
International Journal of Computer Applications (0975 – 8887) 

Volume 170 – No.5, July 2017 

39 

Introduction to Data Flow Testing with Genetic 

Algorithm 

 
Rijwan Khan 

Department of Computer Engineering 
Jamia Millia Islamia 

New Delhi 

Mohd Amjad 
Department of Computer Engineering 

Jamia Millia Islamia 
New Delhi 

 

ABSTRACT 

Control flow diagrams are a keystone in testing the structure 

of software programs. With the help of control flow between 

the various components of the program, we can select the test 

cases in a particular domain. In this paper, we introduced a 

window-based tool for generating the CFG of a C Program 

automatically. The data flow testing, i.e., control flow testing 

depends on all def-use of the variables. So selecting the test 

cases for a particular data flow diagram is not an easy task. In 

this paper genetic algorithm has been used to generate the test 

cases automatically for data flow testing. 

Keywords 

Data-Flow Testing, Control-Flow Graph, Genetic Algorithms, 

Software Testing, Automatic Test Cases. 

1. INTRODUCTION 
Software testing is a process of analysing a software and also 

detect the errors that are in the software. Software testing is a 

process of ensuring that the developed software is bugs free 

and fulfill all the requirement of the customer. There are two 

main types of the software testing; these are black box testing 

and white box testing. The purpose of black box testing is 

only to check desired output for a given input. Black box 

testing is that which checks only the output you want the 

software/program. It is a validation technique in which tester 

verifies that software/program meets all the customer 

requirements or not.  In white box testing, the tester has to test 

the functioning of the functions defined in the 

program/software. Data flow testing is a part of white box 

testing technique in which all du-paths are checked and find 

the path coverage for the software/program in its CFG.  

In this paper, data flow testing is applied with the genetic 

algorithm. For data flow testing three steps are taken, the first 

step is to generate the control flow graph (CFG) for the 

program/software, the second step is to find all def-use of the 

variables and the third is to find the path coverage in the CFG. 

In the third step test cases plays an important role.  

2. LITERATURE SURVEY 
Meta-heuristic techniques particular the genetic algorithm has 

been applied extensively to generate test cases automatically. 

One of the problems faced is that the population may not 

contain any individual that encodes test data for which the 

execution path reaches the predicate node of the target branch. 

For solving this problem, three methods have been introduced 

DFS, BFS and path prefix strategy [1]. An open source tool 

can be used for search based testing named AUSTIN. Test 

data is generated by AUSTIN to achieve branch coverage for 

C functions. AUSTIN is at least as effective as and more 

efficient than the ETF in generating branch adequate test data. 

[2]. Most of the faults occur around the boundary area. With 

the use of fault detection probability and error detection 

speed, these errors have been found in the minimum time [3]. 

Label coverage has been defined a new testing criterion which 

appears to be both expressive and amenable to efficient 

automation [4]. The combination of two or more nature 

inspired algorithms gave a better result than an individual 

technique, combination of genetic and tabu search algorithms 

to obtain branch coverage criterion, the neural network with 

the genetic algorithm. [5, 7]. Complex test cases can be 

generated from the simple (unit) test cases [6]. Genetic 

Algorithm is also used for GUI Testing. The coverage 

analysis of GUI testing has been done on some simple 

applications as Notepad, WordPad and MS WORD [8]. In 

some of the applications, the Hybrid Genetic Algorithm 

(HGA) has been used for the automatic test case generation. 

[10]. Finding the most critical paths for improving the 

software testing efficiency GA have its important role [11].  

Path coverage in the software testing is always an NP problem 

with the randomly generated test cases, with the genetic 

algorithm most paths have been found, the randomly 

generated test cases divided into different groups for the 

maximum path coverage. K-means algorithm is used to form 

different clusters and applied GA to generate the new test 

cases for maximum path coverage [12, 14]. 

