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ABSTRACT 

FPGAs are used for a wide range of applications, e.g. network 

communication, video communication and processing and 

cryptographic applications. It has been shown that FPGAs are 

suitable for the implementation of soft computing techniques like 

Neural Networks and Genetic Algorithms. In this work we have 

shown that Ant Colony Optimizations can also be implemented 

on FPGAs, leading to significant speedups in runtime compared 

to implementations in software on sequential machines. This 

paper presents an ant colony optimization algorithm for 

geometric FPGA routing for a route based routing constraint 

model in FPGA design architecture.   

Keywords 

Ant colony optimization, Boolean Satisfiability, Field 
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1. INTRODUCTION 
By providing programmable selection of alternate logic and 

routing structures, field-programmable gate arrays can be 

considered to be located at the intersection of software and 

hardware-oriented systems. Using modern design software, 

circuits can be designed and implemented very rapidly, thereby 

avoiding the up-front cost of designing custom circuits and 

providing a quick means of correcting design errors. 

After configuring the circuit onto the FPGA chip, it is switched 

into operational mode, upon which the inherent parallelism and 

pipelined design style can offer considerable speedup over 

instruction stream processors. FPGAs facilitate system 

development and allow easy and quick design changes and 

verification. Not only are they suitable for rapid prototyping, they 

can also substitute for standard logic and gate array solutions in 

small and medium volume productions. However, their high 

level of flexibility demands additional switches and routing, 

which in turn increase circuit delays and chip area relative to 

custom fabricated circuits. The layout structure of these FPGAs 

depends upon three parameters configurable logic blocks, I/O 

blocks and programmable routing.  

Our main consideration in this paper is on programmable FPGA 

routing shown in [Section 2]. Boolean-based routing is a recent 

approach that is used for solving routing problem in FPGA 

layout. Boolean based routing problem can be represented as a 

large atomic Boolean function, which is satisfiable if the layout 

is routable otherwise routing option is not considered i.e. any 

satisfying assignment to the variables of the routing Boolean 

function represents a legal routing solution recent advances in 

SAT solving algorithms (learning and non-chronological 

backtracking) and efficient implementation techniques (e.g. fast 

implication engine) have dramatically improved the efficiency. 

But there is still need to improve it so that FPGA routing task 

can be optimized. In this paper, we adapt an ACO algorithm to 

field programmable gate arrays (FPGAs). To the best of our 

knowledge, this is the first implementation of ACO for solving 

FPGA routing. The ant colony optimization meta-heuristic is 

adopted from the natural foraging behavior of real ants and has 

been used to find good solutions to a wide spectrum of 

combinatorial optimization problems. Classically many search 

style solutions have been proposed for SAT, the best known 

being variations of the Davis-Putnam procedure. It is based on a 

backtracking search algorithm illustrating that, at each node in 

the search tree, elects an assignment and prunes subsequent 

search by iteratively applying the unit clause. The other 

algorithms that are used in the SAT based problems are 

backtracking search, resolution based checker, integer linear 

programming based routing, BDD, recursive learning etc. A new 

approach for FPGA routing, which is improvement over other 

SAT solvability algorithms for FPGA routing is illustrated in this 

paper. 

2. FPGA Layouts 

Standard island style FPGA architecture Xilinx 4000 [XILINX, 

01] is used in this experiment and results are compared with the 

other SAT solvers, which are previously applied to this 

architecture. This is one of the most commonly used layout 

models in FPGA applications [see Fig. 1(a)]. It consists of two-

dimensional array of configurable logic blocks CLBs, Connection 

blocks C blocks and switching blocks S blocks. Each CLB 

marked L in [Fig. 1(a)] contains the combinational and 

sequential logic that implements the functionality of a circuit. C 

and S blocks contain programmable switch form the routing 

resources. C blocks connect CLB pins to channels via 

programmable switches. S blocks are surrounded by C blocks 

and allow signals to either pass through. 

