
International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.11, June 2017

42

Database Implementation and Testing of Dynamic

Credit Card Fraud Detection System

Anita Jog
PG Student,

MIT College of engineering,
Kothrud, Pune.

Anjali Chandavale, PhD
Professor,

Department of Information Technology,
MIT College of Engineering, Pune

ABSTRACT

Credit card frauds are increasing with the increase in use of

plastic money. These frauds include the transactions done

either by stealing the physical card or using card data such as

card number, expiry date and pin number. There is a need to

recognize customer spending pattern and apply validations for

incoming transaction. Suspicious transactions can go under

rigorous security checks. This paper describes the database

implementation of credit card fraud detection system which is

adaptive to concept drift environment. The system is designed

using PL-SQL stored procedures and JAVA. The validation

procedure and testing results are included in this paper.

General Terms
Pattern Recognition, Security, credit card, fraud detection,

stored procedure.

Keywords

Concept drift, self learning, credit card fraud detection.

1. INTRODUCTION

There is tremendous growth in the use of Credit cards. People

are encouraged to use plast ic money to control the

corruption. Apart from the corruption control issue, credit

card is gaining popularity due to online shopping trend.

Retailers, merchants are offering discounts on online

shopping. Customers prefer Online shopping since it helps

explore m a n y items with few clicks. Customers also

compare the amount charged by different vendors for the same

thing.

Personal details are exposed over the network during online

transactions. It results in loss of heavy monetary value

worldwide every year. As per cybercrime report [13], t h e

r a t i o o f transaction volume ($28 Trillion) v s f r a u d

t r a n s a c t i o n s ($ 1 6 b i l l i o n) is 0.06%. I.e. 19%

increase in fraud transactions while the customer base grew

by 15%. So it is utmost priority for electronic transactions

processing Companies to maintain customer trust and protect

their business by smartly detecting frauds. The important

aspect to prevent the credit card fraud is to analyze the

customer spending pattern thoroughly and apply validation

rules to categorize the transaction to be either fraud or

genuine. The paper includes following sections. Section 2

describes the related work. Section 3 detailed out the

proposed work. In section 4 sho ws results, Section 5

provides end conclusion, and Section 6 includes referred

papers and sites.

2. RELATED WORK

There are several data mining techniques suggested for fraud

detection [8][6][1][11]. Artificial Intelligence, Neural

networks, genetic programming, Support Vector machine,

Decision tree. etc. [2][3][7][10]. Véronique Van Vlasselaer

and Cristián Bravo [5] has suggested the approach which

combines inherent attributes derived from the characteristics

of incoming transactions and the customer spending history

using the primary characteristics such as Recency–

Frequency–Monetary. Also, the network of credit card holders

and merchants is taken into account to validate their

relationship by calculating time-dependent suspiciousness

score for each network object. Intrinsic feature extraction is

implemented using supervised learning by exploring spending

patterns. Serol Bulkan and Yusuf Sahin describe a system

that makes use of cost sensitive decision tree approach. The

approach minimizes total misclassification costs but also

identifies splitting attribute at non-terminal nodes [9].

Author has compared this approach against traditional

classification models on real life data. Yiğit Kültür[15] has

focused on analyzing the cardholder spending behavior and

proposes a novel cardholder behavior model for detecting

credit card fraud. The model is named Cardholder Behavior

Model (CBM). He has used sensitivity, specificity, false

positive rate, precision, accuracy to evaluate the customer

behavior model.

3. PROPOSED WORK
The proposed and implemented solution is built on above

mentioned fundamental solution for fraud detection. It is

based on the layered architecture. The different layers used

are 1) data, 2) utility, 3) manager and 4) controller. Data

layer stores following data types 1) Historical, 2)

Transactional. The validation model contains rule set to

validate each customer. Data layer also includes stored

procedures that are used for validation purpose. Utility layer

contains common utilities supporting other layers. Manager

layer is used for executing each task independently while

controller wraps all the small tasks that need to be done for

every user action. This technique (Concept Drift

Adaptation) is implemented by periodically updating the

model using scheduler. Following section explains flow of

credit card transaction followed by implementation details

of the proposed system.