3. SOFTWARE TESTING 
Software testing is a technique to verify the correctness of the 

software. In the industries software is developed and before 

delivery to the customer checked for verification. If the 

software is correct and tested properly before delivery to the 

client, then it will be very useful. Software testing has been 

done at each level of the software development life cycle. If 

the software is not checked in starting then it is a very tuff 

task to find the faults in the software in the late stage. 

 

Fig 1: V-Model for Software Testing Process 

The V-Model of the testing is shown in figure 1, at each level 

all types of testing have been described. Cross-pond to each 

level some different types of testing were defined. The user 



International Journal of Computer Applications (0975 – 8887) 

Volume 170 – No.5, July 2017 

40 

requirement phase has acceptance testing, software 

requirement phase has system testing, the high level design 

has integration testing, and detail design phase has unit 

testing. Unit testing is a testing process where we have to 

check for boundary value analysis and path testing. 

Integration testing is the combination of the different 

functions in software/program. System testing is performance 

testing, load testing, smoke testing and stress testing. 

3.1 Path Testing 
Path testing is one type of the unit testing. In the path testing, 

first, a Control Flow Graph has been designed for the 

software/program. With the use of the cyclomatic complexity 

of the software/program, all the paths have been found and 

then applied all def-use. In def-use variables are defined and 

used. There are two types of use c-use, and p-use, in c-use 

variables, are used in the calculation, and other one p-use are 

used in the prediction of the variables 

d- define, created, initialized 

k- killed, terminated, undefined 

u-used 

c- used in the computation 

p-used in a predicate 

e.g.  

Program to find the prime number within a given series 

starting from x and end at y. 

Prime (int x, int y) 

{ 

      int i,j; 

      for (i=x;i<=y;i++) 

     { 

          for(j=2;j<=i/2;j++) 

          { 

                if(i%j==0) 

                    break; 

           } 

           if(j>i/2) 

                printf(“ The prime no =%d”,i); 

       } 

  } 

Statements and nodes of CFG 

Table 1: Nodes corresponding statements 

Statements Nodes 

1,2,3 1 

4,5 2 

6,7 3 

8 4 

9 5 

10 6 

11 7 

12 8 

13 9 

14 10 

 
Fig 2: CFG of given example to find the prime number 

between two numbers. 

The paths in the CFG are calculated with the help of the 

cyclomatic complexity. 

Cyclomatic Complexity= E-N+2= 13-10+2=5 

So the number of the paths are 5. These are given below. 

1-2-3-4-6-3-7-8-9-2-10 

1-2-3-4-5-9-2-10 

1-2-3-7-8-9-2-10 

1-2-3-7-9-2-10 

1-2-10 

All def-use in this flow graph is defined as 

Table 2: Variables and their c and p-uses. 

Variables  Defined node c-use (node) p-use 

(node) 

x 1 2  

y 1  2 

i 1, 2 2 3 

j 1, 3 3  

 

4. GENETIC ALGORITHM 
John Holland developed Genetic Algorithm and its basic 

concepts in 1975. Genetic Algorithm is applied to different 

types of the problems mainly search based and optimization 

problems. GAs draw inspiration from the natural search and 

selection processes leading to the survival of the fittest 

individuals. The genetic algorithm in software testing plays an 

important role. The basic genetic algorithm is 

Simple Genetic Algorithm ( ) 

{ 

initialize population; 

evaluate population; 

while termination criterion not reached 

{ 

select solutions for next population; 



International Journal of Computer Applications (0975 – 8887) 

Volume 170 – No.5, July 2017 

41 

perform crossover and mutation; 

evaluate population; 

} 

} 

Genetic Algorithms operations are the initialization of 

population, selection, crossover and mutation. 

4.1 Genetic Algorithms Operations 
Genetic Algorithm has following operations  

i Representation: The initial population represented 

in the different format. In this, the initial population 

has been represented in 8 bits binary form. For 

example, if a number is taken as 14, then its 

equivalent binary should be 00001110. 

ii Selection: Selection is a process of selecting the 

population for checking the fitness function. If not 

fit then applied crossover or mutation operations. In 

this paper ranked based selection process has been 

used. 

iii Crossover: Crossover is an operation in which some 

bits on one individual exchanged with some bits of 

another individual to generate the new population.  

iv Mutation: Mutation operation is that in which one 

bit is flipped. e.g. 1 in the revert to 0 or 0 to 1. 

