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ABSTRACT 

In this paper, we employ the modified simple equation 

method to find the exact traveling wave solutions involving 

parameters of nonlinear evolution equations via the (1+1)-

dimensional  generalized shallow water-wave  equation and 

the(2+1)-dimensional KdV-Burgers equation. When these 

parameters are taken to be special values, the solitary wave 

solutions are derived from the exact traveling wave solutions. 

It is shown that the proposed method provides a more 

powerful mathematical tool for constructing exact traveling 

wave solutions for many other nonlinear evolution equations.   
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1. INTRODUCTION 
Nonlinear phenomena come out in a broad range of scientific 

applications, such as the fluid dynamics , nuclear physics, 

high energy physics, plasma physics, solid state physics, 

optical fibers, biology, chemical kinematics, chemical physics 

and so on. Mathematical modeling of many physics system 

leads to nonlinear evolution equations in various fields of 

science and engineering. Because of the increased 

concentration in the theory of solitary waves, a large variety 

of analytic and computational methods have been established 

in the analysis of the nonlinear models. For example the 

inverse scattering transformation method [1], the Hirota 

bilinear transform method [2], the Painleve integration 

method [3-6], the Backlund transformation method [7,8], the 

exp-function method [9-13], the tanh-function method [14-

17], the Jacobi-elliptic function expantion method [18-20], the 

(G'/G)-expansion method [21-29], the (G'/G,1/G)-expansion 

method [30,31], the first integral method [32], the variational 

iteration method [33], the homotopy perterbation method [34], 

the modified simple equation method [35-39] and so on. 

Recently, Jawad et al [35], Zayed [36] and Zayed et al [37- 

39] have employed the modified simple equation method and 

found the exact traveling wave solutions of some nonlinear 

evolution equations via the Fitzhugh-Nagumo equation, the 

Sharma- Tasso- Olver equation, the modified KdV equation, 

the reaction-diffusion equation and the Kolmogorov-

Petrovskii- Piskunov equation. The objective of this paper is 

to apply the modified simple equation method to seek the 

exact traveling wave solutions and then the solitary wave 

solutions of some other nonlinear evolution equations which 

play an important role in mathematical physics via the (1+1)-

dimensional generalized shallow water-wave equation and the 

(2+1)-dimensional KdV-Burgers equation.This paper is 

organized as follows: In Sec. 2, the description of the 

modified simple equation method is given. In Sec. 3, the 

applications of this method to two nonlinear equations 

indicated above are obtained. In Sec.4, some conclusions are 

given. 

2. Description of the modified simple 

equation  method 
Consider a nonlinear evolution equation in the form: 

 

F(u , ut , ux , uy , utt , uxy, ...) = 0 ,                 (2.1) 

 
where F is a polynomial in u(x, y, t) and its partial derivatives 

in which the highest derivatives and nonlinear terms are 

involved. In the following, we give the main steps of this 

method [35-39]: 

 

Step1. Using the wave transformation  

 

u(x, y, t) = u() ,       = x + y + t ,                           (2.2) 

 
to reduce Eq.(2.1) to the following ODE : 

 
P(u, u', u'', u''',…..)= 0,                                             (2.3) 

 
where P is a polynomial in u() and its total derivatives with 

respect to . 

 
Step 2. We suppose that Eq.(2.3) has the formal solution 

          
     

    
 
 

 
    ,                                        (2.4) 

 
where    are constants to be determined, such that    ≠0. The 

function () is an unknown function to be determined later, 

such that '()≠ 0 . 

 

Step 3 . We determine the positive integer N in (2.4) by 

balancing the highest order derivatives and the nonlinear 

terms in Eq. (2.3). 

 

Step 4. We substitute (2.4) into Eq.(2.3) and calculate all the 

necessary derivatives u', u'', u''', ...  of the unknown function 

u() and we account the function (). As a result of this 

substitution, we obtain a polynomial of  
     

    
  and its 

derivatives. In this polynomial, we gather all the terms of the 
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same power of   
     

    
  and its derivatives, and we equate with 

zero all the coefficients of this polynomial. This operation 

yields a system of equations which can be solved without 

using the computer programs to find     and (). 

Consequently, we can obtain the exact solutions of Eq.(2.1). 

