
International Journal of Computer Applications (0975 – 8887)
Volume 11– No.1, December 2010

14

Implementation of Low Power Scalable Encryption

Algorithm

K.J. Jegadish Kumar
Assistant Professor

SSN College of Engineering
Kalavakkam-603110 Chennai,

India

S. Salivahanan
Principal

SSN College of Engineering
Kalavakkam-603110

Chennai, India

K. Chenna Kesava Reddy
Principal

Jyothismathi College of
Engineering and Technology

Shamirpet-500078, India

ABSTRACT
SEA – Scalable Encryption Algorithm is a block cipher based
symmetric encryption scheme, particularly intended for resource
constrained devices. SEA proposes low computational cipher
schemes, that is, miniaturized code size, memory and power,
developed for processors with a restricted instruction set. SEA
is parametric with plain-text, key and microprocessor size, and

found to be powerful with the grouping of encipherment or
decipherment and derivation of the keys. SEA was primarily
meant for software implementations in microcontrollers, smart
cards and small embedded systems. In this article, we look into
the performance investigation of modified SEA with efficient
modular adder in a Field programmable gate array (FPGA)
device. For this reason, a loop based iterative design of the
block cipher is realized on FPGA. Apart from its minimum cost,

the proposed modified design is entirely flexible with any
parameters and acquires advantage of generic VHDL coding.
The efficient modular adders implementation based modification
in SEA achieves lower area, power consumption and
considerably higher throughputs on the target platform
VIRTEX-4, xc4vl25 and SPARTAN-3, xc3s1400.

Keywords: Block ciphers, constrained applications, FPGA

implementation.

1. INTRODUCTION
Symmetric encryption schemes designed for resource
constrained devices have only a limited history. Tiny Encryption
Algorithm (TEA) is an example of cipher designed especially

for resource constrained devices. TEA is commonly known as
Yuval's proposal [1,2]. Earlier cipher does not give efficient
resistance to differential and linear cryptanalysis attacks. Block
ciphers in recent days, like the Rijndael Advanced Encryption
Standard (AES) concentrates on deciding a trade-off in
information security, hardware/software complexity, and overall
efficiency. Consequently, there arises a requirement for a new
cryptosystem that endows with apt solution for resource

constrained systems. Embedded applications that are basic
building structures posses important features and a challenge for
new cryptosystem like Scalable Encryption Algorithm (SEA)
[1,2].

1.1 SEA: An Overview
The purpose for SEA [1, 2] is to implement in restricted
resources; the architecture proposed is parametric with respect to
plain-text, cipher-text, key and the processor size. Since the

architecture is parametric in nature, it has flexibility and can be
implemented in all platforms with minimum code change. Most
algorithms perform differently on different platforms but SEA is
an exception as it allows obtaining an optimal method of
ciphering that suits any given microprocessor and the security of
this cipher is tailored according to its key size [2]. Since it
operates on a limited resource processor, it only does some basic

operations (i.e. XOR, AND, OR, mod 2b addition).

1.2 Literature Survey
Though there are many cryptographic algorithms, most of them
require high or moderate processing power, like Advanced

Encryption Standards (AES) [3-6], Data Encryption Standard
(DES) [7], Tiny Encryption Algorithm (TEA) [8,9], Extended
TEA (XTEA) [10]. But these encryption algorithms cannot be
implemented in a resource constrained system due to various
complexities involved like i.e. Non Scalability, Processor
Intensive, and Security Level.

AES (Rijndael) [3-6] comprises three block ciphers, all the

block ciphers vary depending on the number of bits. AES is a
predetermined block cipher having 128 bits. It has different key
size of 128, 192 and 256 bits. AES requires four 256 entry, 32
bit tables, so totally 4096 of memory which equals 1kilo byte for
each table. AES is more processor intensive and is non scalable,
so it cannot be implemented on constrained systems. Though
there are efficient implementations of AES, there are still non-
scalable for need of any processing platform.