3.1 Overview of credit card processing
There are 4 basic steps involved in credit card processing. First

one is authorization. When customer swipes the card, his

credentials are sent to the bank with which the card machine is

registered and then subsequently forwarded to the card issuing

bank. Card issuing banks authenticates the request and

depending upon its response, transaction can either proceed or

denied for sale. Second step is batching where merchant groups

all day’s transactions and submits to the bank for payment

processing. Third step is clearing where group of transactions

received are segregated and sent to appropriate bank through

card network. Card issuing bank deducts the interchange fee

and sends remaining amount through the network. Last step is

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.11, June 2017

43

Funding in which merchant’s bank subtracts appropriate

charges and transfers the money to merchant’s account.

MerchantCredit Card

Machine

Card Issuer Bank

Acquirer Bank

Card Network

1. Initiate End

of Day

Processing

2. Send Batch of

transactions to

Acquirer

3. Batch sent to

Mediator for

Clearance issuer

4. Network Distributes

transaction to

respective Issuers

5. Issuers subtract

Interchange fees (1-

2%) and sends

remaining for clearing

7. Acquirer subtracts

discount rates (1-2%)

and pays merchant

remaining

6. Card Network sends

remaining amount to

Acquirer

Figure 1: Overview of credit card processing

3.2 Proposed System
In a nutshell the component Builder uses historical

transactional data to build the model. This model is a set of

attributes for identifying fraudulent transaction. The Online

fraud detected uses this model to detect suspicious

characteristics in each incoming transaction. Based on the

decision from online fraud detector, another component

called transaction processor aborts or proceeds with the

transaction for further processing. Next component called

offline calibrator is a scheduler which runs periodically.

Offline calibrator is responsible for rebuilding the model

using transactions and fraud detections after previous run of

the scheduler. This model is updated weekly to cater newly

added records. The application consists of modules such as

Login, Account Statement Viewer, PDF a n d E x c e l

Download to actual transaction execution covering various

validations. Validations are performed at 2 intervals, 1)

During actual transaction and 2) periodically heuristic

checks are applied across entire customers set to recognize

suspicious Pattern of transaction.

Figure 2 shows the architecture diagram of the proposed

system. The system is mainly divided into four layers

Controller layer, Manager Layer, Utility layer and data layer.

Controller Layer wraps all tasks that need to be

performed for every user action. It sends the request to

appropriate manager to execute each action sequentially. It

takes help from alert utility depending upon the response

received from manager layer. Each controller class

represents one user action. It determines necessary steps that

need to be executed to complete given task.

Manager Layer is responsible for executing below

mentioned action with the help of database tables and stored

procedures. It sends response code to the controller.

Authentication Manager is the first manager that gets called

from controller. Authentication manager is used to verify the

userId, password. The authentication manager returns error

message in case of invalid user or password. It returns the

customer details if the user id, password is valid. After passing

all the preliminary checks, controller calls fraud detection

manager to detect any suspicious behavior of transaction. It

calls stored procedures written in PL-SQL. At the last,

controller calls Transaction manager to process the

transaction with respect to debit or credit etc.

Utility Layer is responsible of reporting, notifications, alerts

triggered by manager layer.

Database Layer includes transactional data, historical data,

and set of stored procedures. Transactions that are marked

suspicious by the algorithm are kept in separate table

fraud_log_tbl. Following section tells about database

architecture.

Figure 2: Proposed system architecture

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.11, June 2017

44

3.3 Database Architecture

Figure 3: Database architecture

Figure 3 gives the quick overview of database

architecture. The historical transactional data is analyzed

and derived known patterns are stored in database tables.

These act as validation rules to identify the suspicious

transaction. These validation rules are explained below in

stored procedure section. The patterns are nothing but

characteristics obtained from customers’ historical

transactions to identify the spending pattern. These

characteristics are stored in various tables as mentioned

below in Figure 4.