 

3. Applications 
 

In this section, we will apply the proposed method of Sec. 2, 

to find the exact solutions and then the solitary wave solutions 

of the following nonlinear evolution equations: 

 

3.1 Example 1. The generalized shallow 

water-wave equation 
This equation is well known [23, 40, 41] and has the form: 

 
                              ,        (3.1) 

 
where, and are nonzero constants. This equation can be 

derived from the classical shallow water theory in the so-

called Boussinesq approximation [41]. The solution of 

Eq.(3.1) has been investigated by using other methods, 

namely, the improved Jacobi-elliptic function method [40], 

and the (G'/G )-expansion method [23]. Let us now investigate 

Eq.(3.1) using  the  modified simple  equation  method. To 

this  end , we use the  wave trans- formation 

 

  u (x , t) = u() , = x−t ,                                  (3.2) 

 

to reduce Eq.(3.1) into the following ODE: 
 

      
 

 
                                         (3.3) 

 
with zero constant of integration. Balancing      with      
yields N = 1. Consequently, we get  

 

u() =             
     

    
  ,                                        (3.4) 

 
where    and    are constants to be determined later, such as 

    ≠ 0. The function ()  is  also  to  be  determined ,  such  

that  '()≠0. It is easy to see that 

  

       
   

 
 

   

   
                                                   (3.5) 

 

        
    

 
  

     

  
  

   

  
                             (3.6) 

         
 
     

 
   

      

  
  

     

  
 

  
      

  
   

   

  
 

                     (3.7)                               

Substituting (3.5) and (3.7) into (3.3) and equating all the 

coefficients of    ,          and     to be zero, we 

respectively obtain 
 

−      + (1−)    = 0 ,                                             (3.8) 

4   
                   

 

 
       

   

             
                                                 (3.9) 

        
                                                (3.10) 

        
                                                   (3.11) 

Since     ≠ 0  and  '() ≠ 0, we deduce from Eqs.(3.10)  or  

(3.11)  that           
  

     
 , +≠ 0 . Consequently, Eqs.(3.8) 

and (3.9) reduce to 

-                                                     (3.12) 

4                                        (3.13) 

Integrating Eq.(3.12) and using Eq.(3.13) we get  

    

   
                                                                  (3.14) 

with zero constant of integration, and    ≠ 1. Consequently, 

we deduce that 

    
  

     
                                              (3.15) 

      
  

     
                                         (3.16) 

where    and    are constants of integration. Now, the exact 

solution of Eq.(3.1) has the form: 

                          
         

      
   

                    

                             
                                                 (3.17) 

where     is an arbitrary constant. If we set   = 1 and     =  
  

     
  in Eq.(3.17), where  1 , then we have the following 

solitary wave solutions: 

                           
      

      
     

     
 

 
              ,                                                                    

(3.18) 

while, if     = -1 and     =  
  

     
  , we have the solitary wave 

solutions: 

                            
      

      
    

      
 

 
              .                                                                 

(3.19) 
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  3.2 Example 2. The KdV-Burgers equation 

 
This equation is well known [28, 33, 34] and has the form: 
 

                                           
 
where q, μ and r are nonzero real parameters. Eq.(3.20) is a 

wide class of nonlinear wave models of fluid in an elastic 

tube, liquid with small bubbles and turbulence. The solution 

of Eq. (3.20) has been investigated by using other methods via 

the modified variational iteration method [33], the variational 

homotopy perturbation method [34] and the (G'/G )-expansion 

method [28]. Let us now solve Eq.(3.20) using the modified 

simple equation method. To this end, we use the wave 

transformation (2.2) to reduce Eq.(3.20) into the following 

ODE: 

        
 

 
                              (3.21) 

 
with zero constants of integration. Balancing     with    in 

Eq.(3.21) yields N = 2 . Consequently, we have  
 

u() =             
     

    
      

     

    
 
 
         (3.22) 

 
where       ,     and     are constants to be determined, such 

that     ≠  0. Also, () can be determined such that '() ≠ 

0. It is easy to see that 
 

       
   

 
 
   

  
       

     

  
 
   

  
       (3.23) 

 

        
    

 
  

     

  
  

   

  
  +  

               
      

  
 
    

  
  

      

  
  

   

  
    (3.24) 

 
Substituting (3.22)-(3.24) into (3.21) and equating  all the 

coefficients of   ,              and     to be zero, we 

respectively obtain 

 

          
 

 
    

                                               (3.25) 

 
 

          
            

        
          

     , (3.26)  
                                                           

          
   

 

 
    

              
          

   

        
            

              
                

(3.27) 

 
        

          
          

             
        ,                                     

(3.28) 
 
 

 
    

             
                                                      (3.29) 

 
Since       0 and '() ≠ 0 we deduce from Eqs.(3.25) and 

(3.29) that 
 
                               ,                       (3.30) 
 
where    −1 and     0. Let us now discuss the following 

cases: 

 
Case 1. If               , then Eqs.(3.27) and (3.28) 

reduces to 
 

                                      ,    (3.31)                                           
                                                                                 
   

  

 
   .                                                              (3.32) 

 
Substituting (3.32) into (3.31) we get  
 
    

   
 

 

    
   ,                                                        (3.33) 

 
where A = 8    −             0 . Integrating (3.33) and 

using (3.32) we conclude that 

 

   
    

 
     

  

    
  ,                                  (3.34) 

 

      
      

 
     

  

    
                             (3.35) 

 
where    and    are constants of integration.  

