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ABSTRACT
Let N0 be the set of all non-negative integers and P(N0) be
its the power set. An integer additive set-indexer (IASI) of a
graph G is an injective function f : V (G) → P(N0) such
that the induced function f+ : E(G) → P(N0) defined by
f+(uv) = f(u) + f(v) is also injective, where f(u) + f(v)
is the sum set of f(u) and f(v). An integer additive set-indexer
f is said to be a weak integer additive set-indexer (weak IASI) if
|f+(uv)| = max(|f(u)|, |f(v)|) ∀ uv ∈ E(G). The mini-
mum number of singleton set-labeled edges required for the graph
G to admit a weak IASI is called the sparing number of the graph.
In this paper, we discuss the admissibility of weak IASI by a par-
ticular type of graph product called the edge corona of two given
graphs and determine the sparing number of the edge corona of
certain graphs.
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1. INTRODUCTION
For all terms and definitions, not defined specifically in this paper,
we refer to [1], [9] and [17]. Unless mentioned otherwise, all graphs
considered here are simple, finite and have no isolated vertices.

The sum set of two sets A and B, denoted A+B, is the set defined
by A+B = {a+ b : a ∈ A, b ∈ B}. If either A or B is countably
infinite, then their sum set will also be countably infinite. Hence,
all sets we consider in this study are finite sets. The cardinality of
a set A is denoted by |A|. The power set of a set A is denoted by
P(A).

Let N0 denote the set of all non-negative integers. An integer ad-
ditive set-indexer (IASI, in short) of a graph G is defined in [6] as
an injective function f : V (G) → P(N0) such that the induced
function f+ : E(G)→ P(N0) defined by f+(uv) = f(u)+f(v)
is also injective.

Invoking the above definition, all sets we consider here are non-
empty finite subsets of the set N0.

A weak IASI f is (see [7]) an IASI such that |f+(uv)| =
max(|f(u)|, |f(v)|) for all u, v ∈ V (G). A weak IASI f is said

to be weakly uniform IASI if |f+(uv)| = k, for all u, v ∈ V (G)
and for some positive integer k. A graph which admits a weak IASI
may be called a weak IASI graph.
The following result is a necessary and sufficient condition for a
given graph to admit a weak IASI.

LEMMA 1.1. [7] A graph G admits a weak integer additive
set-indexer if and only if every edge of G has at least one mono-
indexed end vertex.

The following definitions are made in [11]. The cardinality of the
labeling set of an element (vertex or edge) of a graph G is called
the set-indexing number of that element. An element (a vertex or
an edge) of graph which has the set-indexing number 1 is called
a mono-indexed element of that graph. The sparing number of a
graph G is defined to be the minimum number of mono-indexed
edges required for G to admit a weak IASI and is denoted by ϕ(G).

Certain Studies about weak IASIs have been done already and the
following are some major results about weak IASI graphs relevant
in this study.

THEOREM 1.2. [11] A subgraph of weak IASI graph is also a
weak IASI graph.

THEOREM 1.3. [11] A graph G admits a weak IASI if and only
if G is bipartite or it has at least one mono-indexed edge. Also, the
sparing number of a bipartite graph G is 0.

THEOREM 1.4. [11] Let Cn be a cycle of length n which ad-
mits a weak IASI, for a positive integer n. Then, Cn has an odd
number of mono-indexed edges when it is an odd cycle and has
even number of mono-indexed edges, when it is an even cycle. An
odd cycle Cn has a weak IASI if and only if it has at least one
mono-indexed edge.

THEOREM 1.5. [12] The graph G1 ∪ G2 admits a weak IASI
if and only if both G1 and G2 are weak IASI graphs. More over,
ϕ(G1 ∪G2) = ϕ(G1) + ϕ(G2)− ϕ(G1 ∩G2).

THEOREM 1.6. [11] A complete graph can have at most one
vertex that is not mono-indexed. Also, the sparing number of a com-
plete graph Kn is 1

2
(n− 1)(n− 2).

Estimating the sparing number of different graph classes, graph op-
erations and graph products demands intensive investigations. The
admissibility of weak IASIs and the corresponding sparing num-
ber of certain graph operations have been studied in [12] and [13]
and the sparing number of certain graph operations have been de-
termined in [14] and [15]. The admissibility of weak IASI by cer-
tain graph products and their sparing numbers have been studied
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in [2], [3] and [16]. Motivated by these studies, the admissibility of
weak IASI by a particular product, called edge corona, of two given
graphs and the corresponding sparing number of the edge corona of
graphs are studied in this paper.

2. THE SPARING NUMBER OF EDGE CORONA
OF GRAPHS

Let us first recall the definition of the edge corona of two graphs.

