The M-Homomorphism and M-Anti Homomorphism of an M-Fuzzy Subgroup and its Level M-Subgroups

R.Muthuraj Department of Mathematics PSNA CET, Dindigul. – 624 622 M.Rajinikannan Department of MCA PSNA CET, Dindigul. – 624 622 M.S.Muthuraman
Department of Mathematics
PSNA CET, Dindigul. – 624 622

Abstract

In this paper, we introduce the concept of an M-fuzzy subgroup of an M-group and discussed some of its properties.

2000 Mathematics Subject Classification: 22F05, 06F10.

Keywords

M-group, fuzzy set, fuzzy subgroup, M-fuzzy subgroup of an M-group , level subset , level M-subgroups , M-homomorphism , M-anti homomorphism.

Introduction

The concept of fuzzy sets was initiated by Zadeh. Then it has become a vigorous area of research in engineering, medical science, social science, graph theory etc. Rosenfeld gave the idea of fuzzy subgroups. Author N. Jacobson introduced the concept of M-group, M-subgroup.

1. Preliminaries

This section contains some definitions and results to be used in the sequel.

1.1 Definition

Let S be a set. A fuzzy subset A of S is a function A: $S \rightarrow [0,1]$.

1.2 Definition

Let G be a group. A fuzzy subset A of G is called a fuzzy subgroup if for $x, y \in G$,

- (i) $A(xy) \geq \min \{ A(x), A(y) \},$
- (ii) $A(x^{-1}) = A(x)$.

1.3 Definition

A group with operators is an algebraic system consisting of a group G, a set M and a function defined in the product set $M \times G$ and having values in G such that, if ma denotes the element in G determined by the element G and the element G of G and the element G of G and G of G of G and G of G o

shall use the phrases "G is an M-group" to a group with operators.

A subgroup H of an M-group G is said to be an M-subgroup if $mx \in H$ for all $m \in M$ and $x \in H$.

1.4 Definition

Let G be an M-group and A be a fuzzy subgroup of G . Then A is called an M-fuzzy subgroup of G if for all $x \in G$ and $m \in M$, then $A(mx) \geq A(x)$.

1.5 Definition

Let A be a fuzzy subset of S. For $t \in [0, 1]$, the level subset of A is the set, $A_t = \{ x \in S : A(x) \ge t \}$.

1.6 Definition

Let G be a finite group of order n and A be a fuzzy subgroup of G. Let $\text{Im}(A) = \{\ t_i : A(x) = t_i \text{ for some } x \in G \ \}.$ Then $\{\ A_{t_i}\ \}$ are the only level subgroups of A.

1.1 Example

Let A be a fuzzy subset of an M-group G, then A is defined by

$$A(x) = \begin{cases} 0.7 & \text{if } x \in G \\ 0.2 & \text{otherwise.} \end{cases}$$

Then it is easy to verify that A is an M-fuzzy subgroup of G.

1.7 Definition

Let G and G' be any two M-groups. Then the function $f\!\colon G\to G' \text{ is said to be an M-homomorphism if}$

- (i) f(xy) = f(x) f(y) for all x, y in G.
- (ii) f(mx) = mf(x) for all m in M and x in G.

1.8 Definition

Let G and G' be any two M-groups (not necessarily commutative). Then the function $f\colon G\to G' \text{ is said to be an}$ M-anti homomorphism if

- (i) f(xy) = f(y) f(x) for all $x, y \in G$.
- (ii) f(mx) = m f(x) for all m in M and x in G.

2. M-fuzzy subgroups of an M-group G under M-homomorphism and M-anti homomorphism

2.1 Theorem

Let f be a M-homomorphism from an M-group G onto an M-group G'. If A is an M-fuzzy subgroup of G and A is finvariant, then f(A), the image of A under f, is an M-fuzzy subgroup of G'.

Proof

Let $\alpha \in \text{Image } f(A)$.

Then for some
$$y \in G'$$
, $(f(A))(y) = \sup_{x \in f^{-1}(y)} A(x) = \alpha$, where $\alpha \le A(e)$.

Clearly A_{α} is an M-subgroup of G.

If
$$\alpha = 1$$
, then $(f(A))_{\alpha} = G'$.