5. PROPOSED METHOD 
In this section, we proposed a method which will be explained 

in next section. Our proposed method has been divided into 

three phases. In the first step, a CFG will generate with the 

help of our designed tool. For the given an example, in the 

second step, all the paths have been found in the CFG with the 

support of the cyclomatic complexity and last the most critical 

stage where random test data generated and applied on the 

CFG to cover the maximum path, these test cases refined and 

optimized by the genetic algorithm. 

5.1 Proposed Algorithm 
The proposed algorithm has been described here. 

i Take a program written in C language. 

ii Generate the CFG of the C program with the tool. 

iii Find all the possible paths in the CFG. 

iv Generate the random set of test cases and apply it on 

the CFG. 

v Define the fitness function to calculate the path 

coverage of the CFG. 

vi Check for the path coverage. 

vii If path coverage is satisfied, then stop. Otherwise, 

go to next step. 

viii Select the initial population with the rank based 

selection process. 

ix Apply the GA’s operations (Crossover and 

mutation) to generate the new population. 

x Goto step 6. 

The fitness function for this proposed method is path coverage 

percentage. i.e. 

(Number of the paths covered on applying the input sets/total 

number of the paths)*100. 

5.2 Flow Chart of the Proposed Algorithm 
The flow chart for the proposed method is shown in figure 3. 

6. EXPERIMENTAL SETUP 
Here a C program is written to find the roots of a quadratic 

equation. This given program is written in turbo C and the 

CFG of the program is generated with our developed tool.  

#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

void main () 

{ 

int a,b,c; 

printf("solution of a quadratic equation\n\n\n"); printf("plz i/p 

cofficient of x square i.e. a\n"); scanf("%d",&a); 

printf("plz i/p cofficient of x i.e. b\n"); 

scanf("%d",&b); 

printf("plz i/p constant term i.e. c\n"); 

scanf("%d",&c); 

if(a==0) 

{ 

       printf("eq. is linear and soln=%f",-1*(c/b)); 

} 

else 

{ 

 if(b*b==4*a*c) 

{ 

printf("eq. has only one root and soln=%f",-1*(b/2*a)); 

} 

else 

{ 

 if(b*b>4*a*c) 

{ 

printf("roots of the eq is real and solution are:: "); printf("first 

root=%f",((-1*b)+(sqrt(b*b-4*a*c))) /2*a); 

printf("second root=%f",((-1*b)-(sqrt(b*b-4*a*c)))/2* a); 

} 

else 

{ 

printf("roots of the eq is imaginary and solution are:: ");  

printf("real part of first root=%f",((-1*b)/(2*a))); 

printf("imaginary part of first root=%f",((sqrt (4* a*c -

b*b)))/2*a); 

printf("real part of second root=%f",((-1*b)/(2*a))); 

printf("imaginary part of second root=%f",(-1*(sqrt(4*a*c-

b*b)))/2*a); 

} 

} 

} 

getch(); 

} 

For this given program CFG is given below. Till date we 

don’t have so good window based tool to generate the CFG of 

C program. Our developed tool is window based tool which 

generate CFG of a given program automatically as shown in 

figure 4. 



International Journal of Computer Applications (0975 – 8887) 

Volume 170 – No.5, July 2017 

42 

6.1 Explanation of Proposed Method with 

an Example 
In this CFG there are 9 nodes and 4 paths. 

First Path: 1-2-3-9 

Second Path: 1-2-4-5-9 

Third Path: 1-2-4-6-7-9 

Forth Path: 1-2-3-4-6-8-9 

The range of Inputs 0 to 15 for the value of a, b and c. 

We have taken this range for inputs so that they easily convert 

in binary numbers. All inputs are converted 8 bits binary 

numbers.  

