
International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.22, May 2015

1

Performance Analysis of Verilog Directed Testbench vs

Constrained Random SystemVerilog Testbench

Deepika Ahlawat

ITM University, Gurgaon,
(Haryana), India

Neeraj Kr. Shukla
ITM University,Gurgaon,

(Haryana), India

ABSTRACT
SystemVerilog is the emerging language of choice for modern
day VLSI design and verification. SystemVerilog (SV) brings
a advanced level of abstraction to the system being modeled.
The advanced constructs it utilizes its OOP capability make it
stand apart from other verification languages. In this paper we
will be analyzing the performance of SV testbench over
Verilog testbench, using well defined comparison parameters
tested against an actual IP design block, along with other
features of the SV language.

Keywords
Assertions, Coverage, Environment, Mailbox, Randomization,
SystemVerilog, Threads, Transactions, Testbench

1. INTRODUCTION
The advantages of SV are quite clear over Verilog for
verification. SV has advance concepts, data types, and
functionalities over Verilog. It also incorporates the OOP
concepts [1]. We will be comparing the performance of both a
Verilog and SV testbench in terms of test bench Compilation,
Elaboration, Configuration, Running, and Wrap-up. The
following sections outline the advantages of SV over the
Verilog testbench.

1.1 Verification Overview
The complexity of verification environments has grown
exponentially over the years. With the introduction of large
multifunctional ASICs, verification needs to keep up with the
increasing design complexity of SOCs with the integration of
innumerable number of IP blocks with the processing
element. Verification begins with a detailed analysis of the
design specifications with a well-defined methodology and
plan to achieve maximum coverage of verification. Coverage
data can be ascertained using various ways: Code coverage,
Functional coverage, and Assertion based coverage. The
ultimate goal of verification is to boost verification coverage
in a short period of time while minimizing verification costs
[2].

Our analysis of the performance of SystemVerilog
testbenches over traditional Verilog testbenches is organized
in the following sections:

Section II highlights the merits of SV over Verilog for in
terms of language advancements.

Section III describes the SPI Core Design under Test (DUT)
to be used for the analysis.

Section IV describes the verification plan adopted for SV
verification for the analysis.

Section V describes the System Verilog testbench details for
SPI core.

Section VI describes the Verilog testbench details for SPI core

Section VII describes the comparison parameters to be used
for the analysis

Section VIII describes the results of the analysis

Section IX describes our conclusions from the analysis made
on both the testbenches.

2. ADVANTAGES OF SV
SV is world’s first Hardware Verification Language (HVL). It
has features for RTL design, assertions and verification. SV
2009 replaces Verilog for verification. SystemVerilog
enhances extended and new constructs to Verilog-2001, some
of them talk about below [3]:

1. Extensions to data types for improved encapsulation
and compactness of code and for tighter
specification

2. User defined types: enum, struct, union and typedef

3. Loops like for, foreach, while, do while, repeat,
forever

4. Enhanced process control like fork, suspend, kill,
wait and disable

5. Dynamic arrays – resizable and associative arrays.

6. Enhanced tasks and functions

7. Classes: Object-Oriented mechanism that offers
abstraction, encapsulation, and safe pointer
capabilities

8. Random constraints generation [4]

9. Interprocess communication synchronization –
mailbox, semaphore

10. Cycle-Based Functionality: Clocking blocks and
cycle-based attributes that allow for easy
maintainability, and promote reusability

11. Assertion mechanism for verifying design objective
and functional coverage objective [5].

12. Interfaces to encapsulate communication

13. Functional coverage, assertion based coverage, code
coverage

14. Direct Programming Interface (DPI) for clear and
efficient interoperation with other languages [3]

3. DUT- AS THE SPI CORE
The serial interface entails of slave select lines, serial clock
lines along with input and output data lines. All the transfers
are full duplex transfers comprising of a programmable
number of bits per transfer. In respect to the falling or rising
edge of the serial clock, it can drive the data to output data
line. On the rising or falling edge of a serial clock line, it can

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.22, May 2015

2

drive data on an input data line. It can also receive (transmit)
the MSB first or the LSB first [6].

