
International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

18

A Systematic Study of Micro Service Architecture

Evolution and their Deployment Patterns

Chaitanya K. Rudrabhatla
Executive Director- Solutions Architect

Media and Entertainment domain
Los Angeles

ABSTRACT

With the advent of Local Area Networks (LAN), the client

server architecture gained traction. The ever-growing need for

the distributed systems have paved the path for client server

architecture to transform in to Service Oriented Architecture

(SOA). Due to the reusable and loosely coupled nature of the

services, SOA became a successful representation of client

server architecture. However, over time SOA fell short of

expectations, as it was fully reliant on monolithic system

design. Achieving horizontal scalability, faster response

times, high availability, infrastructure agility, service and

resource isolation was a challenge in SOA frameworks. Micro

service architecture (MSA) soon came to the rescue. It offered

various solutions to overcome most of the shortfalls of the

traditional monolithic SOA architecture. But at the same time,

MSA comes with its own set of challenges due to the complex

distributed design. Among various design complexities

involved in MSA, creating, managing and deploying

microservices in a clustered production grade environment is

a major challenge. A micro service can be deployed to run on

a virtual machine (VM) or on a container which itself runs on

a VM. The VM can be in the data center or in the public

cloud. The containers can be self-managed or orchestrated.

The orchestration can be done by the cloud provider or a

third-party software. This research paper illustrates (1) the

journey of architectural design patterns from SOA to MSA, by

citing the related work and the reasons for evolution. (2)

various deployment models available for MSA (3)

comparison of the deployment models and a quantitative

analysis of the use cases.

General Terms

Micro service architecture, Micro service deployment

patterns, SOA, containerization, containers, orchestration.

Keywords

Service Oriented Architecture (SOA), Microservice

architecture (MSA), containers, orchestration, deployment

patterns, Micro service cloud deployment patterns.

1. INTRODUCTION
Web application architecture has come a long way from the

initial days of client server model to the fully distributed

container based micro service architecture. The ever-growing

demand to build the distributed systems which are light

weight, reusable, reliable and highly available has been the

major reason for the advent of various architectures and

design patterns, which paved the path to the current day

distributed micro service architecture [1]. A decade back in

time, client-server model was one of the most popular designs

for building the distributed systems [2][3]. Client server

model is a network computing architecture where a powerful

central server hosts, manages and delivers the resources or

services needed by the clients. The clients are usually lesser

powerful computers which connect to the central server using

remote procedure calls (RPC) over the internet. This remote

method invocation has given rise to a n-tier or multi-tier

architecture in java-based applications. However, it was soon

realized that the client server model is not easily scalable [4].

It was expensive and time taking to scale the central server.

Added to this, the other drawback was the inability to

integrate autonomous services. These shortfalls have given

rise to a more decoupled Service Oriented Architecture

(SOA). SOA was successful for some time. But due to its

monolith design it couldn’t sustain for long either (discussed

in Section 3). This led to the evolution of micro service

architecture(MSA), which is an architectural design pattern

that structures an application as a collection of loosely

coupled services, which implement business capabilities. The

MSA is designed on the same principles of SOA. Only

difference is that, in micro service architecture, the services

are broken down into granular light weight and standalone

deployable units. The wide spread usage and acceptance of

MSA has popularized the container technology in parallel.

This container technology has been long existent in Unix and

Linux world. With the onset of newer changes which

contributed to the ease of usage of containers and the rapid

growth of cloud platforms, has greatly contributed to the steep

rise of containers in the world of web development. MSA has

been able to solve many problems involved in SOA based

architecture like achieving the horizontal scalability, high

availability, modularity and infrastructure agility. But at the

same time, it introduced its own set of challenges due to the

complex distributed nature of its design. We observed that a

micro service can be deployed in a variety of ways. It can be

made to run on (a) single virtual machine or (b) a cluster of

VMs or (c) on a container which runs on any kind of VM

running in the local data center like a Hypervisor based VM

or a vSphere VM, or (d) on a container deployed on a

computing machine running on the cloud like AWS EC2 or

Azure VM to name a few, or (e) as a serverless deployment

on the cloud like AWS Lambda or Azure functions or GCP

functions. It can be clearly seen that there are multiple ways to

deploy and run the micro services. Even within the techniques

mentioned above, there are a multitude of ways to maintain

the containers. They can be orchestrated using the native

services provided by the cloud platforms like ECS by AWS or

ACS by Azure, or by using the third-party orchestration tools

that have been introduced by various big players in the

industry like kubernetes by google, Mesos by Apache, to

name a few. All the deployment techniques mentioned above

have their own set of advantages and disadvantages depending

on the use case which is being implemented. Lot of

researchers have suggested many ways and pointers to pick up

the right deployment pattern suitable for the use case. In this

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

19

research paper, a quantitative analysis is performed by

deploying a custom project developed in java spring boot

technology and recommendations are provided for choosing

the suitable deployment model.