DES [7] is based on symmetric key algorithms of bit size 56.
DES is the classic symmetric key encryption algorithm that
receives a predetermined length sequence of plain-text bits and

alters through a sequence of complex tasks performed in a
different bit string known as cipher-text bits using the same key.
Though DES is not a secured encryption, it is widely used in a
mode of operation as per Federal Information Processing
Standard (FIPS-81). DES is more processor intensive, non
scalable and is breakable by Linear Cryptanalysis.

TEA [8] or Yuval’s proposal [9] is notable for its simplicity and
implementable on various platforms (scalability) and works on
block size of 64 bits with a key size of 128 bit. When crypt
analyzed with equivalent key, each key gives three other keys.
So in terms of security TEA is insecure. XTEA [10] was an

advanced version of TEA, mainly aimed at improving all the
security glitches. XTEA has complex key scheduling and
rearrangement of Shift XOR and addition operations. XTEA is
vulnerable to related key differential attack. Like SEA, HIGHT

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.1, December 2010

15

[11] is also another Block Cipher for resource constrained
systems, but its non scalable and consumes more number of
gates and the throughput and operating frequency are much less
when compared to SEA (48, 8). So, implementing SEA for
constrained systems is a better option.

This paper is organized as follows. The introduction and
literature survey are provided in section 1. Section 2 describes

parameters, definitions and basic operations for implementation
of SEA. Section 3 illustrates hardware implementation
strategies. In section 4 implementation results are presented.
Finally, in section 5 conclusions based on the results are made.

2. IMPLEMENTATION OF SEA
Majority of recent private key cipher design resulted in tradeoffs
in the cost of execution and their performances. However, the
objective is to effectively implement on a wide range of

platforms. SEA is a different method and considers a perspective
in which it has inadequate throughput and resources. The cipher
was primarily targeted as a design to provide cost effective
implementation and certification routine for processors with a
restricted instruction set [1]. In addition, opposite to block
ciphers that are widely used, it considers the parameters such as
bus sizes, key and plain-text. Hence it can be tailored straightly
to a variety of security requirements and implementation
environments. In contrast, in comparison with the solutions that

runs traditional ciphers like Yuval’s proposal or TEA (Tiny
Encryption Algorithm), SEA additionally promotes a resistance
to cryptanalysis [2]. When put into practice, SEA was
demonstrated to be a proficient answer for microcontrollers and
related applications. Although, SEA is an efficient hardware
implementation, its performance is yet to be explored. This
paper therefore proposes to investigate the interest of this
algorithm to be modified for area and power in constrained

applications. The investigation begins with an exploration of the
quality of a cost effective FPGA implementation of SEA [1] and
our progress is to modify SEA using efficient modular adder in
[12-14] to reduce the hardware complexities in terms of area and
power.

2.1 Algorithmic Description

2.1.1 Basic Operations
Owing to its optimality constraints, SEAn,b [1,2] is based on a
restricted number of basic operations chosen for their
accessibility in the given device. This can be classified into
different categories as given in Standert et.al [1,2]

1. Basic XOR

⊕:ℤ
n

2 × ℤ
n

2 : x, y → z = x⨁y ⟺

z i = x i ⊕ y i ,

2. S-Box: SEAn,b make use of 3-bit substitution table stated

as:
ST: = [0; 5; 6; 7; 4; 3; 1; 2],

and is evaluated as in following expressions

S: ℤ
2b

nb → ℤ
2b

nb : x → x = S(x) ⟺

 x3i = (x3i+2⋀x3i+1) ⊕ x3i

x3i+1 = x3i+2⋀x3i ⊕ x3i+1

x3i+2 = x3i⋁x3i+1 ⊕ x3i+2,

 : bitwise AND

 : bitwise OR.