Data Transmission

The SPI Master core comprises of three parts as shown in the
following figure:

Fig 1: SPI Architecture [7]

A full duplex data transmission occurs during each SPI clock
cycle [7]:

a. the master drives a bit on the MOSI line and the
slave declaims it from that same line

b. the slave drives a bit on the MISO line and the
master declaims it from that same line

Normally two shift registers of a given word size, such as
eight bits, one in the slave and one in the master are involved
in transmission; they are connected in a ring fashion. Data is
shifted out with the most significant bit (MSB) first, while
shifting a fresh least significant bit (LSB) into the same
register. The master and slave have exchanged the values after
that register has been shifted out. The device connected takes
that value and performs something with it, for example
writing it to memory. The

shift registers are loaded with a new data if there is more data
to exchange and the process reprises [7].

Any number of clock cycles may be involved in transmission.
The master stops toggling its clock when there is no more data
left to be transmitted. Normally, then the slave is deselected.
A master can start multiple such transmissions if it needs to;
transmissions often consist of 8-bit words.

Every slave on the bus that hasn't been triggered using its chip
select line must ignore the input clock and MOSI signals, and
must not drive data on MISO. The master must select a single
slave at a time [7].

4. SYSTEMVERILOG VERIFICATION
METHODOLOGY

The SystemVerilog verification methodology relies on 3
building blocks [13]:

• Providing stimuli to the design using automatically
generated random scenarios or constrained-random
(CR) test generation.

• Check the conduct of the design through assertions
and the output data through the checker or
scoreboard to verify the correctness of operation.

• Measure the functional coverage to analyze progress
of verification and provide feedback to the
generation.

SV introduces Universal Verification Methodology. UVM is a
methodology for functional verification using SystemVerilog,
with a supporting library of SystemVerilog code.

Fig.2.Verification Blocks [7]

Verification efficiency can be improved by reusing
verification components, and this is a key objective of UVM.
Verification reuse is facilitated by having a modular
verification environment where each component has visibly
defined responsibilities, by permitting flexibility in the way in
which components are configured and used.

UVM facilitates the construction of verification environments
and tests, both by providing reusable mechanism through
usage of a library of SystemVerilog classes, also by providing
a set of guidelines for finest practice when using
SystemVerilog for verification. Thus the architecture of UVM
has been designed to boost modular and layered verification
environments, where verification components can be reused in
diverse environments.

5. SYSTEMVERILOG TESTBENCH
Following are the methods which are defined in the
environment class of the SV testbench [5]. The verification
components made can be followed through fig 3.

GENERATION

Constrained

Random

CHECKING

Assertions,

Scoreboard

FUNCTIONAL

COVERAGE

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.22, May 2015

3

a. build (): In this method, all the objects viz. driver,
output monitor and mailboxes are constructed.

b. reset (): in this method all the signals are put at a
known state.

c. start (): in this method, all the methods which are
declared in the other components like driver, output
monitor and scoreboard are called.

d. wait_for_end (): this method is used to wait for the
end of the simulation. Wait is done till all the
required operations in other components are
completed.

e. report (): This method is used for printing the results
of the simulation, based on the error count.

f. run (): This method calls for the above declared
methods in a sequenced manner.

6. VERILOG TESTBENCH
Modules are created for Wishbone and SPI master model.
The testbench is a directed one. When wishbone is the master
SPI acts as a slave as clock and data input is provided by the
wishbone master. The functions included to execute the
master side are:

Wishbone write cycle

Wait for acknowledge from slave

Wishbone read cycle

Wait for acknowledge from slave

Wishbone compare cycle (read data from location and
compare with expected data)

When SPI is the master the slave or responder in this case
sends the data miso when slave select and clock (sclk) is
given by the master. Whether the data is latched on the
posedge or negedge of the clock depends on the value of
Rx_negedge.

In the top module SPI master model and Wishbone master
model are instantiated. The values are initialized here and
reset is provided to the design. The design core is configured
here by setting and verifying the register values.

7. PERFORMANCE ANALYSIS
PARAMETERS

To perform the performance analysis, various timing
constructs were considerd. These constructs along with their
brief description are given below. Comparisions have been
drawn based on these performance constructs.

The various performance parameters on which the analysis
has been performed are:

1. Elaboration Time: The elaboration process creates a
design hierarchy based on the instantiation and
configuration information in the design, establishes
signal connectivity. Memory storage is allocated for
the required signals. The elaboration process
constructs a hierarchy of module instances that ends
with primitive gates and statements [8].

