
International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

8

Optimized FPGA Routing using Soft Computing

Saveena
P.T.U.Jalandhar

Computer Science & Engg.
D.A.V.I.E.T Jalandhar

Vinay Chopra
P.T.U.Jalandhar

 Computer Science & Engg.
D.A.V.I.E.T Jalandhar

Dr. Amardeep Singh
Reader, Punjabi University Patiala

Computer Science & Engg.
UCOE Patiala

ABSTRACT

FPGAs are used for a wide range of applications, e.g. network

communication, video communication and processing and

cryptographic applications. It has been shown that FPGAs are

suitable for the implementation of soft computing techniques like

Neural Networks and Genetic Algorithms. In this work we have

shown that Ant Colony Optimizations can also be implemented

on FPGAs, leading to significant speedups in runtime compared

to implementations in software on sequential machines. This

paper presents an ant colony optimization algorithm for

geometric FPGA routing for a route based routing constraint

model in FPGA design architecture.

Keywords

Ant colony optimization, Boolean Satisfiability, Field

Programmable Gate Arrays, Soft Computing

1. INTRODUCTION
By providing programmable selection of alternate logic and

routing structures, field-programmable gate arrays can be

considered to be located at the intersection of software and

hardware-oriented systems. Using modern design software,

circuits can be designed and implemented very rapidly, thereby

avoiding the up-front cost of designing custom circuits and

providing a quick means of correcting design errors.

After configuring the circuit onto the FPGA chip, it is switched

into operational mode, upon which the inherent parallelism and

pipelined design style can offer considerable speedup over

instruction stream processors. FPGAs facilitate system

development and allow easy and quick design changes and

verification. Not only are they suitable for rapid prototyping, they

can also substitute for standard logic and gate array solutions in

small and medium volume productions. However, their high

level of flexibility demands additional switches and routing,

which in turn increase circuit delays and chip area relative to

custom fabricated circuits. The layout structure of these FPGAs

depends upon three parameters configurable logic blocks, I/O

blocks and programmable routing.

Our main consideration in this paper is on programmable FPGA

routing shown in [Section 2]. Boolean-based routing is a recent

approach that is used for solving routing problem in FPGA

layout. Boolean based routing problem can be represented as a

large atomic Boolean function, which is satisfiable if the layout

is routable otherwise routing option is not considered i.e. any

satisfying assignment to the variables of the routing Boolean

function represents a legal routing solution recent advances in

SAT solving algorithms (learning and non-chronological

backtracking) and efficient implementation techniques (e.g. fast

implication engine) have dramatically improved the efficiency.

But there is still need to improve it so that FPGA routing task

can be optimized. In this paper, we adapt an ACO algorithm to

field programmable gate arrays (FPGAs). To the best of our

knowledge, this is the first implementation of ACO for solving

FPGA routing. The ant colony optimization meta-heuristic is

adopted from the natural foraging behavior of real ants and has

been used to find good solutions to a wide spectrum of

combinatorial optimization problems. Classically many search

style solutions have been proposed for SAT, the best known

being variations of the Davis-Putnam procedure. It is based on a

backtracking search algorithm illustrating that, at each node in

the search tree, elects an assignment and prunes subsequent

search by iteratively applying the unit clause. The other

algorithms that are used in the SAT based problems are

backtracking search, resolution based checker, integer linear

programming based routing, BDD, recursive learning etc. A new

approach for FPGA routing, which is improvement over other

SAT solvability algorithms for FPGA routing is illustrated in this

paper.

2. FPGA Layouts

Standard island style FPGA architecture Xilinx 4000 [XILINX,

01] is used in this experiment and results are compared with the

other SAT solvers, which are previously applied to this

architecture. This is one of the most commonly used layout

models in FPGA applications [see Fig. 1(a)]. It consists of two-

dimensional array of configurable logic blocks CLBs, Connection

blocks C blocks and switching blocks S blocks. Each CLB

marked L in [Fig. 1(a)] contains the combinational and

sequential logic that implements the functionality of a circuit. C

and S blocks contain programmable switch form the routing

resources. C blocks connect CLB pins to channels via

programmable switches. S blocks are surrounded by C blocks

and allow signals to either pass through.

A net consists of CLB pins that are interconnected with each

other and can be decomposed into one or more horizontal and/or

vertical net segments each of which is an alternating sequence of

C and S blocks forming an uninterrupted path. A detailed route

of a net is a set of wire segments and routing switches, within the

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

9

assigned routing area set by the global router. For each net

segment, a detailed router assigns wire segments and routing

switch following the topology specified by the global router such

that no overlapping among detailed routes of different nets

occurs.

