.....Bn> be a the set of regions of interest where Bi=(Ci, ρi) (i= 1..n), Ci is the
center of region Bi and ρi is the radius of the vicinity of Bi.

Let P={p | p ∈ NICK × ℜ3} be a set of pairs nickname-position, where NICK (NICK ⊆
seqCHAR) is the set of all possible nicknames of a user in the virtual world, seqCHAR is the set
of all possible character strings and ℜ is the set of real numbers. P contains elements with the
form <nickID, <x, y, z>>.

Let S = <S1, S2,…, Sm> be the array that contains the m surveys where Sj=<sID,l,Q,R> (j =1..m)
is a 4-tuple that stores the information of the j-th survey, identified by sID, a natural number, l is
the number of questions in the survey, Q=<Q1,Q2,.....Ql> is an l-tuple of questions and R= <
R1,R2,....Rl> is the l-tuple that contains all the classified information about the replies of the
users to survey sID.

Specifically, for all k such that k = 1..l, Rk={r | r ∈ seqCHAR × ℵ × ℵ} is the set of all answers
to question Qk of survey nID, where the elements r of Rk have the structure r = <replySTRING,
regionID, userID>, where ReplySTRING is the text of the reply given in region regionID by
user userID.

To simplify decision making during the survey, we need to compute the effectiveness of the
surveys in the different regions. To compute effectiveness we take the ratio between the answers
to a question and the number of times the question was asked. So we have a matrix E=[Ei,j,k]
(i=1..n; j=1..m; k=1..l), where element Ei,j,k contains the effectiveness of question Qk of survey
Sj inside region Bi.

),,(

),,(#
),,(

kji

kji
kjiE

η

ρ
=

Now, for all i, j, k, if Sj = <sID, l, Q, R> and πk(R) is the k-th component of tuple R, then

),,(kjiρ = {reply | exists uID ∈ ℵ, such that <reply, i, uID> ∈ πk(R)};

),,(# kjiρ is the cardinal of the set),,(kjiρ ; and

),,(kjiη is the number of times the k-th question of the j-th survey was asked into i-th
region.

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

9

How the Application Runs

In the application we distinguish three different role types: the surveyor, the observer and the
analyst. The flow chart of the survey is shown in Figure 9. The observer starts the process,
running the surveyors (M0). Then, the observer selects areas adequate for surveying and
informs the surveyors (M1). The surveyors, given a target area and their experience, compute a
move and determine the position they will move to in order to ask users. This new position is
notified to the observer for control reasons (M2). Once the surveyor completes the number of
allocated surveys, it informs the observer (M3). Once all the surveyors have finished, the
observer instructs the analyst to start processing the answers to the survey (M4).

Figure 9. Message flow chart of the survey process

In the following sections we describe the analysis and design of the survey system using the
HABA.DM methodology. We describe the role-driven process by stepwise refinement of the
surveyor role. The other roles can be modelled in the same way.

4.2. Analysis and Design of MOMAS Layer

The HABA.DM methodology for the analysis and design of MOMAS allows fast modelling of
agent-based systems in an incremental process based on roles. It provides models to capture the
complexity of the information of the environment and the system architecture.

Analysis Stage

The Environment Model (figure 10a) contains the objects and the social constraints of the
survey system. Constraints are expressed in Z notation. The environment contains the
partitioning of the world into regions, the positions of the users and virtual agents, the questions
of the survey, and the replies to the survey. Additionally, information is recorded associated to
each region in order to determine the per-region effectiveness of the survey. The effectiveness
information is used to handle the movements of the surveyors.

The survey system defines three roles: observer, surveyor and analyst. Figure 10(b) shows the
preliminary role model of the surveyor role. The goal of this role is survey the users of the 3D
chat. It waits for a move suggestion by the observer. Then, it evaluates it using its own
experience. Finally, the surveyor role reports its decision to the observer and moves to an
optimal position to interview users. During the surveys, the surveyor randomly selects questions
and collects the answers of the users. The role modifies the Response object of the environment
and access the Question, Region and Effectiveness objects. Its safety property establishes the
maximum time a surveyor waits in a region to obtain its responses. The remaining roles of the
system can be modelled in the same way.