3. Word rotate R: For nb-word vectors the word rotate is

expressed as:

R: ℤ
2b

nb → ℤ
2b

nb : x → y = R x ⟺

4. Bit rotate r:

r: ℤ
2b

nb → ℤ
2b

nb : x → y = r x ⟺

y3i = x3i ⋙ 1

y3i+1 = x3i+1, y3+2i = x3i+2 ⋘ 1,

where : right shifts

and ⋘ : left shifts.

5. Addition modulo 2
b
 : ⊞: ℤ

2b

nb × ℤ
2b

nb →

ℤ
2b

nb : x, y → z = x ⊞ y ⟺

zi = xi ⊞ yi ,

In the following sub-section, complete description of the
algorithm which can be referred to [1, 2] is briefed. It starts with
the vital parameters, and then highlights its basic operation.
Then the sequence of key generation is described.

2.1.2 Encryption/Decryption and Key

 Generation

The encrypt round FE, decrypt round FD and key round FK are
defined as:

Encryption Round FE :

 Li+1, Ri+1 = FE Li , Ri , Ki ⟺ Ri+1

= R Li ⨁r S Ri ⊞ Ki ,

Li+1 = Ri

Decryption Round FD :

 Li+1, Ri+1 = FD Li , Ri , Ki ⟺ Ri+1

= R−1 Li⨁r S Ri ⊞ Ki ,

Li+1 = Ri

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.1, December 2010

16

Figure.2.1. Encryption and decryption and key
scheduling [1, 2]

Key Scheduling Round FK :

 KLi+1, KRi+1 = FK KLi , KRi , Ci ⟺ KRi+1

= KLi⨁R r S KRi ⊞ Ci ,

KLi+1 = KRi

2.1.3 Cipher Description
This ciphering is based on the number of rounds nr and uses
iterative based loop design. The pseudo code given in Figure
2.2 illustrates the necessary steps for encrypting a plain-text.

where, P: Plain-text,
 C: Cipher-text
 K: Key
and all these three are parameterized by bit size n. Taking into

account the parametric b-bit words, the operations are done in
the cipher.

Since nr is odd, referring to Figure 2.2 for key scheduling and
encryption, the value of nr must be rounded up or down.

Rounding up or ceil is denoted as ⌈⌉ and rounding down or floor

is denoted as ⌊⌋.

Figure 2.2: Pseudo Code description [1, 2]

2.1.4 Recommended Number of rounds
 The expression nr = [3(n/4) + 2((n/2b)+ b/2)] evaluates the
number of rounds, nr, required to sufficiently secure against
conventional attacks. i.e, calculation of nr is related to resist
either differential or linear attacks adding to twice the number of
rounds to get absolute diffusion. Consecutively, it prevents

statistical and structural attacks. The value of nr must be always
odd, if not, 1 must be added to make it odd [1,2].

3. HARDWARE IMPLEMENTATION

3.1 Implementation Description
The first investigation step to the [1] hardware implementation
of SEA proposes to take a look at a straightforward
implementation of the algorithm on an FPGA platform,
achieving a round/clock cycle and denoted as the loop
implementation. It is known that the S-boxes and the mod 2b
adder are the operators that cost more in hardware

implementation; but the operators like Word Rotate and Bit
Rotate blocks in the cipher are realized by swapping wires. As
per the specifications of SEA [1], the key generations consist of
two multiplexers to switch the right and left part of the key when
the algorithm reaches half. The execution is done by the
suitable control signal called Swap. The switch controlled
multiplexer supplies the looping function with the right part of
the key during the execution of first half of round and pass on

its left part after the switch. The Generic Loop Architecture is
simple and only changes in the location of the R and R-1 Block.
In this paper, we mainly focus to describe [12] a light weight
Modular adders to modify modulo 2b addition operator in SEA
so as to achieve considerable low power optimization at the
synthesizable VHDL design level.