The routing capacity of a given FPGA architecture is mainly

expressed by three parameters W, Fc, Fs. The channel width is

the number of tracks in a vertical or horizontal channel. The C

block flexibility Fc is defined to be the number of tracks that

each logic pin can connect to. The S block flexibility Fs denotes

the number of other tracks that each wire segment entering an S

block.

Each wire segment entering this S block can connect to one track

on each of the other three sides, hence Fs=3[see Fig. 1(b)]. Each

logic pin can be connected up to any two tracks in the C block,

thus Fc=2[In Fig. 1(c)]

(a)

.

(b) Fs = 3 (c) Fc =2

Figure1: Island style FPGA model

2.1 Boolean SAT based FPGA detailed routing

formulation

In this approach geometric FPGA routing task is transformed into

a Boolean satisfiability (SAT) equation with the property that

any assignment of input variables that satisfies the equation

specifies a valid route. The satisfiability equation is then

modeled as Constraint Satisfaction problem, which helps in

reducing procedural programming. Satisfying assignment for

particular route will result in a valid routing and absence of a

satisfying assignment implies that the layout is unroutable. In

second step ant colony optimization algorithm is applied on the

Boolean equation for solving routing alternatives utilizing

approach of hard combinatorial optimization problems for

stationary and non-stationary environments. The ACO based

solution to SAT is then compared with the other SAT solver

algorithms such as zChaff and GRASP. Preliminary experimental

results suggest that the developed ant colony optimization

algorithm is taking mlogm iterations, where m is number of

Boolean instances and using extremely short CPU time finds all

possible routes even for large FPGA circuits.

The present work is based on the optimization technique that

could be further extended in several other optimization problems

in the testing field such as vector re-ordering, scan chain

partitioning, vector compaction, sequential test pattern

generation etc.

Boolean SAT-based routing transforms the geometric routing

task into a Boolean Satisfiability (SAT) problem by rendering the

routing constraints as an atomic Boolean function. The generated

Boolean function is satisfiable (has an assignment of input

variables such that the generated function evaluates to constant

“1”) if and only if the design is routable. Any satisfying

assignment to the binary variables of the Boolean function

represents a legal routing solution. Moreover, by demonstrating

the absence of satisfying assignments for a generated routing

Boolean function, we can prove that no routing solution exists. A

particular virtue of this method is that much of the geometric

complexity of the interaction among objects (i.e., nets in routing)

is hidden and rendered implicitly in the Boolean constraint

functions so that all the objects are considered simultaneously. In

other words, Boolean-based routing is a concurrent method

allowing higher degrees of freedom for each object in contrast to

the conventional one net-at-a-time approach.

In spite of these unique properties, the use of Boolean

Satisfiability to solve VLSI routing is not as common as other

methods using integer linear programming or heuristic search. To

the best of our knowledge, was the first to establish a link

between geometric layouts and Boolean formulations. In this

work, he proves that a general dogleg channel routing problem

belongs to the NP-complete class by reducing the 3-satisfiability

problem to it, i.e., given a 3-satisfiability formula, he showed

how to construct an instance of the channel routing problem that

can be routed in a certain number of tracks if and only if the

original formula is satisfiable. Capitalizing on this idea, [9]

devised a formulation of conventional 2-layer channel routing as

a generic Boolean SAT problem by encoding the information

present in a channel’s vertical constraint graph, horizontal

constraint graph, and the anticipated channel width into Boolean

constraint formulas on a set of n-bit Boolean vectors, one per net

to be routed. Thus, if the generated Boolean formula is

satisfiable, then any satisfying assignment corresponds to a

feasible routing of the channel; otherwise (i.e., the function is

proven to be unsatisfiable) the channel is provably unroutable

with the anticipated channel width. Later, showed that the grid-

based channel routing with the restricted two-layer model is a

fixed-parameter tractable problem which can be solved in linear

time with the fixed channel length. The idea was to record a net

which leaves each track per column while sweeping columns

from left to right in the channel.