A net consists of CLB pins that are interconnected with each 

other and can be decomposed into one or more horizontal and/or 

vertical net segments each of which is an alternating sequence of 

C and S blocks forming an uninterrupted path. A detailed route 

of a net is a set of wire segments and routing switches, within the 
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assigned routing area set by the global router. For each net 

segment, a detailed router assigns wire segments and routing 

switch following the topology specified by the global router such 

that no overlapping among detailed routes of different nets 

occurs.  

The routing capacity of a given FPGA architecture is mainly 

expressed by three parameters W, Fc, Fs. The channel width is 

the number of tracks in a vertical or horizontal channel. The C 

block flexibility Fc is defined to be the number of tracks that 

each logic pin can connect to. The S block flexibility Fs denotes 

the number of other tracks that each wire segment entering an S 

block. 

Each wire segment entering this S block can connect to one track 

on each of the other three sides, hence Fs=3[see Fig. 1(b)]. Each 

logic pin can be connected up to any two tracks in the C block, 

thus Fc=2[In Fig. 1(c)] 

 

(a) 

. 

(b) Fs = 3         (c) Fc =2 

Figure1: Island style FPGA model 

 

2.1 Boolean SAT based FPGA detailed routing 

formulation 

In this approach geometric FPGA routing task is transformed into 

a Boolean satisfiability (SAT) equation with the property that 

any assignment of input variables that satisfies the equation 

specifies a valid route. The satisfiability equation is then 

modeled as Constraint Satisfaction problem, which helps in 

reducing procedural programming.  Satisfying assignment for 

particular route will result in a valid routing and absence of a 

satisfying assignment implies that the layout is unroutable. In 

second step ant colony optimization algorithm is applied on the 

Boolean equation for solving routing alternatives utilizing 

approach of hard combinatorial optimization problems for 

stationary and non-stationary environments. The ACO based 

solution to SAT is then compared with the other SAT solver 

algorithms such as zChaff and GRASP. Preliminary experimental 

results suggest that the developed ant colony optimization 

algorithm is taking mlogm iterations, where m is number of 

Boolean instances and using extremely short CPU time finds all 

possible routes even for large FPGA circuits. 

The present work is based on the optimization technique that 

could be further extended in several other optimization problems 

in the testing field such as vector re-ordering, scan chain 

partitioning, vector compaction, sequential test pattern 

generation etc. 

Boolean SAT-based routing transforms the geometric routing 

task into a Boolean Satisfiability (SAT) problem by rendering the 

routing constraints as an atomic Boolean function. The generated 

Boolean function is satisfiable (has an assignment of input 

variables such that the generated function evaluates to constant 

“1”) if and only if the design is routable. Any satisfying 

assignment to the binary variables of the Boolean function 

represents a legal routing solution. Moreover, by demonstrating 

the absence of satisfying assignments for a generated routing 

Boolean function, we can prove that no routing solution exists. A 

particular virtue of this method is that much of the geometric 

complexity of the interaction among objects (i.e., nets in routing) 

is hidden and rendered implicitly in the Boolean constraint 

functions so that all the objects are considered simultaneously. In 

other words, Boolean-based routing is a concurrent method 

allowing higher degrees of freedom for each object in contrast to 

the conventional one net-at-a-time approach. 

In spite of these unique properties, the use of Boolean 

Satisfiability to solve VLSI routing is not as common as other 

methods using integer linear programming or heuristic search. To 

the best of our knowledge, was the first to establish a link 

between geometric layouts and Boolean formulations. In this 

work, he proves that a general dogleg channel routing problem 

belongs to the NP-complete class by reducing the 3-satisfiability 

problem to it, i.e., given a 3-satisfiability formula, he showed 

how to construct an instance of the channel routing problem that 

can be routed in a certain number of tracks if and only if the 

original formula is satisfiable. Capitalizing on this idea, [9] 