Initially, random test cases have been generated and applied to 

cover the path of given program. According to mutation 

probability pm>.8 and crossover probability ps<.8, Genetic 

Algorithms operations are applied. If path coverage is 100%, 

then stop otherwise applied two point crossover and mutation 

operation. 

Table 3: Table for path coverage and GA operation 

S. 

No 

Set of 

Inputs 

Random 

Test Cases 

Paths Path  

Covera

ge 

Operation 

1 5 [10,12,11] 

[1,14,13] 

[0,1,4] 

[1,5,6] 

[6,12,11] 

4, 3, 1, 

3, 4 

75% Crossover 

2 9 [5,13,2][1

1,8,6] 

[1,0,12] 

[3,1,4] 

[5,2,8] 

[1,8,6] 

[11,0,7] 

[3,11,4] 

[5,12,8] 

3, 4, 4, 

4, 4, 3, 

4, 3, 4 

50% Crossover 

3 10 [10,7,6][1

0,6,7][1,6,

2] 

[3,6,3][5,7

,10][0,7,6] 

[10,6,1][1,

6,12] 

[15,10,7] 

[5,11,1] 

4, 4, 3, 

2, 4, 3, 

1, 4, 4, 

3 

100% Satisfied 

4 7 [4,2,1] 

[3,4,5] 

[4,2,7] 

[0,3,1] 

[5,8,7] 

[2,6,4] 

[13,7,9] 

4, 4, 4, 

1, 4, 3 

,4 

75% Crossover 

 

We have four paths and 4 set of inputs which have different 

data and 3 different operations mutation, crossover and 

satisfied. How many paths are covered in each set and which 

operation is applied is given in figure 5.  

As crossover operation is applied to each input set for that 

first, we have to convert the set of all input data into binary. 

When data converted in binary we applied crossover operation 

on it and again generate the new test cases. Now with this new 

data, we again check for path coverage. In our example, this 

iteration process has gone 40 times with crossover and 

mutation operation and after 40 iterations of the algorithm, we 

achieved 100% path coverage. The results of final iteration is 

shown in table number 4. 

Table 4: Final table for path coverage 

S. 

No 

Set of 

Inputs 

Random 

Test Cases 

Paths Path  

Covera

ge 

Operation 

1 5 [9,10,11] 

[3,12,9] 

[2,4,2] 

[1,8,3] 

[0,9,11] 

4, 3, 2, 

3, 1 

100% Satisfied 

2 9 [4,14,3][1

5,7,4] 

[0,8,10] 

[3,6,3] 

[4,2,10] 

[2,9,5] 

[10,2,6] 

[4,14,7] 

[15,8,8] 

3, 4, 1, 

2, 4, 3, 

4, 3, 4 

100% Satisfied 

3 10 [11,5,9][8,

4,12][1,8,

3] 

[3,6,3][0,7

,10][1,7,6] 

[14,7,2][2,

4,11] 

[11,8,7] 

[5,9,2] 

4, 4, 3, 

2, 1, 3, 

4, 4, 4, 

3 

100% Satisfied 

4 7 [0,2,1] 

[7,5,4] 

[9,3,7] 

[3,6,3] 

[9,6,7] 

[1,8,4] 

[14,6,8] 

1, 4, 4, 

2, 4, 3 

,4 

100% Satisfied 

 

After 40 iteration of the GA operation 100% path covered 

shown in figure 6. 

 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 170 – No.5, July 2017 

43 

 

Fig 3: Flow chart for proposed method. 

 

Fig 4: CFG for finding the roots of quadratic program 



International Journal of Computer Applications (0975 – 8887) 

Volume 170 – No.5, July 2017 

44 

 

Fig 5: Path Coverage and GA Operations 

 

Fig 6: Path Coverage % and GA Operations after 40 iterations

7. CONCLUSION 
Software testing is a process of delivering an error/fault free 

software to the customer. In this paper a method has been 

proposed, random test cases have been generated and found 

all du paths. With the random test case generation only some 

paths of the program/software covered and only few test cases 

are useful. So genetic algorithm has been used here for 

refining the test cases among the randomly generated test 

cases and applied the genetic algorithm approach to generate 

the new test cases and optimized these test cases. Proposed 

method and experimental setup showed that it achieved the 

maximum coverage with the optimized test cases. 