Figure 4: Important tables involved in credit card

fraud detection

Customer_Vendor_tbl stores RFM attributes (Recency,

Frequency, and Monetary) value for each customer-vendor

pair. The incoming transaction is validated against attributes

to check if it is within the threshold value. For example, if it

is quarterly, then last transaction date and current date for

same vendor is compared. If it is found that the difference

between two transactions is less than a quarter, then after

adding 20% variation, transaction is put on HOLD. Customer

feedback is needed to decide how to process suspicious

transactions. Customer care will work with customer to mark

it genuine or fraud. Account_validation_tbl stores various

attribute level validations. I.e. Min/Max amount, Location

etc. e.g. For location it stores delimited locations list. If a

transaction comes from a new city then it goes in HOLD. The

design allows customized attributes by Account.

Fraud_log_tbl logs all Blocked transactions.

customer_spending_pattern_tbl is used to store he customer

spending behavior such as how many transactions customer

performs in a day, how much amount spent daily, how much

amount spent weekly, number of transactions executed in a

week, weekly amount limit, monthly transactions, monthly

limit.

Below are main stored procedures which do the job of

identifying the fraudulent transaction. These stored

procedures are divided into three modules as shown in table

below.

Details of each stored procedure are explained below.

3.3.1 perform_HeuristicSearchforVendor:
This stored procedure performs heuristic search across all the

accounts to find the pattern of similar transactions within

same time period, amount, and vendor. E.g. online hackers are

known to do small and similar amount transactions across

millions of accounts. Customers generally are not even aware

of such frauds if they do not monitor the account regularly

however the hackers earn millions at the loss of credit-card

issuer. In these cases the suspected transactions are put on

HOLD and kept in different table. After customer

confirmation, these transactions can proceed or aborted.

Similarly such a vendor will also marked as Fraud i.e.

restricting any further transactions. If there are more than 100

transactions within 2 hours having amount difference less than

10, then these transactions could be due to hacking. So these

transactions are marked as suspicious

Table 1: Overview of stored procedures

Stored Procedure Name Function

populate_AccountValidat

ionTbl

perform_HeuristicSearch

forVendor

populate_CustomerSpen

dingPatternTbl

populate_RFMAttributeT

bl

This stored procedure

populates the data in

"account_validation_tbl"

using historical transactions.

This table contains attributes

for each account to validate

the transaction. Attributes

include minimum amount

spent, maximum amount

spent, location where

customer perform the

transaction etc.

validateCustomerPattern

validate_AccountAttribut

es

validate_RFMAttributes

To apply the rules built by

first module on the incoming

transaction to check if it is

suspicious or genuine

bulkpopulate_TestValida

tionTbl
Test all the conditions

3.3.2 Populate_RFMAttributeTbl:
This stored procedure populates the Recency, Frequency, and

Monitory values for each Customer-Vendor pair. It populates

the minimum and maximum transaction amounts, Frequency

of transactions that customer deal with particular vendor. It

reads the records form transaction table and group the

transactions by customer Id, Vendor Id. Within the group, the

count of transactions is considered. Depending upon the

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.11, June 2017

45

count, the frequency is calculated as shown in below table;

One year data is taken into account while doing this

calculation.

Table 2: Customer-Vendor transaction frequency

calculation

No of transactions for customer-

vendor group

Frequency

Transaction Count >100 Daily

Transaction count between 45 to 100 Weekly

Transaction count between 20 to 44 Bi-weekly

Transaction count between 9 to 19 Monthly

Transaction count between 3 to 8 Quarterly

Transaction count < 3 Yearly

3.3.3 Populate_AccountValidation &

SP_Populate_AccountValidationAll:
This stored procedure populates the transacted cities,

minimum amount, and maximum amount values for each

Account. First one is specific to an Account, whereas the later

one does the same operation across ALL Accounts.

From transaction history, distinct locations are found from

where customer usually does the transactions for particular

account. The locations are collected and made a list of cities

separated by comma. This list is stored in

accountValidationTbl table along with what is the minimum

amount, maximum amount.

3.3.4 Populate_CustomerSpendingPattern:
This stored procedure populates the Customer’s spending

pattern i.e. weekly/monthly/daily transaction count, minimum

amount, and maximum amount spent against each Account.