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.1, December 2010

17

3.2 Implementation of Modified SEA with

efficient Modular adders

Addition modulo m of x and y  {0,1,2,…..m-1} is given by the

equation:
(x + y) mod m = x + y, if x + y < m, and

 = x + y – m, if x + y ≥ m, (3.1)

which can be simply realized using a suitable basic arithmetic
operators. But, their implementation is complex, as they require
more space and speed. The algorithm described allows to

liberate the implementation cost and thus results in powerful
hardware operators. Here, the equation

k = [log2 m]+1 designates the number of bits which are essential

to predetermine output and inputs of a modulo m adder.
Fundamentally an addition modulo m can be performed by three
methods [12]:

1. Table based operator method

2. Hybrid based operator method
3. Adder-Based operator method.

Adder-Based Operators: Implementing Equation (3.1) and

illustrated by Algorithm 3.1 directs to attain architectures in
Figure 3.1 and [12] delivers in detail the proof of validation of
this method. This algorithm implementation resulted in use of
two carry-propagate adders and a Multiplexer and is considered
to be appropriate for FPGAs.

Algorithm 3.1 Addition Modulo m.

Determine k  2
k-1

 < m < 2
k

 Assign s0 ← x + y

Assign s1 ← (s0 mod 2
k
) + 2

k
 − m

 if the carry-out bit of s0 or s1 is one then

 (x + y) mod m ← s1 mod 2
k

 else

 (x + y) mod m ← s0 mod 2
k

 end if

The architecture of implemented algorithm 3.1 is portrayed in
Figure 3.1. Our proposed modulo addition algorithm leads to
smallest circuits, in turn reduced overall circuit complexity of
SEA.

 Figure 3.1

4. IMPLEMENTATION RESULTS
The results were derived by synthesizing the algorithm using
Xilinx ISE 9.2i tool on VIRTEX-4 platform device XC4VLX25
with speed grade-12 and XC3S1400, SPARTAN-3 platform

with speed grade -4. XPower Analyzer tool was used to analyze
the power consumption of the implementation. The
implementation was done for variants bit data (n) and a
processor word size (b). We achieved reduction in number of
slices (Figure 4.1), high throughputs (Figure 4.2) and increase in
work frequency (Figure 4.3) in implementation compared to
implementation of [1]. Throughput /Area ratios are also shown
in Figure 4.4. Our implementation of SEA exhibited

consumption of small area and move toward at the cost of
increased throughput and reduced power consumption as in
Figure 4.5. As a result, it can be well thought-out as the
attractive substitute for constrained devices.

Figure 4.1

149

222
281

176

263

333

0

100

200

300

400

48,8 72,12 96,8

N
o

: o
f

Sl
ic

es

Data Size, Word Size in bits

No: of slices vs Data

Our
Implementati
on

Implementati
on[1]

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.1, December 2010

18

Figure 4.2

Figure 4.3

 Figure 4.4

Figure 4.5

5. CONCLUSION
SEA was originally proposed for efficient implementation in
software. Considering the need for efficient implementation in
hardware, with the new design criteria, it was found to have
better solutions as compared to software implementation.
Through the hardware investigation of the SEA, we show that

this modular symmetric algorithm, targeted for low-resources
software solutions, can interestingly respond to constrained
hardware needs. We first demonstrated that the scalability of this
algorithm can be kept in the hardware description
language(VHDL). The simple iterative loop design achieves
interesting performance in area and power reduction, improvise
throughputs in FPGA. In addition, we analysed the power
consumed by the SEA module for different variants in data

block and word size. It is also significant to highlight a number
of merits in SEA compared to recent block ciphers, specifically
its simplicity, scalability(re-implementing SEA for a new block
size does not necessitate to re-write code), and being a splendid
design of encryption and decryption.

6. ACKNOWLEDGEMENT
We are grateful to the experts who have contributed towards
development of our work. We acknowledge Shankar Kuhan,
Thirumurugan and Praveen V for all their help during the design
phase.

7. REFERENCES
[1] F.Mace, F.X Standert, J J Quisquater “FPGA

implementation(s) of a Scalable Encryption algorithm”

IEEE Transactions on VLSI Systems, Vol.16, 2008, pp.
212-216.

