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ABSTRACT 
Image denoising is a common procedure to suppress the quality 

degradation caused by noise. Several image denoising methods 

are proposed in literature. Amongst these Discrete Wavelet 

Transform-DWT Filters are very popular.  Denoising using the 

DWT-Transform includes decomposition of the image into 

various sub bands and then modeling them as independent 

identically distributed random variables with Gaussian 

distribution. Shrinkage methods are often used for suppressing 

Additive White Gaussian Noise (AWGN), where thresholding is 

used to retain the larger wavelet coefficients alone. Minimum 

Mean Square Error estimation is a common practice for noise 

analysis and is thus included in this paper. Overall we discuss in 

this review briefly the various Shrinkage methods in DWT-

Domain Filters and we assess them by posing a comparison 

between the efficiency of these filters. 
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1. INTRODUCTION 
Image denoising algorithms are often used to enhance the 

quality of the images by suppressing the noise level while 

preserving the significant aspects of interest in the image. 

Several methods are proposed in literature for image denoising, 

where Discrete Wavelet Transform-Domain filters are very 

popular.  A wavelet transform is the representation of a function 

by wavelets. The wavelets are scaled and translated copies 

(known as daughter wavelets) of a finite length or fast decaying 

oscillating waveform. A wavelet transform is classified into 

continuous wavelet transform (CWT) and DWT. The continuous 

wavelet transform (CWT) has received significant attention for 

its ability to perform a time-scale analysis of signals. On the 

other hand, the discrete wavelet transform (DWT) is an 

implementation of the wavelet transform using a discrete set of 

wavelet scales and translations obeying some definite rules. In  

other  words, this  transform  decomposes  the  signals  into  

mutually orthogonal  set  of wavelets. In this paper we only 

discuss methods based on DWT.  

Recently,  a  lot  of  methods  have  been  reported  that  perform  

denoising  in DWT-domain. The transform coefficients within 

the sub bands of a DWT can be locally modeled as independent 

identically distributed (i.i.d.) random variables with generalized 

Gaussian distribution.  Some of the denoising algorithms 
perform thresholding of the wavelet coefficients, which have 

been affected by additive white Gaussian noise, by retaining 
only large coefficients and setting the rest to zero. These  

 

 

 

 

methods are popularly known as shrinkage methods However; 

their performance is not quite effective as they are not spatially 

adaptive. Some other methods evaluate the de-noised  

coefficients  by  an Minimum  Mean  Square  Error (MMSE)  

estimator,  in terms  of  the  noised  coefficients  and  the  

variances  of  signal  and  noise .  The signal variance  is  locally  

estimated  by  a  Maximum  Likelihood  estimator (MLE)  in  

small regions  for  every  sub band  where  variance  is  assumed  

practically  constant.  These methods present effective results 

but they are not well suited near object edges where the variance 

field is not smoothly varied. Further, these methods introduce 

artifacts in the smooth regions of the output image. Some 

efficient wavelet-domain filters are discussed in subsequent sub-
sections. 

In this paper various shrinkage methods are reviewed. In section 

2 various DWT-Domain based filters including shrinkage 

methods are defined. In section 3 a comparison is made between 

the aforementioned methods in section 2 based on existing 

research.  

2. METHODS BASED ON DWT-DOMAIN 

FILTERS FOR IMAGE DENOISING 
This section describes the various shrinkage methods used in 

literature for image de-noising in DWT-domain. The various 

shrinkage methods described in this section are based on 

estimation of statistical and probabilistic parameters for 
shrinkage. 