DEFINITION 2.1. [10] Let G1 be a graph with n1 vertices and
m1 edges and G2 be a graph with n2 vertices and m2 edges. Then,
the edge corona of G1 and G2, denoted by G1�G2, is the graph ob-
tained by taking m1 copies of G2 and then joining the end vertices
of i-th edge of G1 to every vertex in the i-th copy of G2.

Figure 1 is an example for the graph which is the edge corona of
the cycles C5 and C3.

Fig. 1. The edge corona C5 �C3.

The weak IASIs of G1 and G2 may not induce a weak IASI for
G1 � G2. Hence, we need to define an IASI independently for a
graph product.

We say that a graph G is said to be a 1-uniform graph if the set-
labels of all elements (vertices and edges) of G are singleton sets.
By the term an integral multiple of a set A, we mean the set ob-
tained by multiplying every element of A by a same integer.

The following theorem establishes a necessary condition for the
edge corona of two weak IASI graphs to admit a weak IASI.

THEOREM 2.2. For two given graphs G1 and G2, if G1 � G2

admits a weak IASI, then either G1 is 1-uniform or m1−m′1 copies
of G2 are 1-uniform, where m′1 is the number of mono-indexed
edges in G1.

PROOF. Let G1 be a graph on n1 vertices and and m1 edges
and G2 be a graph on n2 vertices and and m2 edges. Let
V (G1) = {v1, v2, . . . vn1

} and V (G2) = {u1, u2, . . . , un2
} be

the vertex sets and E(G1) = {e1, e2, . . . , em1
} and E(G2) =

{e′1, e′2, . . . , e′m2
} be the edge sets of G1 and G2 respectively. Let

G2,j be the j-th copy of G2 corresponding to the j-th edge ej =
vrvs of G1 in G1�G2 and V (G2,j) = {u1j , u2j , . . . , un2j}. Then,
the subgraph of G1 �G2 induced by the vertices {vr, vs, ukj , ulj}
is the complete graph K4, for any two adjacent vertices ukj and ulj

in G2,j . That is, all edges of G2,i are the edges of different com-
plete graphs K4 in G1 �G2, all of these complete graphs have the
common edge ej = vrvs.

First assume that G1 � G2 admits a weak IASI. Then, we have to
consider the following two cases.

Case-1: Assume that G1 is not 1-uniform. Then, G1 will have some
elements which are not mono-indexed. Without loss of generality,
assume that the edge ej is not mono-indexed. Then either vr or vs
must have a non-singleton set-label. Let vr be the vertex that is not
mono-indexed. Then, by Theorem 1.6, no other vertex vlj can have
a non-singleton set-label. Therefore, the copy G2,j is 1-uniform.
This argument is valid for the copies of G2 corresponding to all
edges of G that are not mono-indexed. Therefore, at least m1−m′1
copies of G2 must be 1-uniform, where m′1 is the number of mono-
indexed edges in G1.

Case-2: Assume that no copy of G2 is 1-uniform. Then, each copy
G2,j of G2 has at least one edge that is not mono-indexed. Let
the edge ukjulj of G2,j has the non-singleton set-label. Then, by
Theorem 1.6, the end vertices vr and vs of the corresponding edge
ej of G1 can not have non-singleton set-label. Hence, as no copy
of G2 are 1-uniform, no vertex of G1 can have a non-singleton set-
label. That is, G1 is 1-uniform.

The converse of the theorem is also valid for with respect to the
weak IASIs defined on G1 and G2. Let f1 and f2 the weak IASIs
defined on G1 and G2, which need not be 1-uniform. The vertices
of the copies of G2 corresponding to the non-mono-indexed edges
of G1 need to be re-labeled using distinct singleton sets and the ver-
tices of the copies of G2 corresponding to the mono-indexed edges
of G1 can be labeled by distinct integral multiples of the set-labels
of the corresponding vertices of G2. Clearly, this new labeling will
be a weak IASI of G1 � G2. Hence, we have the following neces-
sary and sufficient condition for the edge corona of two weak IASI
graphs to admit a weak IASI.

THEOREM 2.3. For given weak IASI graphs G1 and G2, G1 �
G2 admits a weak IASI if and only if m1 −m′1 copies of G2 are
1-uniform, where m′1 is the number of mono-indexed edges in G1.

In view of Theorem 2.3, we can estimate the number of mono-
indexed edges in the edge corona of two given graphs.