devised a formulation of conventional 2-layer channel routing as 

a generic Boolean SAT problem by encoding the information 

present in a channel’s vertical constraint graph, horizontal 

constraint graph, and the anticipated channel width into Boolean 

constraint formulas on a set of n-bit Boolean vectors, one per net 

to be routed. Thus, if the generated Boolean formula is 

satisfiable, then any satisfying assignment corresponds to a 

feasible routing of the channel; otherwise (i.e., the function is 

proven to be unsatisfiable) the channel is provably unroutable 

with the anticipated channel width. Later, showed that the grid-

based channel routing with the restricted two-layer model is a 

fixed-parameter tractable problem which can be solved in linear 

time with the fixed channel length. The idea was to record a net 

which leaves each track per column while sweeping columns 

from left to right in the channel.  

The core idea of applying a Boolean SAT technique to a simple 

routing problem is illustrated in Fig. 2. It is a channel routing 

problem with four nets labelled A, B, C, and D (Fig. 2a). The 

goal is to assign a track number to each net such that distinct nets 

are nonoverlapping both horizontally and vertically. The channel 

routing problem is mapped into two matrices, one represents the 

horizontal overlapping and second represents vertical 

overlapping (Fig. 2b). Two types of constraints are defined to 

guarantee a legal channel routing solution. First, an exclusivity 

constraint insures that nets whose horizontal spans overlap are 
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assigned to different tracks. This constraint is typically 

represented by a horizontal constraint graph and can be 

conveniently expressed as a Boolean function (Fig. 2d). The 

other constraint insures that, for any two nets with pins in the 

same column on opposite sides of the channel, the net associated 

with the top pin is assigned a higher track number. This 

constraint is conveniently captured by the vertical constraint 

graph (VCG) shown in Fig. 2c, which in turn is equivalent to the 

Boolean function V of Fig. 2e. The conjunction (AND) of these 

two functions is the complete routability constraint Boolean 

function R for the channel (Fig. 2f).  

 

Fig. 2.a Channel to be routed 

 

Fig. 2.b Matrix representation of Channel routing problem 

E= (A≠C) Λ (A≠D) Λ (A≠B) Λ (C≠D) Λ (D≠B) 

Fig. 2.c Exclusivity Constraint 

 

 

 

 

 

 

 

 

 

 

Fig. 2.d Vertical Constraint Graph (VCG) 

V= (A>C) Λ (A>B) Λ (D>C) Λ (D>B) 

Fig. 2.e Vertical Ordering Constraint 

R=E ΛV 

Fig. 2.f  Channel routability constraint 

 

Fig. 2.g Two feasible solutions 

Fig. 2. Boolean SAT modeling of channel routing problem. 

Any track number assignment that makes R=1 corresponds to a 

feasible routing solution and completely specifies the net-to-track 

mapping. Two feasible assignments are shown in Fig. 2g. 

Boolean-based routing, in general, has the following advantages 

over conventional one-net-at-a-time routing approaches:  

 Simultaneous net embedding: The conventional one-net-at-a-

time routing approach is notorious for being dependent on net 

ordering because previously routed nets act as obstacles to the 

yet-to-be-routed nets. In Boolean-based routing, all routing 

constraints are considered concurrently by a Boolean SAT solver, 

making net ordering irrelevant. 

 Routability decision: The unsatisfiability of the routing 

Boolean constraint function, as proven by a Boolean SAT solver, 

directly implies that there is no feasible routing solution with the 

given placement and global routing configuration. On the other 

hand, any assignment to the Boolean variable vector that satisfies 

the routability Boolean function corresponds to a complete 

feasible detailed routing solution. 

 

However, Boolean SAT-based routing is known to be less 

scalable than conventional routing approaches. In other words, 

the size of problems that can be attacked by Boolean SAT-based 

routing is smaller than that of conventional routing. 