The paper is organized as follows. In section 2, the challenges

involved in SOA based architecture which led to the evolution

of micro service architecture are explained by referring to the

related work. In section 3, the challenges involved in the

designing the deployment framework for MSA is explained.

In section 4, we explain how the deployment patterns are

analyzed using the custom research project. section 5,

provides the conclusion to the paper.

2. TRANSITION FROM SOA TO MSA

2.1 Background on SOA and related work
Over the past decade or so, Service Oriented

Architecture(SOA) became one of most successful

implementations of client server model. Before SOA, all the

applications were monolith in nature. With the monolith

design, as the size of the applications grew, it became

extremely difficult to scale the application and at the same

time the productivity of the developers declined due to the

confounding nature of the design. The code reusability was

another major challenge with the monolith architecture. SOA

attempted to solve these challenges associated with the

monolith applications [5]. It allows the services to be loosely

coupled and reusable. Multiple end user systems can make use

of common services once they are developed. SOA is

designed based on the principles of (a) service abstraction –

where end user applications are agnostic of service

implementation. Services act as black boxes. (b) service

autonomy – Services are designed and run independently and

control the functionality they encapsulate. (c) Service

discovery - All the services are supplemented with additional

metadata making them discoverable. (4) Service reusability -

Functionality is logically divided in to services such that the

code can be reused and extended. Fig 1. Given below shows

the basic SOA architecture. As shown in the diagram,

multiple end user client applications can trigger calls to the

services. These calls are handled by Enterprise Service Bus

(ESB). As name suggests it integrates various application

services together over a Bus-like infrastructure. It includes a

service registry which keeps track of widely located services.

When the client makes a call, ESB translates it to the suitable

message type understood by the contacted service. SOA at

high-level acts as a wrapper for loosely coupled web services

where services share a common standard for interaction [6].

Fig 1: SOA based design with ESB columns

This architecture provides a model for various modules and

organizations to reuse their services with various customers

and clients. Researchers in [6] and [9] evaluated the standards

and distributed capabilities of SOA based architecture. They

investigated the various layers involved in SOA protocol

stacks and concluded the benefits of its usage in huge

enterprises.

2.2 Drawbacks of SOA
Though SOA was a great improvement from the monolith

design, it could not keep up the pace with the ever-growing

business demands. Though the services were delineated in

SOA, they need to be deployed as a single unit in the form fat

application services. This model couldn’t cope up with the

needs to develop scalable solutions with lesser resources.

Though it was argued by some that SOA based services can

be scaled by deploying multiple copies of the same

application service, it becomes very hard and daunting task

for developers to maintain large code bases for the single

application service and patch it regularly with minor business

enhancements. Also, deploying multiple copies of large

monolith is not a real scalable design as the resources are not

allocated as per the individual service needs [7]. It is broadly

assigned at the application level and may lead to

underutilization and wastage of assigned memory. On top of

it, redeploying the large application for every minor

enhancement is quite challenging for the developers. Also,

SOA performs the service routing, orchestration and business

validations at a single central hub called ESB, which becomes

a cumbersome layer as services grow. To handle these draw

backs Micro Service Architecture (MSA) came in to light.

2.3 Evolution of MSA
The drawbacks mentioned above with SOA architecture have

prompted the researches to come up with a newer architecture

which fulfills those short comings. On top of it, the ever-

growing business needs and the constant demand to push

numerous enhancements to the production systems multiple

times a day, created the need for a lighter, highly scalable and

easily deployable architecture. Due to these needs, MSA came

into existence. MSA is a design pattern in which an

application is broken down in to a set of smaller, light weight

and independent services. MSA relies mostly on SOA

principles but it is fine-tuned with following major

differences:

(a) As discussed in section 2.1 SOA relies heavily on an

intelligent and heavy central layer called ESB. Whereas MSA

aims to identify the services based on dumb endpoints. The

intelligence is all embedded within the services rather than a

heavy central layer. (b) The heavy monolith-based services

are broken down into several smaller and independent

services. This makes the services totally delineated. (c) Each

service can be built in a different programming language and

platform than the others, based on the business needs. [8] (d)

Each service can be independently developed and deployed

without impacting other services.