THEOREM 2.4. For given graphs G1 and G2, the number of
mono-indexed edges in G1 � G2 is m′1(1 +m′2 + 2n′2) + (m1 −
m′1)(m2 + n2), where mi is the number of edges and ni is the
number of vertices of Gi for i = 1, 2 and m′i is the number of
mono-indexed edges and n′i is the number of mono-indexed vertices
of Gi with respect to a weak IASI defined on Gi for i = 1, 2.

PROOF. Let G1 be a graph on n1 vertices and m1 edges and G2

be a graph on n2 vertices and m2 edges. Let f1 and f2 be the weak
IASIs defined on G1 and G2 respectively. Let n′i and m′i be the
number of vertices and edges of Gi that are mono-indexed under
the weak IASI fi for i = 1, 2.

Let G = G1 � G2 be a weak IASI graph. Assume that G1 is not
1-uniform. Then, G1 has some elements having non-singleton set-
labels. Then, by Theorem 2.2, m1 −m′1 copies of G2 must be 1-
uniform. Let C1 be the set of all 1-uniform copies of G2 in G1�G2.
Therefore, the members of C1 contributes a total of (m1 −m′1)m2

mono-indexed edges to G1 �G2.

In the remaining m′1 copies of G2, we can label the vertices by
the distinct integral multiples of the set-labels of the correspond-
ing vertices of G2 with respect to f2. Let C2 be the collection of
these copies of G2. Then, each element in C2 has m′2 mono-indexed
edges. Therefore, the elements of C2 contributes a total of m′1m

′
2

mono-indexed edges.
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It remains to determine the number of mono-indexed edges be-
tween G1 and different copies of G2. The mono-indexed vertex of
every non-mono-indexed edge of G1 is adjacent to all vertices of
the corresponding copy of G2, which is also i-uniform. The num-
ber of such mono-indexed edges is (m1−m′1)n2. Both end vertices
of each mono-indexed edge of G are adjacent to n′2 mono-indexed
vertices of the corresponding copies of G2. The number of such
mono-indexed edges is 2m′1n

′
2.

Therefore, the total number of mono-indexed edges in G1 � G2

is m′1 + (m1 −m′1)m2 + m′1m
′
2 + (m1 −m′1)n2 + 2m′1n

′
2 =

m′1(1 +m′2 + 2n′2) + (m1 −m′1)(m2 + n2).

In view of Theorem 2.2, let us now proceed to discuss the sparing
number of the edge corona of certain graphs. We shall first consider
the edge corona of two path graphs.

THEOREM 2.5. Let Pm and Pn be two paths on m and n ver-
tices respectively, for m,n > 1. Then, the sparing number of the
edge corona of Pm and Pn is

ϕ(Pm � Pn) =

{
1
2
m(n+ 2)− 1; n is even

1
2
m(n+ 1)− 1; n is odd.

PROOF. Let G = Pm � Pn. Assume that an internal vertex v of
Pm has a non-singleton set-label. Then, the 2 + 2n edges incident
on v become non-mono-indexed. But, two copies of Pn whose ver-
tices are adjacent to v become 1-uniform and (n−1) edges of each
of these copies of Pn become mono-indexed. More over, 2n − 1
edges between Pm and each of these two copies of P2 become
mono-indexed if n odd and 2n− 1 edges between Pm and each of
these two copies of P2 become mono-indexed if n even. Therefore,
In both cases, we have more mono-indexed edges than when G1

is 1-uniform. Therefore, G has minimum number of mono-indexed
edges when G1 is 1-uniform.

If Pm is 1-uniform, each copy of Pn can be labeled in an injective
manner alternately by non-singleton sets and singleton sets. There-
fore, no edges in these copies need to be mono-indexed. Then, each
vertex of Pm bn2 c mono-indexed edges together with the mono-
indexed vertices of the corresponding copy of Pn. Therefore, if n
is even, G has (m − 1) +m.n

2
= 1

2
m(n+ 2) − 1 mono-indexed

edges and if n is odd, G has (m− 1) +m.n−1
2

= 1
2
m(n+1)− 1

mono-indexed edges.

The sparing number of the edge corona of two graphs in which
one is a path and the other is a cycle has been determined in the
following theorems.

THEOREM 2.6. Let Pm be a path on m vertices and and Cn

be a cycle on n vertices, for m > 1. Then, the sparing number of
the edge corona of Pm and Cn is

ϕ(Pm � Cn) =

{
1
2
m(n+ 2)− 1; n is even

1
2
m(n+ 5)− 2; n is odd.

PROOF. Let G = Pm � Cn. As proved in Theorem 2.5, G has
minimum number of mono-indexed edges when Pm is 1-uniform.
Then, each copy of Cn can be labeled in an injective manner al-
ternately by singleton sets and non-singleton sets and hence no
edges in these copies are mono-indexed. With respect to this la-
beling, each copy of Cn contains lceiln

2
e mono-indexed vertices

and makes lceiln
2
e mono-indexed edges with each vertex of Pm.