C B 

A D 
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3 Ant Colony Optimization 

Natural evolution has yielded biological systems in which 

complex collective behavior emerges from the local interaction of 

simple components. One example where this phenomenon can be 

observed is the foraging behavior of ant colonies [1,2]. Ant 

colonies are capable of finding shortest paths between their nest 

and food sources. This complex behavior of the colony is 

possible because the ants communicate indirectly by disposing 

traces of pheromone as they walk along a chosen path. Following 

ants most likely prefer those paths possessing the strongest 

pheromone information, thereby refreshing or further increasing 

the respective amounts of pheromone. Since ants on short paths 

are quicker, pheromone traces on these paths are increased very 

frequently. On the other hand, pheromone information is 

permanently reduced by evaporation, which diminishes the 

influence of formerly chosen unfavorable paths. This 

combination focuses the search process on short, favorable paths. 

Inspired by this biological paradigm, Dorigo et al. [3–5] 

introduced a metaheuristic known as ant colony optimization 

(ACO). In ACO, a set of artificial ants searches for good 

solutions for the optimization problem under consideration. Each 

ant constructs a solution by making a sequence of local decisions. 

Its decisions are guided by pheromone information and some 

additional heuristic information (if applicable). 

After a number of ants have constructed solutions, the best ants 

are allowed to update the pheromone information along their 

path through the decision graph. Evaporation is accomplished by 

globally reducing the pheromone information by a certain 

percentage. This process is repeated iteratively until a stopping 

criterion is met. ACO has shown good performance on several 

combinatorial optimization problems, including scheduling [6], 

vehicle routing [7], constraint satisfaction [8], and the quadratic 

assignment problem [9]. 

3.1 Description 

The objective of ACO is to find good solutions for a given 

combinatorial optimization problem. The problems considered 

usually allow solutions to be expressed as a permutation π of n 

given items. The pheromone information is encoded in an n x n 

pheromone matrix [τij ]. Depending on the problem the 

pheromone value τij expresses the desirability to assign item j to 

place i of the permutation (place x item coding) or the 

desirability problem, n given jobs have to be scheduled onto a 

single machine. For every job j, its deadline dj and the 

processing time pj are given. If Cj denotes the completion time of 

job j in a schedule, then Lj = Cj − dj defines its lateness and Tj = 

max(0,Lj) its tardiness.The objective is to find a schedule 

minimizing the total tardiness of all jobs ∑ j=0 to n−1Tj. Since 

the relative position of a job in the schedule is more important 

than its predecessor or successor in the schedule a place x item 

pheromone matrix is used. 

• For the quadratic assignment problem (QAP), n facilities, n 

locations, and two n x n matrices [dij] and [fhl] are given, where 

dij is the distance between locations i and j and fhl is the flow 

between facilities h and l. The goal is to find an assignment of 

facilities to locations, i.e. a permutation π of [0, n−1], such that 

the sum of distance-weighted flows between facilities ∑ j,i=0 to 

n−1dπ(i)π(j)fij is minimized. Solutions are constructed by 

successively assigning facilities to places (locations) in the 

permutation, which means that, like for SMTTP, a place x item 

pheromone matrix is used. 

• For the traveling salesperson problem (TSP), n cities are given 

with distances dij between cities i and j for i; j є [0, n−1]. The 

goal is to find a distance minimal Hamiltonian cycle, i.e. a mono-

cyclic permutation π of [0: n−1] which minimizes ∑i=0 to n-1 

diπ(i). Since the neighborhood of cities in the permutation is 

important for this problem an item x item pheromone matrix is 

used.  

Typically, when constructing a solution, ants do not rely solely on 

pheromone information, but also have access to some heuristic 

information ηij , which signifies the immediate impact that a 

local decision might have on solution quality. For example, in 

TSP the heuristic value of choosing to visit city j after the last 

chosen city i is considered to be inversely proportional to the 

distance separating them, ηij = 1 = dij. 