Simstats command :reports performance-related
statistics about active simulations.The
statistics measure the simulation kernal process
(vsimk) for a single invocation of vsim [8].

Syntax

simstats [memory | working | time | cpu | context |

faults]

vsim -c -do "run -all; simstats" top-level-module"

Arguments

• Memory- Returns the amount of virtual memory
that the OS has allocated for vsimk.
• Working- Returns the portion of allocated virtual
memory that is currently being used byvsimk. If this
number exceeds the actual memory size, you will
encounter performancedegradation.
• Time- Returns the cumulative "wall clock time" of
all run commands.
• CPU- Returns the cumulative processor time of all
run commands. Processor timediffers from wall
clock time in that processor time is only counted
when the CPU is actually running vsimk. If vsimk is
swapped out for another process, CPU time does not
increase[8].

Fig 3: Architectural overview of the verification modules

The use of these arguments is optional and when
executed without arguments, the command returns a list
of pairs similar to the following [12]:

{{elab memory} 0} {{elab working set} 7245839}

{{elab time} 0.942836}

{{elabcpu time} 0.1901574} {{elab context} 0}

{{elab page faults} 1556}

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.22, May 2015

4

{memory 0} {{working set} 0} {time 0} {{cpu time}

0} {context 0}

{{page faults} 0}

2. CPU Time: CPU time for completion of the test.

CPU Time is the time the CPU actually spent
executing your program. This need not be a
continuous measurement of time, and since only 1
process may be executed on 1 CPU at any given
time, the program is not executed continuously, but
rather in chunks doled out by the kernel's CPU
scheduler [9].

3. Time: (optional) Returns the cumulative "wall clock
time" of all run commands.

4. Time Elapsed: Elapsed time is the duration your
program is running. This is measured

5. continuously from when a process is born until it
dies.

To obtain the elapsed time, you can use the TCL
clock command:

e.g.

setstarttime [clock seconds]

1087889342

run 1000 ns

setendtime [clock seconds]

1087889359

settotaltime [expr $endtime - $starttime]

17

echo "Simulation took $totaltime seconds"

6. SIMTIME Simulation time at completion of the test
[12].

(In Questa SIM, the $Now TCL variable contains
the current simulation time in a string of the form:
simtime_units.)

7. Simulation Time: Simulation is defined as the
process of constructing a model of a system in order
to identify and recognize those factors which
control the system and/or to forecast the future
behavior of the system [9].

Here both the testbenches were simulated for a
period of 3400ns.

TIMEUNIT Units for simulation time: "fs", "ps",
"ns", "us", "ms", "sec", "min", "hr".

8. PERFORMANCE ANALYSIS AND
SIMULATION RESULT

All the analysis has been made through QuestaSim 10.0b tool
from Mentor Graphics. Today Questa is the leading high
performance SystemVerilog and Mixed simulator. Both the
Verilog and SystemVerilog testbenches have been compiled
and simulated on QuestaSim only.

Fig 4 shows the verification output of SPI core as all the
signals are getting generated properly.

The elaboration statistics are measured one time at the end of
elaboration. The simulation memory statistics are measured at
the time simstats is invoked. The simulation time statistics are
updated at the end of each run command. Units for time
values are in seconds.

Fig 4: Simulation Waveform

Fig. 5: Graph comparing the performance of SV & Verilog testbench for SPI as the DUT

The emerging System-on-a-Chip (SoC) business is enabling
the rapid design of nearly complete systems on a single chip.
Using a linear extrapolation, the growth rate indicates a
trillion transistor chip within the next 10 years. As the size
and complexity of SoC design grow, an efficient and
structured verification environment is becoming more
important than ever before. This capability is generating a
flood of performance questions. Hence, , based on our
extensive research, we have tried to come up with the
performance analysis of a SoC using these two testbenches
under the scanner.

We can see from Fig 5 and Fig 6
performance comparison based on these two testbenches
clear with good distinction in case of SoC as compared to the
marginal differences seen in the performance
case of our DUT i.e. SPI core.