Therefore, if n is even, no copy of Cn need to have a mono-indexed
edge and hence G has (m − 1) +m.n

2
= 1

2
m(n+ 2) − 1 mono-

indexed edges. If n is odd, then each copy of Cn must have a mono-

indexed edge and hence G has 2(m−1)+m.n+1
2

= 1
2
m(n+5)−2

mono-indexed edges.

THEOREM 2.7. Let Cm be a cycle on m vertices and and Pn

be a path on n vertices, for n > 1. Then, the sparing number of the
edge corona of Cm and Pn is

ϕ(Cm � Pn) =

{
1
2
m(n+ 2); n is even

1
2
m(n+ 1); n is odd.

PROOF. Let G = Pm � Cn. As we have already proved in The-
orem 2.5, G has minimum number of mono-indexed edges when
Cm is 1-uniform. Then, each copy of Pn can be labeled alternately
by non-singleton sets and singleton sets and no edges in them are
mono-indexed. Also, each copy of Pn contains lf loor n

2
c mono-

indexed vertices and makes the same number of mono-indexed
edges with each vertex of Cm. Therefore, if n is even, G has
m + m.n

2
= 1

2
m(n + 2) mono-indexed edges and if n is odd,

G has m+m.n−1
2

= 1
2
m(n+ 1) mono-indexed edges.

In the following result, we study the sparing number of the edge
corona of two cycle graphs.

THEOREM 2.8. Let Cm and Cn be two cycles on m and n
vertices respectively. Then, the sparing number of the edge corona
of Cm and Cn is

ϕ(Cm � Cn) =

{
1
2
m(n+ 2); n is even

1
2
m(n+ 5); n is odd.

PROOF. Let G = Pm � Cn. Then, as we have stated in above
theorems, G has minimum number of mono-indexed edges when
Cm is 1-uniform and we can label each copy of Cn alternately
by singleton sets and non-singleton sets. Hence, no edges in these
copies will be mono-indexed. With respect to this labeling, each
copy of Cn contains lceiln

2
e mono-indexed vertices and makes

lceiln
2
e mono-indexed edges with each vertex of Pm. Therefore,

if n is even, G has m+m.n
2
= 1

2
m(n+ 2) mono-indexed edges.

If n is odd, then each copy of Cn has one mono-indexed edge and
hence G has 2m+m.n+1

2
= 1

2
m(n+5) mono-indexed edges.

So far, we have discussed about the edge corona of certain regular
graphs having same vertex degree 2. Can we generalise this result
to all regular graphs having same vertex degree? The following re-
sult provide a solution to this problem.

THEOREM 2.9. Let G1 and G2 be two r-regular graphs on m
and n vertices respectively, for m,n > 1. Then, the sparing num-
ber of the edge corona of G1 and G2 is m[n′+r(1+ϕ2)], where n′
is the minimum number of mono-indexed vertices required in G2.

PROOF. Let G = G1 � G2. Assume that an internal vertex v
of G1 has a non-singleton set-label. Then, the r + 2n edges inci-
dent on v become non-mono-indexed. But, r copies of G2 whose
vertices are adjacent to v become 1-uniform and rn − ϕ2 more
edges of each of these copies of G2 become mono-indexed, where
ϕ2 is the mono-indexed edges in G2. Let n1 vertices having non-
singleton set-labels in G2 must be relabeled by singleton sets in
these r copies of G2. Therefore, rn1 edges between G1 and each
of these r copies of G2 become mono-indexed. The total number
of new mono-indexed edges in G is r[rn− ϕ2 + rn1]. Therefore,
in this case, we have more mono-indexed edges than when G1 is
1-uniform. Therefore, G has minimum number of mono-indexed
edges when G1 is 1-uniform.
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If G1 is 1-uniform, vertices of each copy of G2 can be labeled in
an injective manner alternately by distinct integral multiples of the
set-labels of the corresponding vertices of G2. Then, the number of
mono-indexed edges in each copy of G2 is varphi2. Then, the total
number of mono-indexed edges in G1�G2 is rm+rmϕ2+mn′ =
m[n′ + r(1 + ϕ2)], where n′ is the minimum number of mono-
indexed vertices required in G2.

We can extend the above theorem for the edge corona of an r-
regular graph G1 and an s-regular graph G2 , where r < s as
follows.