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

10

ENVIRONMENT : SurveySystem

OBJECTS

Survey ≅ [id_Survey]
Question ≅ [id_Question ; id_Survey]
Region ≅ [id_Region]
Answer ≅ [id_ Question]
Position ≅ [id_Avatar]
Efectiveness ≅ [id_Region]
(*…. Other Objects ……*)

CONSTRAINTS

∀ a,b: Survey | a≠b • a.id_Survey ≠ b.id_Survey
∀ a,b: Region | a≠b • a.id_Region ≠ b.id_Region
∀ a,b: Question | a≠b • a.id_Question ≠ b.id_Question
∀ a,b: Position | a≠b • a. id_Avatar ≠ b. id_Avatar
∀ a,b: Efectiveness | a≠b • a. id_Region ≠ b. id_Region
(*…. Other Constraints …..*)

(a)

ROLE SCHEMA: Surveyor

DESCRIPTION:

 Survey the users.

PROTOCOLS & ACTIVITIES:

 AwaitSuggestMovement, EvaluateMovement,
 InformEvalMovement, Move,
 SelectQuestion, SendQuestion,

 AwaitAnswer, WaitRegión,
 Finish, InformFinish

PERMISSIONS

 changes Answer
 reads Question, Region, Efectiveness

RESPONSIBILITIES

 Liveness
 Surveyor = (MakeSurvey |
 Finish. InformFinish)*
 MakeSurvey = (AwaitSuggestMovement.
 EvaluateMovement.
 InformEvalMovement. Move.
 (SelectQuestion. SendQuestion)+

 (AwaitAnswer | WaitRegión))*
 Seguras
 (ta – t0) < te

(b)

Figure 10. (a) Environment model: Survey system. (b) Preliminary role model: surveyor

Figure 11 shows the protocol SuggestMovement, started by the Observer role and replied to by
the Surveyor role. Using this protocol the Observer informs the Surveyor about a suggested
move to a given region.

SuggestMovement

Observer Surveyor r : Request

Send the Move Suggestion reply : Boolean

Figure 11. Interaction model: SuggestMovement protocol

The Design Stage

In our 3D chat, the social object model (figure 12a) is an abstract representation of the MMPW
scene (ℵ denotes the set of natural numbers, ℜ is the set of real numbers).

Our surveying system has three basic roles: the Observer role, the Surveyor role and the Analyst
role. The observer views the whole scene and informs the rest of entities. The surveyors interact
with the users to get answers from them. The analyst extracts semantic information from the
surveys. The Surveyor role (figure 12b) is derived from the preliminary role model of the
surveyor preliminary role (figure 10b) and interaction model (figure 11). The protocols are
transformed in services or messages depending on the agent that starts the communication.

The agent model specifies the agent classes used in the MOMAS. Class instances are the agents
that the system creates at execution time. This model is similar to the model defined in GAIA.
Figure 13 shows an example definition of two types of agents: ObserverAgent and
SurveyorAgent, with roles Observer and Surveyor, respectively. The * symbol implies that 0 or
more instances of the SurveyorAgent class may be created. The 1 symbol implies that exactly
one instance of the ObserverAgent class may be created.

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

11

SOCIAL OBJECTS : SurveySystem

TYPES

CHAR, POS, TIME
SURVEY_STATUS ::= processing | delivered | stopped | cancelled
(*… Other types …*)

OBJECTS

Survey ≅ [id_Survey : ℵ; sName : seqCHAR; status: SURVEY_STATUS]
Question ≅ [id_Question : ℵ; id_Survey : ℵ; text: seqCHAR]
Region ≅ [id_Region : ℵ; center: POS; radius: ℜ]
Answer ≅ [id_Question: ℵ; t: TIME; id_Region: ℵ1; id_Avatar: ℵ1; reply: seqCHAR]
Position ≅ [id_Avatar : ℵ; p: POS]
Efectiveness ≅ [id_Region : ℵ; id_Question; effectiveness: ℜ[0,1]]
(*…. Other Objects ……*)

CONSTRAINTS

∀ a,b: Region | a≠b • a.id_Region ≠ b.id_Region
∀ a,b: Question | a≠b • a.id_Question ≠ b.id_Question
∀ a,b: Position | a≠b • a. id_Avatar ≠ b. id_Avatar
∀ a,b: Efectiveness | a≠b • a. id_Region ≠ b. id_Region
(*…. Other Constraints …..*)

(a)

ROLE: Surveyor

DESCRIPTION Survey the users.