Fig 8 demonstartes the testbench performance

Verilog and SystemVerilog testbench, based on the various

Fig. 6

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

Elaboration

Time

Elaboration

T
im

e
 (

se
c)

International Journal of Computer Applications

Volume 118

: Graph comparing the performance of SV & Verilog testbench for SPI as the DUT

business is enabling
the rapid design of nearly complete systems on a single chip.
Using a linear extrapolation, the growth rate indicates a
trillion transistor chip within the next 10 years. As the size
and complexity of SoC design grow, an efficient and
structured verification environment is becoming more

This capability is generating a
, , based on our

we have tried to come up with the
using these two testbenches

We can see from Fig 5 and Fig 6 and Fig 7, the
based on these two testbenches is

clear with good distinction in case of SoC as compared to the
nce comparison in

demonstartes the testbench performance of
based on the various

phases involved like compilation phase, elabotation phase, run
phase and wrap-up phase.

Fig. 6(i): Elaboration Time analysis for a large SoC

Fig. 6(ii): Time Elapsed analysis for a large SoC

Elaboration

CPU Time

Wall Clock

Time

CPU Time Time

elapsed

Performance Parameters

Verilog Testbench

SV Testbench

Elaboration Time (sec)

Time Elapsed (ns)

SV Testbench

Verilog

Testbench

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.22, May 2015

5

: Graph comparing the performance of SV & Verilog testbench for SPI as the DUT

phases involved like compilation phase, elabotation phase, run

: Elaboration Time analysis for a large SoC

Elaboration Time (sec)

SV Testbench

Verilog

Testbench

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.22, May 2015

6

Fig. 7: Performance analysis for a large SoC

9. CONCLUSIONS
Through the performance analysis on both the testbenches it
can be established that the performance and testbench
parameters like elaboration time, time elapsed, CPU time,
compilation time, run time and wrap-up time were less in the
case of SV testbench. Both the testbenches perform the same
functionality test operations; SV in addition performs the
coverage analysis as well. Performance study has also been
conducted for a larger and complex design. It can be
concluded that when analysis is done using a much complex

and larger DUT as in a SoC, the distinction in performance for
various parameters is more visible. Hence it can be
established that SV apart from being a superior verification
language also gives better performance results as compared to
a Verilog testbench.

Fig. 8: Testbench performance comparison of SV and Verilog Testbench of a SoC

10. ACKNOWLEDGEMENT
The authors are grateful to their respective organization for
help and support.

11. REFERENCES
[1] Sutherland S, Davidmann S, Flake P, “SystemVerilog for

Design: A Guide to Using SystemVerilog for Hardware
Design and Modeling,” Kluwer Academic Publishers,
2003.

0

5000

10000

15000

20000

25000

30000

35000

40000

Elaboration CPU

Time

Wall Clock Time CPU Time Simulation Time

T
im

e
 (

se
c)

Performance Parameters

SV Testbench

Verilog Testbench

Compilation

Phase

Elaboration Phase Running Phase Wrap-up Phase

T
im

e
 (

se
c)

Testbench Parameters

Verolog Testbench

SV Testbench

International Journal of Computer Applications (0975 – 8887)

Volume 118 – No.22, May 2015

7

[2] Stuart Sutherland, “Don’t Forget the Little Things That
Can Make Verification Easier,” Verification Horizons,
Mentor Graphics

[3] SystemVerilog 3.1a, Language Reference Manual

[4] Welp Tobias, Kitchen Nathan, and Kuehlmann Andreas,
“Hardware Acceleration for Constraint Solving for
Random Simulation,”IEEE Transactions On Computer-
Aided Design Of Integrated Circuits And Systems, Vol.
31, No. 5, May 2012

[5] SudhishNaveen, BR Raghavendra, YagainHarish, "An
Efficient Method for Using Transaction Level Assertions
in a Class Based Verification Environment,"

International Symposium on Electronic System
Design,pp.72-76, 2011

[6] K.Aditya, M.Sivakumar, FazalNoorbasha,
T.PraveenBlessington, “Design and Functional
Verification of A SPI Master Slave Core Using System
Verilog,” International Journal of Soft Computing and
Engineering (IJSCE), vol-2, May 2012, Issue-2.

[7] Srot Simon, “ SPI Master Core Specification,”Rev. 0.6,
March 15, 2004

[8] Questa® SIM User’s Manual, Software Version 10.0d

[9] ModelSim® Reference Manual, Software Version 6.5e

IJCATM : www.ijcaonline.org

