
International Journal of Computer Applications (0975 – 8887)

Volume 43– No.1, April 2012

20

LINPACK: Power- Performance Analysis of Multi-Core

Processors using OpenMP

Vijayalakshmi

Saravanan
Mohan

Radhakrishnan
Mukund

Sankaran
D.P Kothari

Formerly with I.I.T. Delhi,

VIT University,
India

HCL, Canada SASTRA University, India Currently with Raisoni Group of
Institutions, Nagpur

ABSTRACT

With the advent of multi-core technology, scientific and high

performance computing research is becoming increasingly

dependent upon efficient parallel programming techniques.

LINPACK is a mathematical software package which used for

solving linear equations. The purpose of this paper is to

compare the sequential and parallel implementations of

LINPACK and analyze the results concurrently with energy

consumption. A major emphasis is given here to find an

efficient parallel programming method on multi-core

processors for performance and power gains based on the

obtained execution time. We discuss the techniques and

algorithms involved in achieving high performance by

reducing execution time through OpenMP parallelization on

multi-core. The results of multi-core performance are found to

be encouraging.

General Terms

Multi-core Architecture, LINPACK and Parallelization.

Keywords

Multi-core, OpenMP, LINPACK, Performance-Power,

Sequential and Parallel Equations.

1. INTRODUCTION
LINPACK is a mathematical software package for solving

problems in linear algebra: mainly dense linear systems and

most of the parallel applications involved with looping

concepts and matrix problems. LINPACK is not an efficient

method to solve these problems due to its algorithm and

resulting software accesses to memory problems. It spends too

much time in moving data instead of doing useful floating

point operations. Therefore parallelization must be done by

using efficient programming techniques. OpenMP is one such

effective practice for reducing execution time and increasing

the performance on parallel machines. It has been broadly

used in parallelizing scientific programs.

As computer architects turn to multi-core CPU and GPUs,

there arises a need in parallel programming to increase the

performance. So far no efficient approach has yet developed

for parallel software. However OpenMP has long been used

for performance oriented parallel machines. OpenMP (open

multi-processing) is an API introduced in 1997 to standardize

programming extensions for shared memory on multi-core

machines over Linux environment. It provides data coherency

among the caches and main memory of the multi-core

architecture. OpenMP exploits thread level parallelism on

multi core architecture and thus reduces the communication

cost.

The structure of the paper is as follows: Section II presents the

related work in this field. Section III covers the overview of

the proposed work and IV & V discusses the proposed

methodology. Finally, a detailed discussion and analysis of

simulation results on multi-core processors is presented in

section VI and some conclusions based on the analysis are

reported in section VII.

2. RELATED WORK
With the recent advancements in multi-core technology, the

processor industry has underwent a major shift from

sequential to parallel programming in order to obtain

significant performance and power gains. This tremendous

shift from sequential (single core) to multi-core has lead to

evolutionary changes in linear algebra software from block

algorithms of LAPACK [1], [2].

Multi-core offers explicit support for executing multiple

threads in parallel and thus reduces the idle time. This has

opened up new domains to extract parallelism. The traditional

methods and benchmarks which are used are often inadequate

for multi-core processors. This in turn leads us to find the best

benchmarks for parallel machines. The parallel systems with

distributed memory could be the key issue in multi-core

processors. The systems with more number of linear equations

need appropriate methods and benchmarks. To illustrate this

issue with the parallel solution of Gaussian elimination

method, Brent studied the issues of distributed memory

systems for linear algebra computations [3], [4]. On the other

hand there is a need to study the best algorithms on multi-

core/parallel machines and the performance metrics of

numerical algorithms [5], [6], [7], [8].The research on hybrid

multi-core and GPU architectures are also emerging trends

in the multi-core era [9]. In [2], the performance analysis of

various computers using linear equations is reported.

The latest shift in multi-core leads to excessive power

consumption due to the ever increasing clock frequencies. We

need to have proper algorithm or hardware level support to

keep all the cores busy in order to retain high performance

levels. So far all the works discuss about the performance

algorithms and their benchmarks. Our unique approach is to

find the performance and power of various numbers of (N)

linear equations on multi-core CPU’s using OpenMP

programming techniques.

3. OVERVIEW OF PROPOSED WORK
LINPACK is a package of mathematical software which is

used to provide the solution of linear equations using

Gaussian elimination with partial pivoting. LINPACK uses

column based algorithms in order to increase the efficiency,

which is determined by running a computer program that

solves linear equations.

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.1, April 2012

21

OpenMP (open multi-processing) is an API over Linux

environment which provides data coherency among the

caches and main memory of the multi-core architecture. It

consists of a set of compiler directives, library routines and

environment variables that direct run time behavior and

enable multiprocessor programming in C or C++, FORTRAN.