This tracks down the customer spending pattern in a specific

period. For example, customer usually buys breakfast from

cafeteria. Then while coming back from office, he buys tea or

some snacks from another vendor. Also shops some grocery

items from grocery store. So daily transaction count will be 3

and daily amount limit will be in between 60 to 200. Every

week, he goes to Big Bazar for shopping, fills petrol in the car

etc. So weekly count will be 2 and amount will be in the range

of 3000 to 4500. Similarly the monthly pattern can be derived

where the electricity bill is paid, car wash charges are paid,

and parking or toll charges are paid. Thus typical customer

spending pattern is derived and stored in

customer_spending_pattern_tbl. To calculate the daily,

weekly transaction count, this stored procedure first calculates

the number of transactions done in every week for that

account over one year. Then average is calculated.

3.3.5 validateCustomerPattern:
This stored procedure validates the incoming transaction

against the data in customer_spending_pattern_tbl table. If

customer usually spends around 200 Rs. every day in 2

transactions then suddenly there are 5 transactions happens

then there are more chances that the credit card is stolen or

someone else is using credit card details to buy the things. So

all these suspicious transactions are put on HOLD and wait

for customer confirmation. Similarly if customer goes and

buys a single item but of 1000Rs, then also, it is suspicious

since daily limit is 200Rs. For this when new transaction

request is received, the number of transactions are calculated

that are done in same day, number of transactions done in

same week, number of transactions done in the same month.

Along with the number of transactions, amount also is

calculated for day, week and month spent by that customer.

Now the amount of current transaction is added and then it is

compared against daily limit stored in

customerSpendingPatternTbl. The count is also increased by 1

to consider current transaction. This count is compared

against daily transaction limit stored in

customerSpendingPatternTbl. Similar checks are applied for

weekly count, weekly amount limit, monthly count and

monthly amount limit.

3.3.6 validate_AccountAttributes:
This stored procedure validates the incoming transaction

against “account_validation_tbl” table. This attributes are

common values such as minimum amount, maximum amount,

location of transaction etc. If customer lives in Pune and

works at Hinjewadi, his most probable location is Pune. If he

travels to Mumbai once a while, his list of locations will

contain Pune, Mumbai. So if there is sudden transaction from

Delhi, it is marked as suspicious and put on HOLD.

3.3.7 validate_RFMAttributes:
This stored procedure validates the customer-vendor specific

attributes. From historical data, customer_vendor_tbl is

populated by “populate_RFMAttribute”.

“customer_vendor_tbl” has the customer-vendor relationship.

This includes what is the frequency of transaction with

particular vendor, what is the amount usually customer spend

with the vendor. For example, the electricity bill is paid

monthly and suddenly there are 3 transactions with electricity

bill in same month, it is marked as suspicious. Or customer

visits D-Mart every month for grocery and 3 transactions with

amount greater than given threshold happens, it is marked as

suspicious.

3.3.8 bulkpopulate_TestValidationTbl:
This stored is specially designed for testing various flows

from backend database and for performance testing. Hundreds

of transactions can be tested with this stored procedure one by

one. It reads batch of transactions from transaction table and

apply all the validations one by one to check if it is

suspicious.

4. RESULT

The graphical user interface (GUI) is also designed to test a

particular transaction to be a fraud or genuine. Validation

results are displayed.The transactions that are put on HOLD

can proceed or abort depending upon customer feedback. If

customer confirms the transaction to be genuine then

transaction processing is completed by entering in

Transactiontbl table. Secondly the status is marked as

COMPLETED in fraud_log_tbl. And lastly the stored

procedures are executed to recalibrate the validation rules.

This is to prevent marking similar transaction as suspicious in

future. If customer confirms the transaction to be fraudulent,

then transaction status is updated in fraud_log_tbl as

cancelled. And no further action is taken on this.

The data is obtained from kaggle.com. Dataset includes

transactions made by credit cards by European cardholders.

With some modifications synthetic data is also inserted into

the database to validate different scenarios.

test_transaction_tbl table is created to collect the test results.

Each column in this table represents status of each validation

rule. bulkpopulate_TestValidationTbl is a stored procedure

specially designed to test various scenarios. This also gives the

performance parameters to check how much time system will

take for checking thousands of transactions.