The standard ACO algorithm (see Fig. 2) starts by initializing the 

pheromone matrix, setting every pheromone entry to an initial 

value τinit > 0. For problems with an item x item encoded 

pheromone matrix, e.g. TSP, the pheromone entries on the 

diagonal are set to 0, since no city can be its own successor/ 

predecessor. In every iteration of the algorithm, m ants generate 

solutions π0, . . . , πm−1. An ant builds a solution by making a 

sequence of local decisions, i.e. successive selections of items. 

Every decision is made randomly according to a probability 

distribution over the so far unchosen items in selection set S: 

 

where parameters α and β are used to determine the relative 

influence of pheromone values and heuristic to position item j 

immediately after item i in the permutation (item x item coding). 

Three examples for combinatorial optimization problems and the 

corresponding types of pheromone encoding are given below: 

• For the single machine total tardiness values. Initially, the 

selection set S contains all items; after each decision, the 

selected item is removed from S. Every solution is evaluated 

according to the respective objective function. After m solutions 

have been generated, the solution qualities are compared to 

determine the best solution π∗  of the current iteration. 

The pheromone matrix is then updated in two steps: 

(1) Evaporation: All pheromone values in the matrix are reduced 

by a relative amount: for all i, j є [0, n− 1] : τij → (1 − ρ)τij. 

(2) Intensification: The pheromone values along the best solution 

π∗  are increased by an absolute amount: ∀i ∈ [0, n − 1] : 

τiπ∗ (i) → τiπ∗ (i) + Δ. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 7– No.8, October 2010 

12 

 

 

Fig. 3: ACO Processing Flow 

4. The Proposed method: An ACO Based 

Detailed FPGA Routing 

In this paper we have proposed two tier approaches for the FPGA 

routing solution. First, geometric FPGA detailed routing task is 

solved by transforming it into a Boolean satisfiability equation 

with the property that any assignment of input variables that 

satisfies the equation specifies a valid routing. Satisfying 

assignment for particular route will result in a valid routing and 

absence of a satisfying assignment implies that the layout is un-

routable. In second step, Ant colony earch algorithm is applied 

on this Boolean equation for solving routing alternatives utilizing 

the properties of ACO. The simulated results are satisfactory and 

give the indication of applicability of ant colony optimization for 

solving the FPGA Routing problem. 

To solve a constraint satisfaction problem, we can explore the 

search space entirely until a solution is found or it is proven that 

no solutions exist. These are called complete approaches and 

these are usually combined with some filtering or propagation 

techniques to reduce the running time of the algorithm. 

Completeness is desirable in that the success rate improves. This 

is because the entire search space is explored and all solutions, if 

any can be found. However, the inherently intractable nature of 

CSP’s makes completeness approaches inefficient, especially for 

large instances of hard combinatorial problems. This is one of the 

main reasons for the emergence of stochastic local search and 

evolutionary approaches to solve CSP’s. The algorithm that we 

use is based on the Ant Colony Optimization paradigm. 

The standard ACO algorithm starts by initializing the pheromone 

matrix, setting every pheromone entry to an initial value τinit > 

0. For this problem with MxM encoded pheromone matrix, the 

pheromone entries on the diagonal are set to 0, since no net can 

be its own successor/ predecessor. In every iteration of the 

algorithm, m ants generate solutions π0, . . . , πm−1. An ant 

builds a solution by making a sequence of local decisions, i.e. 

successive selections of items. Every decision is made randomly 

according to a probability distribution over the so far unchosen 

items in selection set. Initially, the selection set contains all 

items; after each decision, the selected item is removed from 

selection set. Every solution is evaluated according to the 

respective objective function. After m solutions have been 

generated, the solution qualities are compared to determine the 

best solution π∗  of the current iteration. 

The pheromone matrix is then updated in two steps: 

 Evaporation: All pheromone values in the matrix are reduced 

by a relative amount. 

 Intensification: The pheromone values along the best solution 

π∗ are increased by an absolute amount. 