The core idea of applying a Boolean SAT technique to a simple

routing problem is illustrated in Fig. 2. It is a channel routing

problem with four nets labelled A, B, C, and D (Fig. 2a). The

goal is to assign a track number to each net such that distinct nets

are nonoverlapping both horizontally and vertically. The channel

routing problem is mapped into two matrices, one represents the

horizontal overlapping and second represents vertical

overlapping (Fig. 2b). Two types of constraints are defined to

guarantee a legal channel routing solution. First, an exclusivity

constraint insures that nets whose horizontal spans overlap are

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

10

assigned to different tracks. This constraint is typically

represented by a horizontal constraint graph and can be

conveniently expressed as a Boolean function (Fig. 2d). The

other constraint insures that, for any two nets with pins in the

same column on opposite sides of the channel, the net associated

with the top pin is assigned a higher track number. This

constraint is conveniently captured by the vertical constraint

graph (VCG) shown in Fig. 2c, which in turn is equivalent to the

Boolean function V of Fig. 2e. The conjunction (AND) of these

two functions is the complete routability constraint Boolean

function R for the channel (Fig. 2f).

Fig. 2.a Channel to be routed

Fig. 2.b Matrix representation of Channel routing problem

E= (A≠C) Λ (A≠D) Λ (A≠B) Λ (C≠D) Λ (D≠B)

Fig. 2.c Exclusivity Constraint

Fig. 2.d Vertical Constraint Graph (VCG)

V= (A>C) Λ (A>B) Λ (D>C) Λ (D>B)

Fig. 2.e Vertical Ordering Constraint

R=E ΛV

Fig. 2.f Channel routability constraint

Fig. 2.g Two feasible solutions

Fig. 2. Boolean SAT modeling of channel routing problem.

Any track number assignment that makes R=1 corresponds to a

feasible routing solution and completely specifies the net-to-track

mapping. Two feasible assignments are shown in Fig. 2g.

Boolean-based routing, in general, has the following advantages

over conventional one-net-at-a-time routing approaches:

 Simultaneous net embedding: The conventional one-net-at-a-

time routing approach is notorious for being dependent on net

ordering because previously routed nets act as obstacles to the

yet-to-be-routed nets. In Boolean-based routing, all routing

constraints are considered concurrently by a Boolean SAT solver,

making net ordering irrelevant.

 Routability decision: The unsatisfiability of the routing

Boolean constraint function, as proven by a Boolean SAT solver,

directly implies that there is no feasible routing solution with the

given placement and global routing configuration. On the other

hand, any assignment to the Boolean variable vector that satisfies

the routability Boolean function corresponds to a complete

feasible detailed routing solution.

However, Boolean SAT-based routing is known to be less

scalable than conventional routing approaches. In other words,

the size of problems that can be attacked by Boolean SAT-based

routing is smaller than that of conventional routing.

C B

A D

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

11

3 Ant Colony Optimization

Natural evolution has yielded biological systems in which

complex collective behavior emerges from the local interaction of

simple components. One example where this phenomenon can be

observed is the foraging behavior of ant colonies [1,2]. Ant

colonies are capable of finding shortest paths between their nest

and food sources. This complex behavior of the colony is

possible because the ants communicate indirectly by disposing

traces of pheromone as they walk along a chosen path. Following

ants most likely prefer those paths possessing the strongest

pheromone information, thereby refreshing or further increasing

the respective amounts of pheromone. Since ants on short paths

are quicker, pheromone traces on these paths are increased very

frequently. On the other hand, pheromone information is

permanently reduced by evaporation, which diminishes the

influence of formerly chosen unfavorable paths. This

combination focuses the search process on short, favorable paths.

Inspired by this biological paradigm, Dorigo et al. [3–5]

introduced a metaheuristic known as ant colony optimization

(ACO). In ACO, a set of artificial ants searches for good

solutions for the optimization problem under consideration. Each

ant constructs a solution by making a sequence of local decisions.

Its decisions are guided by pheromone information and some

additional heuristic information (if applicable).

After a number of ants have constructed solutions, the best ants

are allowed to update the pheromone information along their

path through the decision graph. Evaporation is accomplished by

globally reducing the pheromone information by a certain

percentage. This process is repeated iteratively until a stopping

criterion is met. ACO has shown good performance on several

combinatorial optimization problems, including scheduling [6],

vehicle routing [7], constraint satisfaction [8], and the quadratic

assignment problem [9].

3.1 Description

The objective of ACO is to find good solutions for a given

combinatorial optimization problem. The problems considered

usually allow solutions to be expressed as a permutation π of n

given items. The pheromone information is encoded in an n x n

pheromone matrix [τij]. Depending on the problem the

pheromone value τij expresses the desirability to assign item j to

place i of the permutation (place x item coding) or the

desirability problem, n given jobs have to be scheduled onto a

single machine. For every job j, its deadline dj and the

processing time pj are given. If Cj denotes the completion time of

job j in a schedule, then Lj = Cj − dj defines its lateness and Tj =

max(0,Lj) its tardiness.The objective is to find a schedule

minimizing the total tardiness of all jobs ∑ j=0 to n−1Tj. Since

the relative position of a job in the schedule is more important

than its predecessor or successor in the schedule a place x item

pheromone matrix is used.