 

2.1.1 VisuShrink  

VisuShrink [1] is thresholding by applying universal threshold 

[2] proposed by Dohono and Johnston. This threshold is given 

by: 

𝑇𝑈 =  𝜎𝑛 2𝑙𝑜𝑔𝐿 

 

  Where, σ2
n is the noise variance of AWGN and L is the total 

number of pixels in an image. It is proved in [1] that a large 

fraction of any L number of random data array with zero mean 

and variance, σ2
n will be smaller than the universal threshold, TU  

with high probability; the probability approaching 1 as L 

increases. Thus, with high probability, a pure noise signal is 

estimated as being identically zero.  Therefore, for denoising 

applications, VisuShrink is found to yield a highly smoothed 

estimate. This is because the universal threshold is derived 

under the constraint that with high probability, the estimate 

should be at least as smooth as the signal. So the Tu tends to be 

high for large values of L, killing many signal coefficients along 

with the noise. Thus, the threshold does not adapt well to 
discontinuities in the signal.  
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2.1.2 SureShrink 

SureShrink [3,4] is an adaptive  thresholding  method  where  

the  wavelet coefficients  are  treated  in  level-by-level  fashion.  

In each level, when there is information that the wavelet 

representation of that level is not sparse, a threshold that 

minimizes Stein’s unbiased risk estimate (SURE) is applied. 

SureShrink is used for suppression of additive noise in wavelet-

domain where a threshold T SURE is employed for denoising. 
The threshold parameter T SURE is expressed as: 

 

T sure = arg minTk (SURE(Th ;Y)) 

 

(SURE(Th ;Y)) is define by: 

𝑆𝑈𝑅𝐸 𝑇ℎ ;𝑌 = 𝜎2 −
1

𝐿
×  2𝜎𝑛

2 ,  𝑖 ∶   𝑌𝑖  ≤ 𝑇ℎ − min  𝑌𝑖  ,𝑇ℎ 
2

𝐿

𝑖=1

   

Where,   

σ2
n   is the noise variance of AWGN;  

L is the total number of coefficients in a particular sub-band;  

Yi  is a wavelet coefficient in the particular sub-band.  
 

2.1.3  BayesShrink 

In  BayesShrink  [5],  an  adaptive  data-driven  threshold  is  

used  for  image denoising.  The  wavelet  coefficients  in  a  

sub-band  of  a  natural  image  can  be represented  effectively  

by  a  Generalized  Gaussian  distribution  (GGD).  Thus, a 

threshold is derived in a Bayesian framework as: 

 

𝑇𝑩 =   
𝜎 𝑛

2

𝜎 𝐹
  

where,  

σ2
n  is the estimated noise variance of AWGN by robust median 

estimator and σ2
F is the estimated signal standard deviation in 

wavelet-domain. The robust median estimator is stated as: 

 

𝜎𝑛 =  
𝑀𝑒𝑑𝑖𝑎𝑛  𝑌𝑖𝑗   

0.6745
 ,𝑌𝑖𝑗   ∈ 𝑠𝑢𝑏𝑏𝑎𝑛𝑑 𝐻𝐻 

 

This estimator is used when there is no a priori knowledge about 

the noise variance.  

 

2.1.4  OracleShrink and OracleThresh 

OracleShrink and OracleThresh [5] are two wavelet thresholding 

methods used for image denoising. These methods are 

implemented with the assumption that the wavelet coefficients 

of original decomposed image are known. The OracleShrink and   

OracleThresh   employ   two   different   thresholds   denoted   

as   TOS    and   TOT respectively.   Mathematically they are 

represented by: 

 

𝑇𝑜𝑠 = arg min    𝜉
𝑇ℎ
 𝑌𝑖𝑗 − 𝐹𝑖𝑗 

2
𝑛

𝑖,𝑗=1

 

 

𝑇𝑜𝑠 = arg
min

𝑇ℎ
   𝜁

𝑇ℎ
 𝑌𝑖𝑗 − 𝐹𝑖𝑗 

2
𝑛

𝑖,𝑗=1

 

 

where, with {F ij  }are the wavelet coefficient of original 

decomposed image;   

𝜉
𝑇ℎ

(. ) and   𝜁
𝑇ℎ

(. )  are soft-thresholding and hard-thresholding 

functions.  