It currently supports platforms such as Windows, Linux and

UNIX operating systems. OpenMP works on the basis of

multi-threaded concepts. Therefore, it takes advantage of

executing different threads in these processing elements to

reduce the communication cost between the threads. Having

multiple cores on a chip allows us to extract thread level

parallelism in a program which provides the benefit of

increase in performance of the single program. [10], [11].

In our proposed work, we compared the various number of

LINPACK equations on sequential and parallel programs

using OpenMP. We used OpenMP as the programming

language for our analysis, due to its parallelization efficiency

on multi-core processors. The schematic diagram of our

proposed work is shown in Fig.1.

Fig. 1. Modules of Parallel Algorithm

3.1 System Specifications

3.1.1 Hardware Requirements
 Processors: Intel Core 2 & Intel Pentium M

 CPU: 2.13GHz & 1.60GHz

 RAM: 2 GB & 1 GB

3.1.2 Software Requirements
 Operating System: Windows XP/Vista

 Software: Visual Studio 2005

 Intel C++ compiler

 C-Free Compiler

4. PROPOSED METHODOLOGY
The methodology is as follows:

 The parallel algorithm, which is used to solve a non-

singular n by n linear system using Gaussian

elimination with partial pivoting, is developed.

Gaussian elimination is equivalent to triangular

factorization. It produces an upper triangular matrix

and a lower triangular matrix.

 This parallel algorithm consists of forward

elimination (F. Elimination) and back substitution

(B. Substitution) phase. In forward elimination

phase, first the Pivot element is identified as the

largest absolute value among the coefficients in the

first column. Then Exchange the first row with the

row containing that element. Then eliminate the

first variable in the second equation using

normalization .When the second row becomes the

pivot row, search for the coefficients in the second

column from the second row to the nth row

and locate the largest coefficient. Exchange the

second row with the row containing the largest

coefficient. Continue this procedure till (n-1)

unknowns are eliminated.
 The backward substitution phase is concerned with

the actual solution of the equations and uses the

back substitution process on the reduced upper

triangular system.

5. DESIGN MODULES

Fig. 2. Modules of Parallel Algorithm

5.1 Steps Involved in Gaussian Elimination

with Partial Pivoting
It comprises of two phases are shown in Fig.2.

5.1.1 Forward Elimination Phase
This phase is concerned with the manipulation of

equations in order to eliminate some unknowns

from the equations and produce an upper triangular

system.

 Search and locate the largest absolute

value among the coefficients in the first

column.

 Exchange the first row with the row

containing that element.

 Then eliminate the first variable in the

second equation using normalization.

 When the second row becomes the pivot

row, search for the coefficients in the

second column from the second row to

the nth row and locate the largest

coefficient. Exchange the second row

with the row containing the large

coefficient.

 Continue this procedure till (n-1)

unknowns are eliminated.

No. of Linear Equations (N)

Sequential Execution Parallel Execution

Calculate Execution

Time

Calculate Execution

Time

Compare and Analyze Results

Gaussian Elimination with partial

Gauss

F. Elimination B. Substitution

Pivot

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.1, April 2012

22

5.1.2 Back Substitution Phase
This phase is concerned with the actual solution of the

equations and uses the back substitution process on the

reduced upper triangular system.

5.2 Implementation
 First study the typical behavior of LINPACK

benchmark loops.

 From the behavior of the loops we derive a

framework for manual parallelization.

 By using this framework, we can implement a

specific code in parallel programming language

(OpenMP).

 By applying OpenMP commands and threads to

that particular program, we can derive a

program which can be run in multi-core

processors.

 We have implemented our program in OpenMP

by studying several examples in OpenMP like

Matrix Multiplication, Vector Multiplication,

Hello World, Loop Sharing, Arithmetic

Expressions etc.

 After running the program in multi-core

processors, we found the increased performance

in parallel execution of linear equations.

5.3 Performance Energy Calculation
Performance and power constraint are the important issues in

high performance and scientific computing with multi-core.

We have considered the dynamic power consumption of the

single and dual-core processors in order to analyze the power

and performance gains of LINPACK equations (based on the

execution time taken).

We have taken the peak power consumption of Intel Pentium

M and Intel Core 2 processor [12] and calculated the Energy

consumption.

 Intel Pentium M @ 1.6GHz: Peak power 24.5 W

 Intel Core 2 @ 2.13GHz: Peak power 134 W

Let us define E be the total energy consumption and E.T be

the total execution time of the given program. Ptotal is the

total power, Pstatic is the static power and Pdynamic is the

dynamic power consumed.

 E = E.T * Ptotal (1)

 Ptotal = Pdynamic + Pstatic (2)

We considered only the peak dynamic power consumption of

the processors by taking the theoretical approximate values.