THEOREM 2.10. Let G1 be an r-regular graph on m and n
vertices and G2 be an s-regular graph on n vertices, for m,n > 1
and r ≤ s. Then, the sparing number of the edge corona of G1

and G2 is m(n′ + r(1 +ϕ2)), where n′ is the minimum number of
mono-indexed vertices required in G2.

PROOF. Let G = G1 �G2. Assume that an internal vertex v of
G1 has a non-singleton set-label. Then, as mentioned in the pre-
vious theorem, r + 2n edges incident on v become non-mono-
indexed. But, r copies of G2 corresponding to the edges incident
on v become 1-uniform and hence sn− ϕ2 more edges of each of
these copies of G2 become mono-indexed, where ϕ2 is the mono-
indexed edges in G2. Moreover, rn1 edges between G1 and each of
these r copies of G2 also become mono-indexed, where n1 is the
number of vertices having non-singleton set-labels in G2. Hence,
the number of new mono-indexed edges in G is greater than the
new non-mono-indexed edges in G. Therefore, in this case also,
we have the minimum number of mono-indexed edges when G1 is
1-uniform.

If G1 is 1-uniform, vertices of each copy of G2 can be labeled in
an injective manner alternately by distinct integral multiples of the
set-labels of the corresponding vertices of G2. Then, the number
of mono-indexed edges in each copy of G2 is varphi2. Hence, the
total number of mono-indexed edges in G is rm+mϕ2 +mn′ =
m[n′+r+ϕ2], where n′ is the minimum number of mono-indexed
vertices required in G2.

Another important problem in this area is about the edge corona of
two graphs in which one graph is a complete graph. First consider
the edge corona of a path Pm and a complete graph Kn.

THEOREM 2.11. Let Pm be a path on m vertices and Kn be a
complete graph on n vertices. Then, the sparing number of Pm�Kn

is 1
2
n(n+ 1)(m− 1).

PROOF. Let G = Pm �Kn. Then, G can be considered as the
one point union of m−1 complete graphs on n+2 vertices. There-
fore, by Theorem 1.6, each Kn+2 has 1

2
n(n + 1) mono-indexed

edges. Since each Kn+2 are edge disjoint, by Theorem 1.5, the to-
tal number of mono-indexed edges is 1

2
n(n+ 1)(m− 1).

Next, let us consider the edge corona of a cycle Cm and a complete
graph Kn.

THEOREM 2.12. Let Cm be a cycle on m vertices and Kn be
a complete graph on n vertices. Then, the sparing number of Cm �
Kn is 1

2
mn(n+ 1).

PROOF. Let G = Cm �Kn. Then, G can be considered as the
one point union of m complete graphs Kn+2 and by Theorem 1.6,
each of these Kn+2 has 1

2
n(n + 1) mono-indexed edges. Since

each Kn+2 are edge disjoint, by Theorem 1.5, the total number of
mono-indexed edges is 1

2
mn(n+ 1).

The above two results can be generalised for the edge corona of
an r-regular graph G on m vertices and a complete graph Kn as
follows.

THEOREM 2.13. Let G be an r-regular graph on m vertices
and Kn be a complete graph on n vertices, where r ≤ n−1. Then,
the sparing number of G �Kn is 1

4
rmn(n+ 1).

PROOF. Since G is an r-regular graph on m vertices, then the
number of edges in Gis 1

2
rm. Then, G�Kn can be considered as a

one point union of 1
2
rm complete graphs on n+ 2 vertices. Then,

the total number of mono-indexed edges in G�Kn is 1
2
rm. 1

2
n(n+

1) = 1
4
rmn(n+ 1).

3. CONCLUSION
In this paper, we have discussed about the sparing number of the
edge corona of certain graphs. Some problems in this area are still
open. For an r-regular graph G1 and an s-regular graph G2, with
r > s, estimation of the sparing number of their edge corona is
very complex. For some values r and s, we get minimum number of
mono-indexed edges when G1 is 1-uniform and for some other val-
ues of r and s, we have minimum number of mono-indexed edges
when G1 is not 1-uniform. Hence, determining the sparing number
of G1 �G2 in such a situation still remains as an open problem.

In this paper, we have not addressed the problem of determining
the sparing number of the edge corona of two graphs in which the
first graph is a complete graph. The case when both the graphs are
complete graphs are also not attempted.

For two arbitrary graphs, determining the sparing number of their
edge corona is more complicated. The uncertainty in the adjacency
and incidence pattern of arbitrary graphs makes this study complex.
Hence, determining the sparing number of G1 � G2 for arbitrary
graphs G1 and G2 is also an open problem.

The problems related to verifying the admissibility of weak IASIs
by other graph products of two arbitrary graphs and determining
the corresponding sparing numbers are also open.
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