• For the quadratic assignment problem (QAP), n facilities, n

locations, and two n x n matrices [dij] and [fhl] are given, where

dij is the distance between locations i and j and fhl is the flow

between facilities h and l. The goal is to find an assignment of

facilities to locations, i.e. a permutation π of [0, n−1], such that

the sum of distance-weighted flows between facilities ∑ j,i=0 to

n−1dπ(i)π(j)fij is minimized. Solutions are constructed by

successively assigning facilities to places (locations) in the

permutation, which means that, like for SMTTP, a place x item

pheromone matrix is used.

• For the traveling salesperson problem (TSP), n cities are given

with distances dij between cities i and j for i; j є [0, n−1]. The

goal is to find a distance minimal Hamiltonian cycle, i.e. a mono-

cyclic permutation π of [0: n−1] which minimizes ∑i=0 to n-1

diπ(i). Since the neighborhood of cities in the permutation is

important for this problem an item x item pheromone matrix is

used.

Typically, when constructing a solution, ants do not rely solely on

pheromone information, but also have access to some heuristic

information ηij , which signifies the immediate impact that a

local decision might have on solution quality. For example, in

TSP the heuristic value of choosing to visit city j after the last

chosen city i is considered to be inversely proportional to the

distance separating them, ηij = 1 = dij.

The standard ACO algorithm (see Fig. 2) starts by initializing the

pheromone matrix, setting every pheromone entry to an initial

value τinit > 0. For problems with an item x item encoded

pheromone matrix, e.g. TSP, the pheromone entries on the

diagonal are set to 0, since no city can be its own successor/

predecessor. In every iteration of the algorithm, m ants generate

solutions π0, . . . , πm−1. An ant builds a solution by making a

sequence of local decisions, i.e. successive selections of items.

Every decision is made randomly according to a probability

distribution over the so far unchosen items in selection set S:

where parameters α and β are used to determine the relative

influence of pheromone values and heuristic to position item j

immediately after item i in the permutation (item x item coding).

Three examples for combinatorial optimization problems and the

corresponding types of pheromone encoding are given below:

• For the single machine total tardiness values. Initially, the

selection set S contains all items; after each decision, the

selected item is removed from S. Every solution is evaluated

according to the respective objective function. After m solutions

have been generated, the solution qualities are compared to

determine the best solution π∗ of the current iteration.

The pheromone matrix is then updated in two steps:

(1) Evaporation: All pheromone values in the matrix are reduced

by a relative amount: for all i, j є [0, n− 1] : τij → (1 − ρ)τij.

(2) Intensification: The pheromone values along the best solution

π∗ are increased by an absolute amount: ∀i ∈ [0, n − 1] :

τiπ∗ (i) → τiπ∗ (i) + Δ.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

12

Fig. 3: ACO Processing Flow

4. The Proposed method: An ACO Based

Detailed FPGA Routing

In this paper we have proposed two tier approaches for the FPGA

routing solution. First, geometric FPGA detailed routing task is

solved by transforming it into a Boolean satisfiability equation

with the property that any assignment of input variables that

satisfies the equation specifies a valid routing. Satisfying

assignment for particular route will result in a valid routing and

absence of a satisfying assignment implies that the layout is un-

routable. In second step, Ant colony earch algorithm is applied

on this Boolean equation for solving routing alternatives utilizing

the properties of ACO. The simulated results are satisfactory and

give the indication of applicability of ant colony optimization for

solving the FPGA Routing problem.

To solve a constraint satisfaction problem, we can explore the

search space entirely until a solution is found or it is proven that

no solutions exist. These are called complete approaches and

these are usually combined with some filtering or propagation

techniques to reduce the running time of the algorithm.

Completeness is desirable in that the success rate improves. This

is because the entire search space is explored and all solutions, if

any can be found. However, the inherently intractable nature of

CSP’s makes completeness approaches inefficient, especially for

large instances of hard combinatorial problems. This is one of the

main reasons for the emergence of stochastic local search and

evolutionary approaches to solve CSP’s. The algorithm that we

use is based on the Ant Colony Optimization paradigm.