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.11, June 2017

46

Figure 5: screen capture showing fraud summary page to view transactions that are HOLD

Table 3: Performance result

No of

transactions

Execution Time (ms)

1046 1777

1884 3872

2730 6360

3576 9663

4422 13470

Figure 6: Performance graph

Parameters used to measure the system accuracy are sensitivity,

precision, false positive rate, negative predictive value and

accuracy as shown in table 2. [15]

Table 4: System evaluation result

Sensitivity Precision Accuracy

42.24% 10.20% 81.12%

5. CONCLUSION
Self-Learning algorithms for fraud detection in credit cards is

a need of the hour as Plastic and Online transaction base is

growing at a fast pace. There is also a need for periodically

recalibration of Algorithm. The approach suggested above is

suitable in such an environment since it recalibrates, and

customizes by logical entity. It is a hybrid system having

Network based extension and concept drift adaptation. The

model is customized based on recent and past transactions.

The suggested model is dynamic and customized with 81%

accuracy in transactions filtering rate. Thus, the system is

providing necessary support system to end users and credit

card companies to freely use Plastic and electronic money.

6. REFERENCES
[1] Emanuel MinedaCarneiro, “Cluster Analysis and

Artificial Neural Networks: A Case Study in Credit

Card Fraud Detection,” in 2015 IEEE International

Con- ference

[2] V. Mareeswari, “Prevention of Credit Card Fraud

Detection based on HSVM”. 2016 IEEE International

Conference On Information Communication And Em-

bedded System.

[3] Carlos A. S. Assis, “A Genetic Programming Approach

for Fraud Detection in Electronic Transactions” in

Advances in Computing and Communication Engi-

neering (ICACCE), 2015 Second International

Conference

[4] Andrea Dal Pozzolo, "Credit Card Fraud Detection

and Concept-Drift Adaptation with Delayed

Supervised Information",

[5] Véronique Van Vlasselaer, "APATE: A novel

approach for automated credit card transaction fraud

detection using network-based extensions" published in

Deci- sion Support Systems 2015

[6] Dhiya Al-Jumeily, "Methods and Techniques to Support

the Development of Fraud Detection System", IEEE

2015

0

2000

4000

6000

8000

10000

12000

14000

16000

1046 1884 2730 3576 4422

Time
(ms)

Transaction count

International Journal of Computer Applications (0975 – 8887)

Volume 168 – No.11, June 2017

47

[7] Dustin Y. Harvey, "Automated Feature Design for

Numeric Sequence Classifica- tion by Genetic

Programming", IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, VOL. 19, NO.

4, AUGUST 2015

[8] Mukesh Kumar Mishra, "A Comparative Study of

Chebyshev Functional Link Artificial Neural Network,

Multi-layer Perceptron and Decision Tree for Credit

Card Fraud Detection", 2014 13th International

Conference on Information Technology

[9] Sahin Yusuf, BulkanSerol, DumanEkrem,”A Cost-

Sensitive Decision Tree Approach for Fraud Detection”,

Expert Systems with Applications, vol.40, pp.5916-

5923, 2013

[10] Kang Fu, Dawei Cheng, Yi Tu, and Liqing Zhang,

“Credit Card Fraud Detection Using Convolutional

Neural Networks”, Neural Information Processing,

Springer [11] Andrea Dal Pozzolo, Olivier Caelen,”

Learned lessons in credit card fraud detec- tion from a

practitioner perspective” , Expert Systems with

Applications 41,2014.

[12] How a credit card is processed

https://www.creditcards.com/credit-card-

news/assets/HowACreditCardIsProcessed.pdf

[13] Global Card Fraud Damages Reach $16B

http://www.pymnts.com/news/2015/global-card-fraud-

damages-reach-16b/

[14] Credit Card Fraud Detection

https://www.kaggle.com/dalpozz/creditcardfraud

[15] Yiğit Kültür, "A Novel Cardholder Behavior Model for

Detecting Credit Card Fraud”, IEEE international

conference on commuting and communication

engineering, 2015

IJCATM : www.ijcaonline.org

http://www.creditcards.com/credit-card-
http://www.creditcards.com/credit-card-
http://www.pymnts.com/news/2015/global-card-fraud-damages-reach-16b/
http://www.pymnts.com/news/2015/global-card-fraud-damages-reach-16b/
https://www.kaggle.com/dalpozz/creditcardfraud