SERVICES

 SuggestMovement [Observer] : POS X ℵ → Boolean

ACTIVITIES

 EvaluateMovement : POS X ℵ → POS
 Move : POS → Boolean
 SelectQuestion : → Question
 SendQuestion : Question → Question
 AwaitAnswer() : → Boolean
 WaitRegión : → Boolean

PERMISSIONS

 changes Answer
 reads Question, Region, Efectiveness

RESPONSIBILITIES

Liveness Surveyor = (SuggestMovement(in p: POS; in n: ℵ).
 EvaluateMovement(in p: POS; in n: ℵ; out p1: POS).
 Observer:: InformEvalMovement (p1). Move(in p1: POS).
 (SelectQuestion(out q: Question). SendQuestion(in q: Question))+ .
 (AwaitAnswer() | WaitRegión())*
Safety (ta – t0) < te

(b)

Figure 12. (a) Social object model of the 3D Chat. (b) Surveyor role model

Figure 13. Agent model

4.3. Implementation and Results

We have implemented the surveying system in a 3D Chat that simulates the campus of a real
university. The application allows the user to walk through the world and to communicate with
the different avatars using a chat service. The system has client-server architecture. The user
executes a client application in charge of the visualization and the communication with two

SurveyorAgent

Surveyor

ObserverAgent

Observer

* 1

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

12

server applications. One of these servers holds the positions of all the avatars (Avatar Location
Server), and the other manages the chat service (Chat Server).

(a)

(b)

Figure 14. (a) a surveyor approaches a group of users, (b) performing a survey

The surveying module has been modeled with our MOMAS methodology, and has been
implemented using our own programming language and project manager. The surveyors may
interact with the different users in multiple ways. One of them uses a personalized avatar that
moves around regions of the world, approaching users to ask them questions that can be
answered using natural language. Figure 14 show two screenshots of our final application. In
Figure 14(a) a surveyor moves towards a group of users to start a survey. In Figure 14(b) we can
see how the survey is performed, with the surveyor asking the users their opinion about the
library.

Figure 15. Dialog window: A surveyor interacts with an user

Another way a surveyor can interact with a user is by means of a dialog window. A dialog
window allows more restricted questions, like multiple choice questions (see Figure 15). The
control of a dialog window is made of three parts: (i) a portrait of the Surveyor, (ii) the actual
survey question across the top of the dialog window, and (iii) the list of possible answers just
below of the survey question. The user can interact in either of two ways. He or she can move
away from the surveyor without answering its question. Alternatively, the user can reply to the
question either typing some text or choosing an option of the dialog window.

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

13

5. CONCLUSIONS

Despite their advantages, agent-based models have not been widely used in the development of
MMPWs. The reason is that they are too abstract and lack the tools needed to implement the
system from the abstract specification. We have defined a development process for fast
prototyping of a restrictive class of MAS. It is called Moderately Open Multi-Agent Systems.
The main advantage of the proposal is that it allows both high- and low-level specification of
Multi-Agent Systems. The programming language and project manager of the MOMAS
architecture simplify the implementation of the final system.

Our process can be used for the specification of the virtual agents with a high-level of
abstraction. These agents are clustered into an abstract layer that interfaces with servers in the
network. To test our proposal we apply it to a surveying system in a 3D Chat. The different
agents cooperate with each other to achieve the system’s global goals. In our example, the goal
is to survey the users about the university facilities in order to plan possible organizational
changes.

In the future, the HABA process should be completed to all development phases. In particular,
we must include the following stages: the stage for obtaining the requirements, and the stage for
the verification and testing of the systems. We think that some established techniques of
software engineering can be extended for that purpose. For the verification and testing stage, it
is necessary to formalize the programming language and communications for the MOMAS
technology. It can be made by means of denotational approach [30]. Moreover, it is necessary to
improve the HABA.PM development tool in order to facilitate its extensive usage.

ACKNOWLEDGEMENTS

This work has been partially supported by grants TIN2007-68066-C04-02 of the Spanish
Ministry of Science and Education and by FEDER Founds, also by grant P1-1B2007-56 of the
Fundació Caixa Castelló – Bancaixa.

REFERENCES

[1] Mondéjar-Andreu, R. García-López, P., Pairot-Gavaldà, C., Gómez-Skarmeta, A. Tracking the
Evolution of Collaborative Virtual Environments. UPGRADE, Vol. VII, No. 2, April 2006, pp.
24-29. 2006.