2.4 MSA benefits - Related work
As discussed above, MSA is designed on the principles which

are different than the multitiered monolith frameworks. MSA

comprises of multiple light weight services which are

logically grouped based on the functionality of the business

domain. Microservices are lightweight, flexible and highly

scalable. Since MSA evolved from SOA, many technologies

related to routing, service discovery, circuit breakers, security,

monitoring, configuration management and load balancing are

developed which when combined, overcome the shortfalls of

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

20

SOA. Fig 2. shows all the layers involved in the typical Micro

service architecture.

Most of the researchers have analyzed the benefits of MSA

over SOA and submitted the related work. Based on the

earlier research, the major advantages of MSA can be broadly

classified into the following: (a) Reusability of the code –

Since it is a loosely coupled architecture, the services once

written can be reused across multiple applications [10]

(b)loosely coupled design – Each service is independent of the

other. Services are totally delineated including the databases.

[11] [12] (c) Horizontal scalability – Scalability has been one

of the major advantages and primary reasons for the evolution

of MSA. Lot of research has been done to describe the

benefits of scalability in MSA. [13] [14] (d) resilience [14] (e)

cost benefits. [15]

Fig 2: Layers in Micro Service Architecture

3. MSA DEPLOYMENT TECHNIQUES

AND CHALLENGES
As briefly discussed in Section 1, micro services increase

efficiency and are advantageous in many ways. However,

MSA comes with its own set of challenges. Out of many

design challenges which are present in MSA design, the

deployment architecture is one of the most common ones

faced by the architects. There are a multiple of deployment

patterns available for MSA which can soon become

overwhelming, when trying to pick the right one. The design

considerations which lead to deployment challenges can be

broadly classified as follows – (a) Choice of the right

infrastructure platform. (b) Logical grouping the micro

services. (c) Containerization of services and their

orchestration. Let us discuss the design considerations in little

detail.

3.1 MSA deployment design considerations

3.1.1 Choice of the right infrastructure platform –

related work
Micro services can either be deployed on virtual machines

running in the data center or in the cloud infrastructure. Lot of

researchers have already worked to identify the bottle necks

and implications in the infrastructure design involved in the

local data centers [16] [17]. MSA was designed to achieve

horizontal scalability and quality of service (QoS). It is

difficult to achieve in the data-center based infrastructure.

Whereas the cloud platforms have evolved to a great scale and

provide numerous services to achieve the scalable designs.

But with the multitude of public cloud platform options

available, for example: AWS, Azure, GCP, IBM Bluemix to

name a few, and the plethora of infrastructure services they

offer, it becomes a daunting task to pick up the right choice

and design an optimal deployment architecture for MSA [18].

3.1.2 Logical grouping the micro services -

related work
As per the principles of MSA design, every service needs to

be totally independent of the other. Even the databases cannot

be shared as per the principles of database per service pattern

[11] [19]. Depending on the application design there may be a

need to group two or more containers running the micro

services on the virtual machine to achieve efficiency in the

remote procedure calls (RPC). For example, a caching service

may be logically grouped with the database service on the

same pod in the Kubernetes cluster using Docker containers

for better performance. This might be argued as an anti-

pattern. But while doing a green field application design, it

might be needed for higher efficiency. However, this logical

grouping adds to the deployment complexity [20].

3.1.2.1 Containerization and orchestration of

services
Though the concept of containers was present in Unix from a

long time, they gained real significance only after the wide

spread usage of cloud platforms. It has been proved to be

highly advantageous to run the micro services on containers

rather than virtual machines directly. Fig 3 shows the basic

layout of Hypervisor based VM vs container. As shown in the

diagram, virtual machines(VM) run the heavy guest operating

systems with their own set of heavy binaries and libraries

managed by Hypervisor which runs on top of the physical

server with a Host OS. This heaviness increases the boot up

time for VMs. Whereas a container runs with a virtual OS as

opposed to VMs which makes it very quick and light weight.