 

2.1.5    NeighShrink 

Chen et al.  proposed  a  wavelet-domain  image  thresholding  

scheme  by incorporating  neighboring  coefficients,  namely  

NeighShrink  [6].  The  method NeighShrink  thresholds  the  

wavelet  coefficients  according  to  the  magnitude  of  the 

squared  sum  of  all  the  wavelet  coefficients,  i.e.,  the  local  

energy,  within  the neighborhood window. The   neighborhood 

window size may be 3×3, 5×5, 7×7, 9×9, etc.  But,  the  authors  

have  already  demonstrated  through  the  results  that  the  3×3 

window is the best among all window sizes . The  shrinkage  

function  for  NeighShrink  of  any  arbitrary  3×3  window 

centered at (i,j) is expressed as: 

 

Γ𝑖𝑗 =   1 −
𝑇𝑈

2

𝑆𝑖𝑗
2  

 

Where,  UT  is  the  universal  threshold  and 2ij S    is  the  

squared  sum  of  all  wavelet coefficients in the respective 3×3  

window given by: 

 

𝑆𝑖𝑗
2 =    𝑌2

𝑚,𝑛

𝑖+1

𝑚=𝑖−1

𝑗+1

𝑛=𝑗−1

 

 

Here, + sign at the end of the formula means to keep the positive 

values while setting it to zero when it is negative. The estimated 

center wavelet coefficient Fij is then calculated from its noisy 

counterpart Yij as: 

 

𝐹𝑖𝑗 =  Γ𝑖𝑗𝑌𝑖𝑗 

 

2.1.6    SmoothShrink 

Mastriani   et   al.   Proposed   SmoothShrink   [7],   wavelet-

domain   image denoising method, for images corrupted with 

speckle noise. It employs a convolution kernel  based  on  a  

directional  smoothing  (DS)  function  applied  on  the  wavelet 

coefficients of the noisy decomposed image. The size of the 

window may vary from 3×3 to 33×33, but the studies [104] 

show that the 3×3 window gives better result as compared to 

others. Though this approach is meant for speckle noise, it is 

observed that   it   works   satisfactorily   even   for   additive   
noise.   Therefore,   the   method: SmoothShrink is stated here.  

 

2.1.6.1  SmoothShrink Algorithm 

The SmoothShrink Algorithm is described in following steps:- 

 

Step-1:  

The average of the wavelet coefficients in four directions (d1, 

d2, d3, d4) as shown in Fig.1 is calculated. 

 

 

Step-2:  

The absolute difference between the center wavelet coefficient 

and each directional average is calculated as: 
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Where, Ydn = average of wavelet coefficients in nth direction. 

 

Step-3:  

The directional average which gives minimum absolute 

difference is found out. 

 

𝑘 = 𝑎𝑔𝑟 
min
𝑌 𝑑𝑛

   Δ𝑑𝑛    

 

       

 

 

        

            

            

            

            

            

 

Fig. 1:  3×3 Directional smoothing window showing four 

directions d1, d2, d3, d4. 

 
 

Step-4:  

The estimated center wavelet coefficient is therefore replaced 

with the minimum directional average obtained in Step-3, i.e.: 

 

𝐹𝑖𝑗 =  𝐾 

The SmoothShrink algorithm is applied to all sub bands of noisy 

decomposed image except the LL sub band. 

 

2.1.6.2  BiShrink 

 Sendur et al. [9], [10]: The authors’ method, called BiShrink, is 

based on new non-Gaussian bivariate distributions to model 

interscale dependencies. A nonlinear bivariate shrinkage 

function using the maximum a posteriori (MAP) estimator is 

then derived. In a second paper, these authors have extended 

their approach by taking into account the intrascale variability of 

wavelet coefficients. These techniques have been devised for 

both redundant and no redundant transforms. 