The standard ACO algorithm starts by initializing the pheromone

matrix, setting every pheromone entry to an initial value τinit >

0. For this problem with MxM encoded pheromone matrix, the

pheromone entries on the diagonal are set to 0, since no net can

be its own successor/ predecessor. In every iteration of the

algorithm, m ants generate solutions π0, . . . , πm−1. An ant

builds a solution by making a sequence of local decisions, i.e.

successive selections of items. Every decision is made randomly

according to a probability distribution over the so far unchosen

items in selection set. Initially, the selection set contains all

items; after each decision, the selected item is removed from

selection set. Every solution is evaluated according to the

respective objective function. After m solutions have been

generated, the solution qualities are compared to determine the

best solution π∗ of the current iteration.

The pheromone matrix is then updated in two steps:

 Evaporation: All pheromone values in the matrix are reduced

by a relative amount.

 Intensification: The pheromone values along the best solution

π∗ are increased by an absolute amount.

The ACO algorithm executes a number of iterations until a

specified stopping criterion has been met, e.g. a predefined

maximum number of iterations has been executed, a specific

level of solution quality has been reached, or the best solution

has not changed over a certain number of iterations.

5. CONCLUSION

We have tried to improve the performance of the FPGA routing

by solving it using ACO algorithm Our results have shown that

the algorithm is taking O(nm/ρ log n) running time, which is an

optimal solution. Our algorithm works as a collection of agents

work collaboratively to explore the different routes. A stochastic

decision making strategy is proposed in order to combine global

and local heuristics to effectively conduct this exploration. Our

algorithm is more effective in finding the near optimal solutions

and scales well as the problem size grows. It is also shown that

with substantial less execution time the proposed method

achieves better solutions than the popularly used zChaff and

GRASP approach.

REFERENCES

[1] S. Bade, B. Hutchings, “Fpga based stochastic neural network

implementation, in: Proceedings of the IEEE Workshop on

FPGAs for Custom Computing Machines”, 1994, pp. 189–198.

[2] M. Dorigo, G. Di Caro, L.M. Gambardella, “Ant algorithms

for discrete optimization, Artificial Life” 5 (2) 1999 137–172.

[3] E.-G. Talbi, O. Roux, C. Fonlupt, D. Robillard, “Parallel ant

colonies for combinatorial optimization problems”, in: J.R. et al.

(Eds.), Parallel and Distributed Processing, 11 IPPS/SPDP’99

Workshops, no. 1586 in LNCS, Springer-Verlag, 1999, pp. 239–

247.

[4] Stützle, T. and H. H. Hoos, MAX-MIN ant system, Future

Gener. Comput. Syst., vol. 16, no.8, pp.889-914, 2000.

[5] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S.

Malik. Chaff: Engineering an efficient SAT solver. In

Proceedings of the 38th Design Automation Conference

(DAC’01), pages 530–535, June 2001.

International Journal of Computer Applications (0975 – 8887)

Volume 7– No.8, October 2010

13

[6] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust

SAT solver,” Proc. Design, Automation, and Test in Europe

(DATE ’02, pp. 142-149, Mar. 2002.

[7] Stützle, T. and Dorigo M., “A Short Convergence Proof for a

Class of ACO Algorithms”, IEEE Transactions on Evolutionary

Computation, 6 (4), 2002 (in press).

[8] Niklas E´en and Niklas S¨orensson. An extensible sat solver.

In Proceedings of the Sixth International Conference on Theory

and Applications of Satisfiability Testing, LNCS 2919, pages

502–518, 2003.

[9] Neumann, F. and Witt, C., Runtime Analysis of a Simple Ant

Colony Optimization Algorithm. Electronic Colloquium on

Computational Complexity (ECCC), Report No. 84.,2006.

[10] Eliezer L. Lozinskii, Impurity: Another phase transition of

SAT, Journal on Satisfiability, Boolean Modeling and

Computation, vol. 1, 2006, pp. 123-14.

[11] Ines Alaya, Christine Solnon, Khaled Ghedira. “Ant Colony

Optimization for Multi-objective Optimization Problems”, ICTAI

2007 vol. 1, pp. 450-457, 2007

[12] Walter J. Gutjahr. “First Steps to the Runtime Complexity

Analysis of Ant Colony Optimization”, Computers and

Operations Research, Volume 35, Issue 9, pp. 2711-2727, 2008

[13]Nattapat Attiratanasunthron Jittat Fakcharoenphol, “A

Running Time Analysis for an Ant Colony Optimization

Algorithm for Shortest Paths on Directed Acyclic Graphs”,

Information processing letters, vol 105, Issue 3, pp. 88-92, 2008.

