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ABSTRACT 
SEA – Scalable Encryption Algorithm is a block cipher based 
symmetric encryption scheme, particularly intended for resource 
constrained devices. SEA proposes low computational cipher 
schemes, that is, miniaturized code size, memory and power, 
developed for processors with a restricted instruction set.  SEA 
is parametric with plain-text, key and microprocessor size, and 

found to be powerful with the grouping of encipherment or 
decipherment and derivation of the keys. SEA was primarily 
meant for software implementations in microcontrollers, smart 
cards and small embedded systems. In this article, we look into 
the performance investigation of modified SEA with efficient 
modular adder in a Field programmable gate array (FPGA) 
device.  For this reason, a loop based iterative design of the 
block cipher is realized on FPGA. Apart from its minimum cost, 

the proposed modified design is entirely flexible with any 
parameters and acquires advantage of generic VHDL coding. 
The efficient modular adders implementation based modification 
in SEA achieves lower area, power consumption and 
considerably higher throughputs on the target platform 
VIRTEX-4, xc4vl25 and SPARTAN-3, xc3s1400. 
 

Keywords: Block ciphers, constrained applications, FPGA 

implementation. 

1.   INTRODUCTION 
Symmetric encryption schemes designed for resource 
constrained devices have only a limited history. Tiny Encryption 
Algorithm (TEA) is an example of cipher designed especially 

for resource constrained devices. TEA is commonly known as 
Yuval's proposal [1,2]. Earlier cipher does not give efficient 
resistance to differential and linear cryptanalysis attacks. Block 
ciphers in recent days, like the Rijndael Advanced Encryption 
Standard (AES) concentrates on deciding a trade-off in 
information security, hardware/software complexity, and overall 
efficiency. Consequently, there arises a requirement for a new 
cryptosystem that endows with apt solution for resource 

constrained systems. Embedded applications that are basic 
building structures posses important features and a challenge for 
new cryptosystem like Scalable Encryption Algorithm (SEA) 
[1,2]. 
 

1.1 SEA: An Overview 
The purpose for SEA [1, 2] is to implement in restricted 
resources; the architecture proposed is parametric with respect to 
plain-text, cipher-text, key and the processor size. Since the 

architecture is parametric in nature, it has flexibility and can be 
implemented in all platforms with minimum code change. Most 
algorithms perform differently on different platforms but SEA is 
an exception as it allows obtaining an optimal method of 
ciphering that suits any given microprocessor and the security of 
this cipher is tailored according to its key size [2]. Since it 
operates on a limited resource processor, it only does some basic 

operations (i.e. XOR, AND, OR, mod 2b addition).  
 

1.2 Literature Survey 
Though there are many cryptographic algorithms, most of them 
require high or moderate processing power, like Advanced 

Encryption Standards (AES) [3-6], Data Encryption Standard 
(DES) [7], Tiny Encryption Algorithm (TEA) [8,9], Extended 
TEA (XTEA) [10]. But these encryption algorithms cannot be 
implemented in a resource constrained system due to various 
complexities involved like i.e. Non Scalability, Processor 
Intensive, and Security Level.  
 
AES (Rijndael) [3-6] comprises three block ciphers, all the 

block ciphers vary depending on the number of bits. AES is a 
predetermined block cipher having 128 bits. It has different key 
size of 128, 192 and 256 bits. AES requires four 256 entry, 32 
bit tables, so totally 4096 of memory which equals 1kilo byte for 
each table. AES is more processor intensive and is non scalable, 
so it cannot be implemented on constrained systems. Though 
there are efficient implementations of AES, there are still non- 
scalable for need of any processing platform. 

DES [7] is based on symmetric key algorithms of bit size 56. 
DES is the classic symmetric key encryption algorithm that 
receives a predetermined length sequence of plain-text bits and 

alters through a sequence of complex tasks performed in a 
different bit string known as cipher-text bits using the same key. 
Though DES is not a secured encryption, it is widely used in a 
mode of operation as per Federal Information Processing 
Standard (FIPS-81). DES is more processor intensive, non 
scalable and is breakable by Linear Cryptanalysis.   