It is evident from the diagram, that the containers are light and

can be quickly be created, destroyed or restarted. The quick

creation and destruction aspect helps in achieving the

horizontal scalability at a lightening pace which is not

possible in VM based data centers. And the quick restart

feature helps the businesses to roll out new features with a

minimal or no downtime. Though it is greatly beneficial to

run a micro-service based application on a multitude of

containers in a clustered environment for the reasons

mentioned above, we observed that it comes with its own set

of challenges- few related to micro-services, like the port

allocations, service discovery, routing, distribution of services

and few others which are related to containers like health

monitoring and container management. Many container

orchestration tools have been introduced by various big

players in the industry like kubernetes by google, ECS by

AWS, Mesos by Apache to name a few. Introducing

containers and orchestration tools adds up to the complexity

of the design.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

21

Fig 3: Virtual Machine VS Containers Layout

4. CUSTOM RESEARCH PROJECT TO

EVALUATE DEPLOYEMENT

PATTERNS
To determine which deployment technique is more suitable

under which scenario, we have implemented a research

project and simulated various circumstances. We have

implemented java based micro services in spring boot

technology. We deployed 3 micro services MS1, MS2 and

MS3 in various deployment patterns mentioned below and

summarized the comparisons in the next section –

4.1 On-Premises Data Center deployment
As a part of this, 3 micro services MS1, MS2 and MS3 are

deployed by running the docker images on the virtual

machines VM1, VM2 and VM3 running on Hypervisor

software as shown in Fig 4. A router component is used for

routing the requests to the appropriate service which is

discovered using a service discovery layer. A circuit breaker

was used to handle failures.

Fig 4: MSA on Containers running in Data center

4.1.1 Observations
We simulated load tests by firing the HTTP get requests using

an open source tool called JMeter. It has been observed that

the advantage with the above deployment pattern is that it is

simple enough and easily understandable. The complexity and

number of components involved in the design are limited.

However, it is observed that there are following disadvantages

with this model – (a) Maintainability: Maintainability is

difficult as it is custom built. (b) Auto-Scaling: Auto scaling

the application is not possible. (c) High Availability and Load

Balancing: Load balancing of the services and adding fault

tolerance needs extra components and custom configurations

which are difficult to manage. (d) Upgrades and Rollback

Application roll backs and upgrades to newer versions is

tedious and requires a downtime. (e) Service discovery: It is

complex and needs to be custom built. (f) Health checks:

Need to add custom components and adds to the complexity.

4.2 Cloud based deployment and

orchestration
Deployed 3 micro services MS1, MS2 and MS3 in AWS

cloud using the Elastic container service (ECS) cluster. A

group of EC2-T3.Mediums are created which are managed by

ECS. An Auto Scaling Group (ASG) is created for the EC2

instances with min=2 and max=4 configuration. An Elastic

Load Balancer (ELB) is used for routing the requests to the

appropriate micro service. This is achieved by configuring the

listeners and Target groups on the ELB. The design is

implemented as shown in Fig 5. Appropriate IAM roles

needed for the EC2 instances to be operated by ECS and at the

same time the IAM roles needed for ECS to communicate

with ELB are chosen. Linux based AMIs needed to run the

spring boot based micro services and docker containers is

used. Then the docker images containing the spring boot

based micro services are deployed and run on the ECS cluster

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

22

as Tasks. A Task is a unit of work which defines how the

container should be co-located in EC2 instances.

Fig 5: MSA on AWS cloud using ECS

4.2.1 Observations
We observed that deploying the micro service containers in

AWS cloud is highly advantageous compared to running them

in the local data centers. Here are a few advantages with this

model – (a) Maintainability: It is not difficult as in the data

center world. Cloud providers like AWS provide a rich set of

tools and technologies to maintain the deployed services (b)

Auto-Scaling: Auto scaling groups can be configured to scale

up or scale down the ECS service based on CPU or memory

usages. (c) High Availability and Load Balancing: ELB can

provide out of the box load balancing solution. Services are

run as ECS Tasks on the EC2 instances. ELB can load balance

and distribute the requests to healthy containers. (d) Upgrades

and Rollback: Application roll backs and upgrades to newer

versions can be achieved with minimal or no downtime. There

are parameters like minimum and maximum healthy percent

which can be adjusted to achieve rolling deployments by

spinning up a batch of parallel containers.(e) Service

Discovery: Route53 and ELB can provide out of the box

service discovery by routing the requests using listeners and

target groups, to appropriate services.(f) Health checks: AWS

comes with Cloud watch service which can monitor the health

of ECS cluster. (g) Multi cloud support: It is a vendor lock if

we chose this option for orchestration. We cannot have one

set of services running on AWS and other on Azure with this

kind of orchestration technique. (h) External storage:

Restricted to EBS volumes in AWS.