If
$$0 < \alpha < 1$$
, then $(f(A))_{\alpha} = f(A_{\alpha})$, because,

$$\begin{split} z \in & \left(f(A) \right)_{\alpha} \iff \left(f(A) \right) (z) \ \geq \alpha \, . \\ \Leftrightarrow & \sup_{x \in f^{-1}(z)} A(x) \geq \alpha \, . \, (\text{ since } 0 < \alpha < 1) \\ \Leftrightarrow & \text{ there exists } x \text{ in G such that } f(x) = z \\ & \text{ and } \quad A(x) \geq \alpha \, . \\ \Leftrightarrow & z \in \left(f(A_{\alpha}) \right). \end{split}$$

Hence,
$$(f(A))_{\alpha} = (f(A_{\alpha})).$$

Since f is an M-homomorphism , $(f(A_\alpha))$ is an M-subgroup of G'. Hence $(f(A))_\alpha$ is an M-subgroup of G'.

Hence f(A) is an M- fuzzy subgroup of G'.

2.2 Theorem

The M-homomorphic pre-image of an M-fuzzy subgroup of an M-group G^\prime is an M-fuzzy subgroup of an M-group G.

Proof

Let $f: G \to G'$ be an M-homomorphism. Let the fuzzy set V on G' be an M-fuzzy subgroup.

We have to prove that any fuzzy set A on G is an M-fuzzy subgroup, where V = f(A).

Now,
$$A(xy) = V(f(xy)).$$

$$= V(f(x)f(y)) \quad \text{as } f \text{ is an } M\text{-homomorphism}.$$

$$\geq \min \left\{ \ V(f(x)) \ , \ V(f(y)) \right\}$$
 as V is an M -fuzzy subgroup of $G'.$

$$= \min \{ A(x), A(y) \}.$$

That is,
$$A(xy) \ge \min\{A(x), A(y)\}.$$

For $x \in G$,

$$\begin{array}{ll} A(x^{-l}) & = \ V(f(x^{-l})) \\ & = \ V((f(x)^{-l})) & \text{as f is an M-homomorphism} \\ & = \ V(f(x)) \ \text{as V is an M-fuzzy subgroup of G'} \\ & = \ A(x). \end{array}$$

That is,
$$A(x^{-1}) = A(x)$$
.
Clearly, $A(mx) = V(f(mx))$
 $= V(mf(x))$, as f is an M-homomorphism
 $\geq V(f(x))$ as V is an M-fuzzy subgroup of G'
 $= A(x)$.

That is, $A(mx) \ge A(x)$.

Hence A is an M-fuzzy subgroup of G.

2.3 Theorem

Let f be an M-anti homomorphism from an M-group G onto an M-group G'. If A is an M-fuzzy subgroup of G and A is f-invariant, then f(A), the image of A under f, is an M-fuzzy subgroup of G'.

Proof

Let $\alpha \in \text{Image } f(A)$.

Then for some
$$y\in G'$$
 , $(f(A))(y)=\sup_{x\ \in f^{-1}(y)}\quad A(x)=\alpha$, where $\alpha\ \le\ A(e).$

Clearly A_{α} is an M-subgroup of G.

If
$$\alpha = 1$$
, then $(f(A))_{\alpha} = G'$.

If
$$0 < \alpha < 1$$
, then $(f(A))_{\alpha} = f(A_{\alpha})$, because,

$$\begin{array}{lll} z\in \ (f(A))_{\,\alpha} & \Leftrightarrow & (f(A))\,(z) \ \geq \ \alpha \ . \\ & \Leftrightarrow & sup \quad A(x) \ \geq \quad \alpha \ . \ (\ since \ 0 < \alpha < 1) \\ & & \\ & x\in f^{-1}(z) \\ & \Leftrightarrow & there \ exists \ x \ in \ G \ such \ that \ f(x) = z \end{array}$$

$$\label{eq:and-A} \text{and} \quad A(x) \, \geq \, \alpha \; .$$

$$\Leftrightarrow \; z \in (f(A_\alpha)).$$

Hence,
$$(f(A))_{\alpha} = (f(A_{\alpha})).$$

Since f is an M- anti homomorphism , $(f(A_{\alpha}))$ is an M-subgroup of $G^{\prime}.$

Hence $(f(A))_{\alpha}$ is an M-subgroup of G'.

Hence f(A) is an M- fuzzy subgroup of G'.