[2] Ibáñez Martínez, J., Delgado-Mata, C., Aylett, R. Virtual Environments: A Multi-disciplinary
Field. UPGRADE, Vol. VII, No. 2, April 2006, pp. 2-4. 2006.

[3] Gehorsam, R. The Coming Revolution in Massively Multi-user Persistent Worlds. Computer 36
(4), pp 93-95. 2003.

[4] Zambonelli, F., Omicini, A. Challenges and Research Directions in Agent-Oriented Software
Engineering. Autonomous Agents and Multi’agent Systems, Vol. 9, No. 3. 2004.

[5] Zambonelli, F., Jennings, N., and Wooldridge, M. Developing Multi-agent Systems: The Gaia
Methodology. In ACM Transactions on Software Engineering Methodology, vol. 12, no.3, pp.
317-370. 2003.

[6] Kinny, D., Georgeff, and Rao, A. A methodology and modelling technique for systems of BDI
agents. 7th Eureopean Workshop on Modeling Autonomous Agents in a Multi-agent World.
LNAI vol. 1038, pp.56-71. Springer-Verlag. 1996.

[7] Iglesias, C.; Garijo, M.; González, J. and Velaso, J. Analysis and Design of multi-agent systems
using MAS-CommonKADS. Intelligent Agents IV, LNAI vol. 1365, pp. 313-326. Springer
Verlag. 1998.

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

14

[8] DeLoach, Scott A. Analysis and Design using MaSE and agentTool Proceedings of the 12th
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001). Miami
University, Oxford, Ohio, March 31 - April 1. 2001

[9] GRASIA Group (2009), INGENIAS (Available in http://grasia.fdi.ucm.es/ingenias/).

[10] Wooldridge M., Jennings, N, and Kinny, D. The Gaia Methodology for Agent-Oriented Analysis
and Design. Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 3, September, pp 285-
312. 2000.

[11] Iglesias, C., Garijo, M. and González, J.C. A survey of Agent-Oriented Methodologies. In:
Muller, J.P., Singh, M., and Roa, A.S. (Eds.), Intelligent Agent V, Proceeding of ATAL-98,
Springer, LNCS 1555, pp. 317-330. 1999.

[12] Cernuzzi, L. and Rossi, G. On the Evaluation of Agent Oriented Methodologies. Proceedings of
the OOPSLA 02 - Workshop on Agent-oriented Methodologies, November 2002, Seattle (USA),
pp. 21-30. 2002.

[13] Cernucci, L., Cossentino, M., and Zambonelli, F. Process models for Agent-based Development.
Journal of Pervasive and Mobile Computing, Vol. 18, No. 2. 2005.

[14] Winikoff, M. Future Directions for Agent-Based Software Engineering. International Journal of
Agent-Oriented Software Engineering. Volume 3, Issue 4, pp. 402-410. 2009.

[15] Barella, A., Carrascosa, Botti, V. “JGOMAS: GameOriented MultiAgent System based on
Jade”. ACM SIGCHI International Conference on Advances in Computer Entertainment
Technology. 2006.

[16] Davies, N.P., Mehdi, Q.H., Gough, N.E, Anderson, D., Jacobia, D. & Bornes, V.V. A review of
potential techniques for the creation of intelligent agents in virtual environments, Proc. 5th Int.
Computer Games Conf. CGAIDE’2004, Microsoft Reading UK, pp 248-256. 2004.

[17] Laird, J., van Lent, M. Human-Level AIs Killer Application. AI Magazine, 15–25 (summer,
2001). 2001.

 [18] Nareyek, A. Intelligent Agents for Computer Games. In: Marsland, T., Frank, I. (eds.) CG 2001.
LNCS, vol. 2063, pp. 414–422. Springer. 2002.

[19] Niederberger, C., Gross, M.H. Towards a Game Agent. Institute of Visual Computing, ETH
Zürich, Technical Report 377. 2002.

[20] Aranda, G., Carrascosa, C. and Botti, V. Intelligent agents in serious games. In Fifth European
Workshop on Multi-Agent Systems (EUMAS 2007). Association Tunnisienne dIntelligence
Artificielle, 2007.