By using (1) and (2), we calculated the energy consumption of

the sequential and parallel execution as shown in Table.1 and

Table.2 of various numbers of linear equations.

5.4 Tabulation of Performance & Energy

Calculation of Linear Equations

Table 1. Tabulation of Performance Calculation of Linear

Equations

Number of

Equations

(n)

Execution Time

of Sequential (in

seconds)

Execution Time

of Parallel (in

seconds)

1000 3 3

2000 23 26

3000 85.9998 67.9998

4000 216 157.00002

5000 397.99998 285

6000 679.0002 509.00004

7000 1044.996 780

8000 1156.9998 1098

9000 1620.996 1578

10000 2306.004 2124

Table 2. Tabulation of Energy Consumption of Linear

Equations

Number of

Equations

(n)

Energy

Consumption of

Sequential (W)

Energy

Consumptio

n of Parallel

(W)

1000 73.5 402

2000 637 2948

3000 2106.9951 9111.9732

4000 5292 21038.00268

5000 9750.99951 38190

6000 16635.5049 68206.0536

7000 25602.402 104520

8000 28346.4951 147132

9000 39714.402 211452

10000 56497.098 284616

5.5 Screenshots of Sequential and Parallel

execution of LINPACK equation n=1000
The screenshots of both sequential and parallel execution with

OpenMP LINPACK equations for n=1000 are shown in the

following figures Fig. 3 and Fig. 4.

 Fig. 3. Screenshot for n=1000 Sequential Execution

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.1, April 2012

23

Fig. 4. Screenshot for n=1000 Parallel Execution using

OpenMP

5.6 Screenshots of Sequential and Parallel

execution of LINPACK equation n=2000
The screenshots of both sequential and parallel execution with

OpenMP LINPACK equations for n=2000 are shown in the

following figures Fig. 5 and Fig. 6.

Fig. 5. Screenshot for n=2000 Sequential Execution

Fig. 4. Screenshot for n=2000 Parallel Execution using

OpenMP

6. ANALYSIS AND DISCUSSION
The work has successfully solved linear equations using

OpenMP on multi-core machines. We see the performance

enhancement by reduced execution time of parallel execution

and increased energy consumption due to its per core power

consumption. From the Table I & II, we have shown the

execution time of sequential and parallel implementations in

which we calculated the energy consumption and performance

of ’n’ number of linear equations. The sample screen shots of

both outputs are shown in Fig.3 - Fig.6 and the corresponding

performance and power consumption results graphs are drawn

in Fig.7 & 8.

0

500

1000

1500

2000

2500

1000 3000 5000 7000 9000
No. of Linear Equations (n)

Ex
e

cu
ti

o
n

 T
im

e
 (

in
 S

e
co

n
d

s)

Execution Time of Sequential
Execution Time of Parallel

 Fig. 7. Performance Graph

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.1, April 2012

24

0

50000

100000

150000

200000

250000

300000

1000
3000

5000
7000

9000

No. of Linear Equations (n)

En
e

rg
y

C
o

n
su

m
p

ti
o

n

 (
in

 W
)

Energy Consumption of Sequential Execution
Energy Consumption of Parallel Execution

Fig. 8. Performance Graph

7. CONCLUSION AND FUTURE

ENHANCEMENTS
In this work, we studied how OpenMP programming

techniques are beneficial to multi-core architectures. We also

solved linear equations using OpenMP to improve

performance by reducing execution time. The future

enhancement of this work is highly laudable as parallelization

using OpenMP is gaining popularity these days. This work

will be carried out in the near future for the real time

implementation over a large scale.

8. ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers for

their valuable comments and IASc (Indian Academy of

Science, Bangalore).

9. REFERENCES
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J.

Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. McKenney, and D. Sorensen, LAPACK

Users’ Guide. Philadelphia, PA: Society for Industrial

and Applied Mathematics, third ed., 1999.

[2] J. J. Dongarra, "Performance of various computers using

standard linear equations software (LINPACK

benchmark report),” LINPACK Benchmark Report CS-

89-85, University of Tennessee Computer Science

Technical Report, 2011.

[3] R. P. Brent, "The LINPACK benchmark on the AP

1000:" in Proceedings of Frontiers ’92 (McLean,

Virginia, October 1992), pp. 128-135, IEEE Press, 1992.

[4] R. P. Brent, “Parallel algorithms in linear algebra,

algorithms and architectures," in Proceedings of the

Second NEC Research Symposium (held at Tsukuba,

Japan, August 1991, (SIAM, Philadelphia), pp. 54-72,

August 1993.

[5] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh,

"Parallel algorithms for dense linear algebra

computations," SIAM Rev., vol. 32, pp. 54-135, March

1990.

[6] J. J. Dongarra, P. Luszczek, and A. Petitet, "The

LINPACK benchmark: Past, present, and future.