2.4 Theorem

The M-anti homomorphic pre-image of an M-fuzzy subgroup of an M-group G^\prime is an M-fuzzy subgroup of an M-group G.

Proof

Let $f\colon G\to G'$ be an M-anti homomorphism. Let the fuzzy set V on G' be an M-fuzzy subgroup.

We have to prove that any fuzzy set A on G is an M-fuzzy subgroup, where V = f(A).

Now,
$$A(xy) = V(f(xy)).$$

= $V(f(x)f(y))$

as f is an M-anti homomorphism.

$$\geq \min \{ V(f(x)), V(f(y)) \}$$

as V is an M- fuzzy subgroup of G'.

 $= \min \{ A(x), A(y) \}.$

That is, $A(xy) \ge \min\{A(x), A(y)\}.$

For $x \in G$,

$$A(x^{-1}) = V(f(x^{-1}))$$

 $= V((f(x)^{-1}))$ as f is an M-anti homomorphism

= V(f(x)) as V is an M-fuzzy subgroup of G'

= A(x).

That is, $A(x^{-1}) = A(x)$.

Clearly, A(mx) = V(f(mx))

= V(mf(x)), as f is an M-anti homomorphism

 $\geq V(f(x)) \ \ \text{as } V \ \text{is an M-fuzzy subgroup of } G'$

= A(x).

That is, $A(mx) \ge A(x)$.

Hence A is an M-fuzzy subgroup of G.

3. Properties of level subsets of an M-fuzzy subgroup of an M-group:

3.1 Theorem

Let A be a fuzzy subset of an M-group G. If A is an M-fuzzy subgroup of G, then the level subsets A_t , $t\in \text{Im}(A)$ are M-subgroups of G.

Proof

Let $t \in Im(A)$ and $x, y \in A_t$.

Then A(x) = t and A(y) = t.

Given that A is an M-fuzzy subgroup of G.

Therefore, A is a fuzzy subgroup of G.

Hence $A(xy) \ge \min \{ A(x), A(y) \} = t$.

That is, $A(xy) \ge t$.

That is, $xy \in A_t$.

Moreover, if $x \in A_t$, then $A(x^{-1}) = A(x) \ge t$.

Hence $x^{-1} \in A_t$.

Hence At is a subgroup of G.

Now, for any $x \in A_t$ and $m \in M$, then

 $A(mx) \ge A(x) \ge t$.

Hence $mx \in A_t$.

Hence At is an M-subgroup of G.

3.2 Theorem

Let A be a fuzzy subset of an M-group G. If the level subsets A_t , $\ t\in Im(A)$ are M-subgroups of G, then A is an M-fuzzy subgroup of G.

Proof

Let the level subsets A_t , $t \in Im(A)$ are M-subgroups of G.

If there exist x_0 , $y_0 \in G$ such that $A(x_0y_0) < \min\{A(x_0), A(y_0)\}$.

Let $t_0 = (A(x_0y_0) + \min\{A(x_0), A(y_0)\}) / 2$, we have $A(x_0y_0) < t_0$

 $< \min\{A(x_0), A(y_0)\}.$

It follows that x_0 , $y_0 \in A_{t0}$,but $x_0y_0 \not\in A_{t0.}$

Which is a contradiction.

Hence $A(xy) \ge \min \{ A(x), A(y) \}.$

Similarly, we have $A(x^{-1}) \ge A(x)$.

Hence A is a fuzzy subgroup of G.

Now, suppose, for $m \in M$ and $x \in G$, A(mx) < A(x).

Let $t_0 = (A(mx) + A(x))/2$.

Then, $A(mx) < t_0 < A(x)$.

That is , for $m{\in}M$ and $x{\in}G$, then $x{\in}$ A_{t0} , but $mx{\notin}$ A_{t0} .

Which is a contradiction to A_{t0} is a M-subgroup of G.

Hence $A(mx) \ge A(x)$.

Hence A is an M-fuzzy subgroup of G.

3.1 Definition

Let A be an M- fuzzy subgroup of an M-group G. Then the M-subgroups A_t , for $t \in [0,1]$ and $t \geq A(e)$, are called level M-subgroups of A.

4. Level M-subgroups of M-fuzzy subgroups of an M-group G under M-homomorphism and M-anti homomorphism

4.1 Theorem

The M-homomorphic image of a level M-subgroup of an M-fuzzy subgroup A of an M-group G is a level M-subgroup of an M-fuzzy subgroup f(A) of an M-group G' where A is f-invariant.