The ACO algorithm executes a number of iterations until a 

specified stopping criterion has been met, e.g. a predefined 

maximum number of iterations has been executed, a specific 

level of solution quality has been reached, or the best solution 

has not changed over a certain number of iterations. 

 

5. CONCLUSION 

We have tried to improve the performance of the FPGA routing 

by solving it using ACO algorithm Our results have shown that 

the algorithm is taking O(nm/ρ log n) running time, which is an 

optimal solution.  Our algorithm works as a collection of agents 

work collaboratively to explore the different routes. A stochastic 

decision making strategy is proposed in order to combine global 

and local heuristics to effectively conduct this exploration. Our 

algorithm is more effective in finding the near optimal solutions 

and scales well as the problem size grows. It is also shown that 

with substantial less execution time the proposed method 

achieves better solutions than the popularly used zChaff and 

GRASP approach. 

REFERENCES 

[1] S. Bade, B. Hutchings, “Fpga based stochastic neural network 

implementation, in: Proceedings of the IEEE Workshop on 

FPGAs for Custom Computing Machines”, 1994, pp. 189–198. 

[2] M. Dorigo, G. Di Caro, L.M. Gambardella, “Ant algorithms 

for discrete optimization, Artificial Life” 5 (2) 1999 137–172. 

[3] E.-G. Talbi, O. Roux, C. Fonlupt, D. Robillard, “Parallel ant 

colonies for combinatorial optimization problems”, in: J.R. et al. 

(Eds.), Parallel and Distributed Processing, 11 IPPS/SPDP’99 

Workshops, no. 1586 in LNCS, Springer-Verlag, 1999, pp. 239–

247. 

[4] Stützle, T. and H. H. Hoos, MAX-MIN ant system, Future 

Gener. Comput. Syst., vol. 16, no.8, pp.889-914, 2000. 

[5] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. 

Malik. Chaff: Engineering an efficient SAT solver. In 

Proceedings of the 38th Design Automation Conference 

(DAC’01), pages 530–535, June 2001. 



International Journal of Computer Applications (0975 – 8887)  

Volume 7– No.8, October 2010 

13 

 

[6] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust 

SAT solver,” Proc. Design, Automation, and Test in Europe 

(DATE ’02, pp. 142-149, Mar. 2002. 

[7] Stützle, T. and Dorigo M., “A Short Convergence Proof for a 

Class of ACO Algorithms”, IEEE Transactions on Evolutionary 

Computation, 6 (4), 2002 (in press). 

[8] Niklas E´en and Niklas S¨orensson. An extensible sat solver. 

In Proceedings of the Sixth International Conference on Theory 

and Applications of Satisfiability Testing, LNCS 2919, pages 

502–518, 2003. 

[9] Neumann, F. and Witt, C., Runtime Analysis of a Simple Ant 

Colony Optimization Algorithm. Electronic Colloquium on 

Computational Complexity (ECCC), Report No. 84.,2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10] Eliezer L. Lozinskii, Impurity: Another phase transition of 

SAT, Journal on Satisfiability, Boolean Modeling and 

Computation, vol. 1, 2006, pp. 123-14. 

[11] Ines Alaya, Christine Solnon, Khaled Ghedira. “Ant Colony 

Optimization for Multi-objective Optimization Problems”, ICTAI 

2007  vol. 1, pp. 450-457, 2007 

[12] Walter J. Gutjahr. “First Steps to the Runtime Complexity 

Analysis of Ant Colony Optimization”, Computers and 

Operations Research, Volume 35, Issue 9, pp. 2711-2727, 2008 

[13]Nattapat Attiratanasunthron Jittat Fakcharoenphol, “A 

Running Time Analysis for an Ant Colony Optimization 

Algorithm for Shortest Paths on Directed Acyclic Graphs”, 

Information processing letters, vol 105, Issue 3, pp. 88-92, 2008. 