[2] Francois-Xavier Standaert, Gilles Piret, Neil Gershenfeld,
Jean-Jacques Quisquater “SEA a Scalable Encryption
Algorithm for Small Embedded Applications” in Proc.
CARDIS, 2006, pp 222-236.

[3] J. Daemen and V. Rijmen, The Design of Rijndael. New
York: Springer-Verlag, 2001.

[4] Advanced Encryption Standard, FIPS PUB 197, Nov. 2001.

248.5252.5
280.5

220 239 245

0

100

200

300

48,8 72,12 96,8Th
ro

u
gh

p
u

t i
n

 M
b

p
s

Data Size, Word Size in Bits

Throughput vs Data

Our
Implementatio
n

Implementatio
n[1]

264
257

272

234
242 238

200

220

240

260

280

48,8 72,12 96,8

Fr
e

q
u

en
cy

 in
 M

H
z

Data Size, Word Size in bits

Frequency vs Data

Our
Implementati
on

Implementati
on[1]

0

1

2
1.667

1.1370.9991.250.9080.737

Th
ro

u
gh

p
u

t/
A

re
a

R
at

io

Data Size, Word Size in bits

Throughput/Area
Ratio vs Data

Our
Implementati
on

Implementati
on[1]

120

130

140

To
ta

l P
o

w
e

r
C

o
n

su
m

p
ti

o
n

 in

m
W

Data Size, Word Size in bits

Power Consumption of
our Modified SEA

International Journal of Computer Applications (0975 – 8887)
Volume 11– No.1, December 2010

19

[5] N. Pramstaller and J. Wolkerstorfer, “A universal and
efficient AES co-processor for field programmable logic
arrays,” in Proc. FPL, 2004, pp. 565–574.

[6] Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-
Perez, Cetin Kaya K09, “Cryptographic Algorithms on

Reconfigurable Hardware”, Springer Series on Signals and
Communication Technology, 2006.

[7] Data Encryption Standard, FIPS PUB 46-3, Oct. 1999.

[8] D.J. Wheeler, R. Needham, TEA, a Tiny Encryption
Algorithm, proceedings of FSE 1994, Lecture Notes in
Computer Science, Vol 1008, pp 363-366, Leuven,
Belgium, December 1994, Springer-Verlag.

[9] G. Yuval, “Reinventing the travois: Encryption/MAC in 30

ROM bytes,” in Proc. Fast Softw. Encryption (FSE), 1997,
pp. 205–209.

[10] J.P. Kaps, “Chai-Tea, Cryptographic Hardware
Implementations of XTEA, The 9th International
Conference on Cryptology in India – INDOCRYPT 2008,
LNCS 5356, pp. 363-375, 2008.

[11] D. Hong et al., “HIGHT: A New Block Cipher Suitable
for Low-Resource Device,” Proceedings of CHES 2006,
Lecture Notes in Computer Science, Vol. 4249, pp. 46-59,
Yokohama, Japan, October 2006.

[12] Beuchat, J.-L.; Lab. De l'Infonnatique du Parallelisme,

“Some Modular adders and multipliers for Field
programmable Gate arrays”, in Proc. Parallel and
Distributed processing symposium 2003.

[13] J.-L. Beuchat. “Modular Multiplication for FPGA
Implementation of the IDEA Block Cipher”, Technical
Report 2002-32, Laboratoire de l’Informatique du
Parall´elisme, Ecole NormaleSup´erieure de Lyon, 46
All´ee d’Italie, 69364 LyonCedex 07, Sept. 2002.

[14] J.-L. Beuchat and A. Tisserand. Small Multiplier-based
Multiplication and Division Operators for Virtex-II
Devices.In M. Glesner, P. Zipf, and M. Renovell, editors,
Field-Programmable Logic and Applications –
Reconfigurable Computing Is Going Mainstream, number
2438 in Lecture Notes in Computer Science, pages 513–
522. Springer, 2002.