4.3 Cloud based deployment with

Kubernetes orchestration
Kubernetes is an open-source system for managing and

automating the deployment, scaling and management of

containerized applications. Kubernetes, with help of Pods,

takes the software encapsulation provided by Docker further.

A Pod is a collection of one or more Docker containers with

single interface features such as providing networking and file

system at the Pod level rather than at the container level. We

deployed the spring boot based Micro services MS1, MS2 and

MS3 on the Kubernetes cluster running on EC2 instances in

AWS cloud using Kubeops as shown in Fig 6. Kubernetes

cluster contains a master node and worker nodes. Master node

places container workloads in the user prods running in the

worker nodes or on itself. Master node runs an (a) API server

which acts as management layer which facilitates

communication with the cluster and perform tasks, such as

servicing API requests and scheduling containers and a (b)

controller manager which maintains the state of cluster and

auto scales the workloads. A kubelet receives the pod

information from the API server and updates the nodes

accordingly. Services are the endpoints exposed externally

using the Kubernetes DNS server which connects pods using

the label selectors.

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

23

Fig 6: MSA on Kubernetes cluster

4.3.1 Observations
Here are the observations which we made by running the

micro services on the Kubernetes cluster – (a) Maintainability:

The deployment of the applications in to Pods is specified

declaratively in the form of YAML. Deployment, scaling, co-

location and administration is more convenient with YAML.

(b) Auto-Scaling: It can easily be configured using the

resource metrics or by adjusting the ‘number of pods’

parameter which can specified declaratively in deployments.

c) High Availability and Load Balancing: Cluster of master

and worker nodes can be load balanced for requests from

Kubectl and clients. Also, pods are exposed through a service

which can be used as a load balancer with in the cluster. d)

Upgrades and Rollback: Application roll backs and upgrades

to newer versions can be achieved with minimal or no

downtime. The deployment supports both rolling update and

recreate strategies. (e) Service Discovery: Each Kubelet

provides environment variables to access the host and port or

a DNS server as an add on. DNS server creates a bunch of

DNS records for each kubernetes service. With DNS enabled,

the pods can use the service names that automatically resolve.

(f) Health checks: Kubernetes supports 2 kinds of health

checks to find liveliness and readiness of the services to check

the responsiveness and preparedness of the application. (g)

Multi cloud support: Kubernetes can be used on premises, or

any public clod or a combination of public clouds. (h)

External storage: Using this orchestration model provides

wide variety of storage options including on-premises SAN or

other volume options provided in public cloud platforms.

5. CONCLUSIONS AND FUTURE

WORK
From the above observations, it can be concluded that picking

up the right architecture for the deployment of micro services

needs too many factors to be considered. Deploying the micro

services as docker containers without any orchestration tool in

the data center world may be simple to start with and it can

soon become very challenging to maintain if the application

scalability needs grow. Cloud services like AWS ECS provide

a lot of out of the box features needed for load balancing,

service discovery, auto scaling, health monitoring etc. which

are very difficult to custom build in the data center

deployment model. However, using such native cloud

orchestration services leads to a vendor lock-in. Also, the

limitations like restrictions on storage options in the cloud

provider may not be cost effective. On the other hand, going

with open source orchestration frameworks like Kubernetes,

gives the similar benefits as AWS ECS. On top of it, it has

other advantages like the flexibility to pick up various storage

options, and a large community support. It is also beneficial if

the organization wants to use a multi-cloud deployment model

to support sensitive workload management or to avoid vendor

lock-ins. However, picking the open source tools like

Kubernetes for container orchestration leads to steep learning

curve and increased complexity, as everything is a do-it-

yourself model.

Further work needs to be done to study the deployment

models in other cloud providers like GCP, Azure etc. and

serverless deployment models like AWS lambda, Azure and

Google functions to name a few. And thus, compare the pros

and cons in each approach to come up with standards which

International Journal of Computer Applications (0975 – 8887)

Volume 182 – No. 29, November 2018

24

would help organizations to pick up right deployment model

for MSA.

6. REFERENCES
[1] B. A. Akinnuwesi, F.-M. E. Uzoka, and A. O. Osamiluyi,

"Neuro-fuzzy expert system for evaluating the

perfonnance of distributed software system architecture,"

Expert Systems with Applications, vol.40, no.9, pp. 33

13-3327, 2013.