Now, the exact solution of Eq. (3.20) in this case has the form  

                                     
       

   

  
  

     
 

    
          

     
      

 
         

 

     
        

 

 

                                                (3.36) 

If we set    = ±1 and    = 
 

       
  into (3.36) then we have respectively the following solitary wave solutions: 

                                      
     

      
          

 

    
           

 
                                                              (3.37) 

 

                                      
     

      
          

 

    
           

 
                                                              (3.38) 

 
Case 2. If                 , then Eqs.(3.26), (3.27) and 

(3.28) reduce to  

                                                 (3.39)   
 

      
                   

                   

                     ,                                                (3.40)              

 
               

                                  (3.41) 
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 Since   ()   0, we deduce from Eq.(3.41) that 
 

       ,                                                                     (3.42) 
Where 

   
   

       
 .                                                                (4.43) 

Substituting (3.42) into (3.40) we get 

  
    

   
 

 

     
 ,                                                              (4.44) 

  
where  
 

        
                

 48   6  1 48 2 .                          (3.45) 
 
Consequently, we conclude that 
 

          
  

     
                                                    (3.46) 

 

      
    

       
     

  

     
                                          (3.47) 

                  
  

     
 ,                             

(3.48) 

     
        

 
      

  

     
                                (3.49)   

where     and     are constants of integration. Substituting 

(3.46)- (3.48) into (3.39) we deduce after some reduction that 

   has the form: 

   
  

 
                  .                        (3.50) 

 
Now, the exact solution of Eq.(3.20) in this case has the form: 

                 
     

 

     
          

     
     

   

 
         

 

     
         

       
     

     
 

     
          

     
     

   

 
         

 

     
         

 

 

.                      (3.51) 

  
If we set     ±1 and    

 

       
  into (3.51) then we have respectively the following solitary wave solutions 

          
 

 
             

        

     
       

           
        

     
  
 
                                         (3.52) 

          
 

 
             

        

     
       

           
        

     
  
 
                                          (3.53) 

 
Case3. If                     , then Eqs.(3.27) and 

(3.28) reduces to 

                                             (3.54) 
and  

   
  

 
    .                                                                  (3.55) 

Note that the formulas (3.54) and (3.55) have the same forms 

as (3.31) and (3.32) with replacing       by −       Thus 

the analysis and the solutions in this case follow directly from 

case 1 with replacing       by       . Now, the exact 

solution of Eq.(3.20) in this case has the form 

 

                              
      

   

  
  

     
 

    
          

     
      

 
         

 

     
        

 

 

,                                         (3.56) 

while, the solitary wave solutions have the forms:  

                                    
    

      
          

 

    
           

 

                                                                (3.57) 

 

                                     
    

      
          

 

    
           

 

                                                               (3.58) 

 
Case 4. If                      ,then Eqs. (3.26), 

(3.27) and  (3.28) reduce to  the  same forms (3.39), (3.40) 

and (3.41) respectively with replacing       by −     .  

Thus the analysis and the solutions in this case follow directly 

from case 2 with replacing       by       .Now, the 

exact solution of Eq.(3.20) in this case has the for 

 

                                                    
     

 

     
          

     
     

   

 
         

 

     
         

                                        

        
      

     
 

     
          

     
     

   

 
         

 

     
         

 

 

 ,                                                                                       (3.59) 

 
while, the solitary wave solutions have the forms:  
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                                    (3.60) 

                      
 

 
             

        

     
       

           
        

     
  
 

                                     (3.61) 

 

4. Conclusions 
The modified simple equation method has been applied in this 

paper to find the exact traveling wave solutions and then the 

solitary wave solutions of two nonlinear evolution equations, 

namely, the (1+1)-dimensional generalized shallow  water-

wave  equation (3.1) and  the (2+1)-dimensional KdV-Burgers 

equation (3.20). Comparing the presently proposed method 

with other methods, we can conclude that the modified simple 

equation method is much more simpler than these methods 

and  can  be  applied  to  many  other   nonlinear   evolution  

equations in mathematical physics. 
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