Proof

Let G and G' be any two M-groups.

Let $f: G \to G'$ be an M-homomorphism.

Let A be an M-fuzzy subgroup of G.

Clearly, f(A) is an M-fuzzy subgroup of G'.

Let A_{α} be a level M-subgroup of an M-fuzzy subgroup A of G.

Since f is an M-homomorphism , f (A_α) is an M-subgroup f(A) of G' and f $(A_\alpha)=(f(A))_\alpha$.

Hence $(f(A))_{\alpha}$ is a level M-subgroup f(A) of G'.

4.2 Theorem

The M-homomorphic pre-image of a level M-subgroup of an M-fuzzy subgroup V of an M-group G' is a level M-subgroup of an M-fuzzy subgroup $f^{-1}(V)$ of an M-group G.

Proof

Let G and G' be any two M-groups.

Let $f: G \to G'$ be an M-homomorphism.

Let V be an M-fuzzy subgroup of G'.

Clearly $f^{1}(V)$ is an M-fuzzy subgroup of G .

Let V_t be a level M-subgroup of an M-fuzzy subgroup V of G'.

Since , f is an M-homomorphism , $f^{\,l}(V_t)$ is an M-subgroup of $f^{\,l}(V)$ of G

and $f^{1}(\ V_{t}\)=(f^{-1}(\ V\)\)_{t}$, is an M-subgroup of an M-fuzzy subgroup $f^{1}(V)$ of G.

That is , $(f^{-1}(V))_t$ is a level M-subgroup of an M-fuzzy subgroup $f^1(V)$ of G.

4.3 Theorem

The M-anti homomorphic image of a level M-subgroup of an M-fuzzy subgroup A of an M-group G is a level M-subgroup of an M-fuzzy subgroup f(A) of an M-group G' where A is f-invariant.

Proof

Let G and G' be any two M-groups.

Let $f: G \to G'$ be an M-anti homomorphism.

Let A be an M-fuzzy subgroup of G.

Clearly, f(A) is an M-fuzzy subgroup of G'.

Let A_{α} be a level M-subgroup of an M-fuzzy subgroup A of G.

Since f is an M-anti homomorphism , f (A_α) is an M-subgroup f(A) of G' and f $(A_\alpha)=(f(A))_\alpha$

Hence $(f(A))_{\alpha}$ is a level M-subgroup f(A) of G'.

4.4 Theorem

The M-anti homomorphic pre-image of a level M-subgroup of an M-fuzzy subgroup V of an M-group G' is a level M-subgroup of an M-fuzzy subgroup $f^1(V)$ of an M-group G.

Proof

Let G and G' be any two M-groups.

Let $f: G \to G'$ be an M-anti homomorphism.

Let V be an M-fuzzy subgroup of G'.

Clearly $f^1(V)$ is an M-fuzzy subgroup of G .

Let V_t be a level M-subgroup of an M-fuzzy subgroup V of G'.

Since , f is an M-anti homomorphism , $f^{\, 1}(V_t)$ is an M-subgroup of $f^{\, 1}(V) \mbox{ of } G$

and $\ f^{\text{-1}}(\ V_t\)=(f^{\text{-1}}(\ V\)\)_t$, is an M-subgroup of an M-fuzzy subgroup $f^{\text{-1}}(V)$ of G.

That is , (f $\ensuremath{^{\text{-1}}}(\ V\))_t$ is a level M-subgroup of an M-fuzzy subgroup $f\ensuremath{^{\text{-1}}}(V)$ of G.

References

- [1] Biswas .R, Fuzzy subgroups and Anti Fuzzy subgroups, Fuzzy sets and Systems, 35(1990) 121-124.
- [2] Das. P.S, Fuzzy groups and level subgroups, J.Math.Anal. Appl, 84 (1981) 264-269.

- [3] Mohamed Asaad, Groups and Fuzzy subgroups Fuzzy sets and systems 39(1991) 323-328.
- [4] Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations , J.Math. Anal. Appl.128 (1987) 241 252.
- [5] Rosenfeld, Fuzzy groups, J.Math.Anal.Appl, 35(1971) 512 - 517.
- [6] N. Jacobson , Lectures in Abstract Algebra , East West Press , 1951.