Concurrency and Computation: Practice and

Experience”, vol. 15, p. 2003, 2003.

[7] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, "A

class of parallel tiled linear algebra algorithms for

multicore architectures," tech. rep., 2007.

[8] K. A. Gallivan, W. Jalby, A. D. Malony, and H. A. G.

Wijshoff, "Performance prediction for parallel numerical

algorithms.," International Journal of High Speed

Computing, vol. 3, no. 1, pp. 31-62, 1991.

[9] M. Horton, S. Tomov, and J. Dongarra, "A class of

hybrid LAPACK algorithms for multi-core and GPU

architectures," in Proceedings of the 2011 Symposium

on Application Accelerators in High-Performance

Computing, SAAHPC ’11, (Washington, DC, USA), pp.

150-158, IEEE Computer Society, 2011.

[10] V. Packirisamy and H. Barathvajasankar, "OpenMP in

multi-core architectures," 2005.

[11] K. Psarris, "Program analysis techniques for

transforming programs for parallel execution," Parallel

Computing, vol. 28, no. 3, pp. 455-469, 2002.

[12] Simcha Gochman et.al, “The Intel Pentium M processor:

micro-architecture and performance," Intel Technology

Journal, vol. 07, pp. 20-37, May 21 2003.

AUTHORS PROFILE

Vijayalakshmi Saravanan is an Assistant Professor (Sr),

VIT University; India.She is a recipient of Erasmus Mundus

(EURECA) Programme as an Exchange student from India at

Malardalen University, Sweden. Currently, she holds a

position as visiting researcher at Ryerson University, Canada.

She holds a Bachelor of Engineering Degree in Electrical and

Electronics Engineering and Master of Science Degree in

Information Technology from Bharathiar University &

Manonmaniam Sundaranar University (Now Anna

University), India. Her research interests include Multi-core

Low Power Design Exploration, Power-Aware Processor

Design, and Computer Architecture. She has taken part of her

research studies one course work at University of Rochester,

USA. She is serving as a Technical Evangelist for Asia Open

Source Software Community, CICC Japan. She is a Member

of IEEE, ACM, CSI and a Board member of N2WOMEN

(Networking Networking Women) IEEE/ACM Women in

Engineer and she is a Chair for IEEE-WIE VIT affinity group,

India

Mohan Radhakrishnan is currently working as a
Sr.Technical Architect in HCL Canada. He has more than ten
years of technical experience in designing, administrating and
supporting Microsoft enterprise and VMware environments.
He is currently working on R&D level projects in data center
server and network implementation, support and
administration, thorough grasp of development principles and
best practices. He is also a Member of IEEE and VMware

Mukund Sankaran is currently pursuing a B.Tech in
Computer Science and Engineering at SASTRA University,
India. He was selected as a Summer Research Fellow by the
Indian Academy of Sciences in the year 2011. His current
research interests are in the areas of Computer Architecture
and Database Systems

 Dr. D.P. Kothari is a Senior Professor and Advisor to the
Chancellor, VIT University, Vellore and named IEEE fellow
in 2011. Earlier, he was Head, Centre for Energy Studies, IIT
Delhi (1995-97), and Principal, Visvesvaraya Regional

International Journal of Computer Applications (0975 – 8887)

Volume 43– No.1, April 2012

25

Engineering College, Nagpur (1997- 98). He has been
Director i/c, IIT Delhi (2005) and Deputy Director
(Administration) (2003-06). Earlier, (1982-83 and 1989), he
was a visiting fellow at RMIT, Melbourne, Australia. He
obtained BE, ME and PhD degrees from BITS, Pilani. He is a
Fellow of the Institution of Engineers (India), Fellow of
National Academy of Engineering (FNAE), Fellow of
National Academy of Sciences (FNASc), Life Member ISTE
(LMISTE). Professor Kothari has published/presented 640
papers in national and international journals/conferences. He
has authored/co-authored 22 books including Power System
Optimization, Modern Power System Analysis, Electric
Machines, Power System Transients, Theory and Problems of
Electric Machines, Renewable Energy Sources and Emerging

Technologies, and Power System Engineering. His research
interests include Optimal Hydro-thermal Scheduling, Unit
Commitment, Main-tenance Scheduling, Energy Conservation
(loss minimization and voltage control), and Power Quality
and Energy Systems Planning and Modeling. He has received
the National Khosla award for Lifetime Achievements in
Engineering for 2005 from IIT Roorkee. The University
Grants Commission (UGC) has bestowed UGC National
Swami Pranavananda Saraswati award for 2005 on Education
for outstanding scholarly contribution. The World
management congress, New Delhi conferred Life time
achievement award for "Educational Planning and
Administration on 30th December 2009.