 

2.1.6.3 ProbShrink 

Piˇzurica et al. [8] Assuming a generalized Laplacian prior for 

the noise-free data, the authors’ approach called ProbShrink is 

driven by the estimation of the probability that a given 

coefficient contains significant information- Notion of “signal of 
interest”. 

 
a) Lena                         b)    Barbara  

 

c) Goldhill 

Fig. 2: The original test images with 512×512 pixels. 

 

 
a) House                     b)    Pepper 

 

Fig. 3: The original test images with 256×256 pixels. 

 

3. COMPARISON AND ASSESSMENT       

WITH EXISTING RESULTS 
 

TABLE 1(a) 

 

Image Vishushrink 
Sure 

shrink 
Bayesshrink 

Lena PSNR PSNR PSNR 

σ=10 30.56 33.4755 33.4106 

σ=20 28.75 30.0724 30.2258 

σ=30 26.78 28.3935 28.4901 

σ=35 25.41 27.8293 27.8593 

Barbara    

σ=10 25.72 30.6327 31.0322 

σ=20 23.91 27.2961 27.2843 

σ=30 22.61 25.0969 25.2842 

σ=35 21.99 24.2202 24.5200 

Goldhill    

σ=10 28.64 31.8715 31.9004 

σ=20 26.93 28.4362 28.6570 

σ=30 24.84 27.0256 27.1133 

σ=35 23.70 26.3356 26.6088 

 
The existing spatial-domain filters:  wavelet-domain 

thresholding:   VisuShrink,   Sure Shrink, BayesShrink, 

OracleShrink, NeighShrink, SmoothShrink, are simulated on 

MATLAB 7.5 platform. The test images: Lena, Goldhill and 

Barbara of sizes 512×512 corrupted with AWGN of standard 
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deviation  σ n=  10, 20, 30,  35.While Bishrink and ProbShrink 

are simulated on MATLAB 7.5 platform. The test images 

Pepper and House of sizes 256×256 corrupted with AWGN of 

standard deviation σ n= 10, 20,30.  

 

TABLE 1 (b) 

 

Image 
Oracle shrink & 

Oracle thresh 

Neigh 

shrink 

Smooth 

shrink 

Lena PSNR PSNR PSNR 

σ=10 33.6114/32.6988 34.45 30.41 

σ=20 30.3813/29.5232 30.11 27.43 

σ=30 28.6009/27.7106 27.69 24.88 

σ=35 27.9492/27.0696 26.76 23.8 

Barbara    

σ=10 31.5070/30.4935 32.92 25.87 

σ=20 27.4079/26.3428 28.57 23.19 

σ=30 25.3289/24.0979 26.11 20.84 

σ=35 24.584/23.3580 25.27 19.82 

Goldhill    

σ=10 31.9734/30.7980 33.05 26.81 

σ=20 28.7682/27.7837 29.02 23.72 

σ=30 27.1687/26.3061 26.75 21.19 

σ=35 26.6525/25.7732 25.95 20.13 

    
TABLE 2 

 

Images Bishrink Prob shrink 

Pepper (256X256) PSNR VALUE PSNR VALUE 

σ=10 37.18 37.45 

σ=20 33.28 30.31 

σ=30 29.80 28.33 

House(256×256)   

σ=10 34.71 35.15 

σ=20 31.63 32.19 

σ=30 29.83 30.38 

 

4. CONCLUSION 
The peak-signal-to-noise ratio (PSNR) and execution time are 

taken as performance measures. The PSNR values of the 

different filters for various images are given in the tables: Table-

I (a, b). The highest (best) PSNR value for a particular standard 

deviation of Gaussian noise is highlighted to show the best 

performance. The filtering performance is better if the method 

noise is very low since it talks of little distortion when a non-

noisy image is passed through a filter. Therefore, a least value of 

method noise  for  a  particular  noise  standard  deviation  is  

highlighted  to  show  the  best performance. The filter having 

less execution time is usually required for online and real-time 

applications. The least value of execution time is highlighted. 

The result implies the highest PSNR value is at lowest standard 
deviation and lowest PSNR value at highest standard deviation.   
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