International Journal of Computer Applications (0975 – 8887) 

Volume 170 – No.5, July 2017 

45 

8. REFERENCES 

[1] Pachauri, Ankur, and Gursaran Srivastava. "Automated 

test data generation for branch testing using genetic 

algorithm: An improved approach using branch ordering, 

memory and elitism." Journal of Systems and 

Software 86.5 (2013): 1191-1208. 

[2] Lakhotia, Kiran, Mark Harman, and Hamilton Gross. 

"AUSTIN: An open source tool for search based 

software testing of C programs." Information and 

Software Technology 55.1 (2013): 112-125. 

[3] Moadab, Shahram, and Hassan Rashidi. "Automatic 

path-oriented test data generation by boundary 

hypercuboids." Journal of King Saud University-

Computer and Information Sciences 28.1 (2016): 82-97. 

[4] Bardin, Sébastien, Nikolai Kosmatov, and François 

Cheynier. "Efficient Leverage of Symbolic ATG Tools to 

Advanced Coverage Criteria." arXiv preprint 

arXiv:1308.4045 (2013). 

[5] Mayan, J. Albert, and T. Ravi. "Test Case Optimization 

Using Hybrid Search Technique." Proceedings of the 

2014. 

[6] International Conference on Interdisciplinary Advances 

in Applied Computing. ACM, 2014. 

[7] Pezze, Mauro, Konstantin Rubinov, and Jochen Wuttke. 

"Generating effective integration test cases from unit 

ones." Software Testing, Verification and Validation 

(ICST), 2013 IEEE Sixth International Conference on. 

IEEE, 2013. 

[8] Sharma, Chayanika, Sangeeta Sabharwal, and Ritu Sibal. 

"A survey on software testing techniques using genetic 

algorithm." arXiv preprint arXiv:1411.1154 (2014). 

[9] Rauf, Abdul, Arfan Jaffar, and Arshad Ali Shahid. "Fully 

automated guide testing and coverage analysis using 

genetic algorithms." International Journal of Innovative 

Computing, Information and Control (IJICIC) Vol 7 

(2011). 

[10] Sivanandam, S. N., and S. N. Deepa. Introduction to 

genetic algorithms. Springer Science & Business Media, 

2007. 

[11] Mala, D. Jeya, and V. Mohan. "Quality improvement and 

optimization of test cases: a hybrid genetic algorithm 

based approach." ACM SIGSOFT Software Engineering 

Notes 35.3 (2010): 1-14. 

[12] Rao, K. Koteswara, G. S. V. P. Raju, and Srinivasan 

Nagaraj. "Optimizing the software testing efficiency by 

using a genetic algorithm: a design methodology." ACM 

SIGSOFT Software Engineering Notes 38.3 (2013): 1-5. 

[13] Mahajan, Manish, Sumit Kumar, and Rabins Porwal. 

"Applying genetic algorithm to increase the efficiency of 

a data flow-based test data generation approach." ACM 

SIGSOFT Software Engineering Notes 37.5 (2012): 1-5. 

[14] Burjorjee, Keki M. "Explaining optimization in genetic 

algorithms with uniform crossover." Proceedings of the 

twelfth workshop on Foundations of genetic algorithms 

XII. ACM, 2013. 

[15] Khan Rijwan, and Mohd Amjad. "Automatic Generation 

of Test Cases for Data Flow Test Paths Using K-Means 

Clustering and Generic Algorithm. “International Journal 

of Applied Engineering Research 11.1 (2016): 473-478. 

[16] Khan Rijwan and Mohd Amjad, “ Automatic test case 

generation for unit software testing using genetic 

algorithm and mutation analysis”, 2015 IEEE UP Section 

Conference on Electrical Computer and Electronics 

(UPCON) 

 

IJCATM : www.ijcaonline.org 