[21] Argente, E., Palanca, J., Aranda, G., Julian, V., Botti, V., Garcia-Fornes, A., Espinosa, A.
Supporting agent organizations. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z.
(eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696. Springer, Heidelberg, pp. 236–245. 2007.

[22] Aranda, G., Carrascosa, C. and Botti, V. Characterizing Massively Multiplayer Online Games
as Multi-Agent Systems. E. Corchado, A. Abraham, and W. Pedrycz (Eds.): Hybrid Artificial
Intelligence Systems (HAIS 2008), LNAI 5271, pp. 507–514. 2008.

[23] Cernuzzi, L., Juan, T., Sterling, L., and Zambonelli, F. The Gaia Methodology: Basic Concepts
and Extensions. In Methodologies and Software Engineering for Agent Systems. Kluwer. 2004.

[24] Akbari, Z. O., and Faraahi A. Evaluation Framework for Agent-Oriented Methodologies.
Proceedings of World Academy of Science, Engineering and Technology, Vol. 35 nov. 2008, pp.
419-424. 2008.

[25] Garcés, A., Ricardo Quirós, Miguel Chover y Emilio Camahort. Implementing Moderately
Open Agent-Based Systems. Proceedings of IADIS International Conference WWW/Internet
2006. Murcia, España. 5-8 Octubre 2006.

[26] Garcés, A., Ricardo Quirós, Miguel Chover, Joaquín Huerta, Emilio Camahort. Building
Moderately Open Multi-Agent Systems: The HABA Process. Lecture Notes in Electrical

The International journal of Multimedia & Its Applications (IJMA) Vol.2, No.4, November 2010

15

Engineering , Vol. 27. Proceedings of the European Computing Conference, Springer-Verlag,
pp. 337- 345, 2009.

[27] Garcés, A., Ricardo Quirós, Miguel Chover, Joaquín Huerta y Emilio Camahort. A
Development Methodology for Moderately Open Multi-Agent Systems. Proceedings of
IASTED International Conference on Software Engineering (SE 2007). ACTA Press. 13-15
Febrero 2007.

[28] Aranda, G., Botti, V. and Carrascosa, C. MMOG based on MAS: The MMOG Layer. AAMAS
2009, 8th International Conference on Autonomous Agents and Multiagent Systems, 10–15
May, 2009, Budapest, Hungary, pp. 1148-1150. 2009.

[29] Chover, M., Ó. Belmonte, I. Remolar, R. Quirós, J. Ribelles. Web-based Virtual Environments
for Teaching. Proceedings of Eurographics/ACM SIGGRAPH Workshop on Computer Graphics
Education, July 6-7 2002, Bristol University, UK. Especial issue of VIRtual, Electronic Journal
on Visualization, Interactive Systems and Pattern Recognition, pp. 83-87, 2002.

 [30]. Garcés, A., Ricardo Quirós and Miguel Chover. Global Communications in Moderately Open
Multi-Agent Systems. Proceedings of IEEE International Conference of Intelligent Systems and
Intelligent Computing, IEEE Society Press. Shanghai, China. 20-22 Noviembre 2009

Authors

Alejandro Garcés received his PhD degree in Computer Science at the
Universitat Jaume I, Spain, where he is Research Assistant at
Institute of New Imaging Technologies. His current research
interest is focused on Software Engineering for the development
of Multi-Agent Systems and virtual worlds.

Dr. Ricardo Quirós is an Associate Professor at the Universitat Jaume I of
Catellón. He received his PhD degree in Computer Science at the
Technical University of Valencia in 1996. His current research
interest is focused on Computer Graphics and Multimedia,
especially in Virtual and Augmented Reality, Light Field
Rendering, Auto Stereoscopic Visualization and 3D Television.

Miguel Chover received his PhD degree in Computer Science in 1996,
from the Technical University of Valencia, Spain. He is
Assistant Professor of Computer Science at Universitat Jaume I,
Spain. He is member of the executive committee of Eurographics
(Spanish Chapter). His research areas include multiresolution
modeling, real-time visualization and virtual worlds.

Emilio Camahort is Associate Professor at the Technical University of
Valencia, Spain, where he currently teaches Computer Graphics
and Graphical User Interfaces. His research interests are in the
areas of Computer Graphics and Interactive Techniques, Multi-
modal Interfaces and Parallel and Distributed Computing. He is a
member of ACM and Eurographics.