[2] W. A. De Vries and R. A. Fleck, "Client/server

infrastructure: a case study in planning and conversion,"

Industrial Management & Data Systems, vol. 97, no, 6,

pp, 222-232, 1997.

[3] Salah, Tasneem & Zemerly, Jamal & Yeob Yeun, Chan

& Al-Qutayri, Mahmoud & Al-Hammadi, Yousof.

(2016). The evolution of distributed systems towards

microservices architecture. 318-325.

10.1109/ICITST.2016.7856721.

[4] M. Van Der Vlugt and S. Sambasivam, "Redesign of

stand- alone applications into thin-client/server

architecture," Informing Science : International Journal

of an Emerging Transdiscipline, vol. 2, pp. 723-742,

2005.

[5] L. Ismail, D. Hagimont, and J. Mossi'ere, "Evalnation of

the mobile agents technology: Comparison with the

client/server paradigm," Information Science and

Technology (1ST),vol. 19, 2000.

[6] B. Li, "Research and application of soa standards in the

integration on web services," in 2010 Second

International Workshop on Education Technology and

Computer Science (ETCS) , vol. 2 . IEEE, 2010, pp. 492-

495.

[7] D. Namiot and M. Sneps-Sneppe, " On micro-services

architecture," International Journal of Open Information

Technologies, vol. 2, no. 9, 2014.

[8] S. Newman, Building Microservices. " O'Reilly Media,

Inc.", 2015.

[9] P. Offermann, M. Hoffmann, and U. Bub, "Benefits of

SOA: Evaluation of an implemented scenario against

alternative architectures," in 2009 13th Enterprise

Distributed Object Computing Conference Workshops.

IEEE, 2009, pp. 352-359.

[10] M. Rahman and J. Gao, "A reusable automated

acceptance testing architecture for microservices in

behavior-driven development," in Service Oriented

System Engineering (SOSE), 2015 IEEE Symposium on.

IEEE, 2015, pp. 321-325.

[11] K. Rudrabhatla, Chaitanya. (2018). Comparison of Event

Choreography and Orchestration Techniques in

Microservice Architecture. International Journal of

Advanced Computer Science and Applications. 9.

10.14569/IJACSA.2018.090804.

[12] M. Vianden, H. Lichter, and A. Steffens, "Experience on

a microservice based reference architecture for

measurement systems," in 2014 21st Asia-Pacific

Software Engineering Conference, vol. 1. IEEE, 20 14,

pp. 183-190.

[13] H. Kang, M. Le, and S. Tao, "Container and

microservice driven design for cloud infrastructure

DevOps," in 2 0 1 6 IEEE International Conference on

Cloud Engineering (IC2E). IEEE, 2016, pp. 202-211.

[14] Wan, Xili & Guan, Xinjie & Wang, Tianjing & Bai,

Guangwei. (2018). Application deployment using

Microservice and Docker containers: Framework and

optimization. Journal of Network and Computer

Applications. 119. 10.1016/j.jnca.2018.07.003.

[15] A. Levcovitz, R. Terra, and M.T.Valente, "Towards a

technique for extracting Microservices from monolithic

enterprise systems," arXiv preprint arXiv: 1605.03175,

2016.

[16] Gan, Yu & Delimitrou, Christina. (2018). The

Architectural Implications of Cloud Microservices. IEEE

Computer Architecture Letters. PP. 1-1.

10.1109/LCA.2018.2839189.

[17] Delimitrou, Christina & Kozyrakis, Christos. (2013).

Paragon: QoS-Aware Scheduling for Heterogeneous

Datacenters. International Conference on Architectural

Support for Programming Languages and Operating

Systems - ASPLOS. 41. 77-88.

10.1145/2490301.2451125.

[18] Visti, Hannu & Kiss, Tamás & Terstyanszky, Gabor &

Gesmier, Gregoire & Winter, Stephen. (2016). MiCADO

– Towards a microservice-based cloud application-level

dynamic orchestrator. 0.7287/PEERJ.PREPRINTS.2536.

[19] Messina, Antonio & Rizzo, Riccardo & Storniolo, Pietro

& Tripiciano, Mario & Urso, Alfonso. (2016). The

Database-is-the-Service Pattern for Microservice

Architectures. 9832. 223-233. 10.1007/978-3-319-

43949-5_18.

IJCATM : www.ijcaonline.org