TEA [8] or Yuval’s proposal [9] is notable for its simplicity and 
implementable on various platforms (scalability) and works on 
block size of 64 bits with a key size of 128 bit. When crypt 
analyzed with equivalent key, each key gives three other keys. 
So in terms of security TEA is insecure. XTEA [10] was an 

advanced version of TEA, mainly aimed at improving all the 
security glitches. XTEA has complex key scheduling and 
rearrangement of Shift XOR and addition operations. XTEA is 
vulnerable to related key differential attack. Like SEA, HIGHT 
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[11] is also another Block Cipher for resource constrained 
systems, but its non scalable and consumes more number of 
gates and the throughput and operating frequency are much less 
when compared to SEA (48, 8). So, implementing SEA for 
constrained systems is a better option. 

This paper is organized as follows. The introduction and 
literature survey are provided in section 1. Section 2 describes 

parameters, definitions and basic operations for implementation 
of SEA.  Section 3 illustrates hardware implementation 
strategies. In section 4 implementation results are presented. 
Finally, in section 5 conclusions based on the results are made. 

2.  IMPLEMENTATION OF SEA 
Majority of recent private key cipher design resulted in tradeoffs 
in the cost of execution and their performances. However, the 
objective is to effectively implement on a wide range of 

platforms. SEA is a different method and considers a perspective 
in which it has inadequate throughput and resources. The cipher 
was primarily targeted as a design to provide cost effective 
implementation and certification routine for processors with a 
restricted instruction set [1]. In addition, opposite to block 
ciphers that are widely used, it considers the parameters such as 
bus sizes, key and plain-text. Hence it can be tailored straightly 
to a variety of security requirements and implementation 
environments. In contrast, in comparison with the solutions that 

runs traditional ciphers like Yuval’s proposal or TEA (Tiny 
Encryption Algorithm), SEA additionally promotes a resistance 
to cryptanalysis [2].  When put into practice, SEA was 
demonstrated to be a proficient answer for microcontrollers and 
related applications. Although, SEA is an efficient hardware 
implementation, its performance is yet to be explored. This 
paper therefore proposes to investigate the interest of this 
algorithm to be modified for area and power in constrained 

applications. The investigation begins with an exploration of the 
quality of a cost effective FPGA implementation of SEA [1] and 
our progress is to modify SEA using efficient modular adder in 
[12-14] to reduce the hardware complexities in terms of area and 
power. 

 

2.1 Algorithmic Description 

2.1.1 Basic Operations 
Owing to its optimality constraints, SEAn,b [1,2] is based on a 
restricted number of basic operations chosen for their 
accessibility in the given device. This can be classified into 
different categories as given in Standert et.al [1,2]   
 
 

1. Basic XOR  

⊕:ℤ
n

2 × ℤ
n

2 : x, y → z = x⨁y ⟺

z i = x i ⊕ y i ,     

2. S-Box: SEAn,b make use of 3-bit substitution table stated 

as: 
ST: = [0;  5;  6;  7;  4;  3;  1;  2], 

and is evaluated as in following expressions 

S: ℤ
2b

nb → ℤ
2b

nb : x → x = S(x) ⟺ 

      x3i = (x3i+2⋀x3i+1) ⊕ x3i  

x3i+1 =  x3i+2⋀x3i ⊕ x3i+1  

x3i+2 =  x3i⋁x3i+1 ⊕ x3i+2,           

 : bitwise AND 

  : bitwise OR. 

3. Word rotate R: For nb-word vectors the word rotate is 

expressed as: 

R: ℤ
2b

nb → ℤ
2b

nb : x → y = R x ⟺         

  

  
 

4.  Bit rotate r:  
 

r: ℤ
2b

nb → ℤ
2b

nb : x → y = r x ⟺ 

y3i = x3i ⋙ 1 

y3i+1 = x3i+1,      y3+2i = x3i+2 ⋘ 1,

 

where : right shifts 

and ⋘ :  left shifts. 

5.  Addition modulo 2
b
 :    ⊞: ℤ

2b

nb × ℤ
2b

nb →

ℤ
2b

nb : x, y → z = x ⊞ y ⟺ 

zi = xi ⊞ yi ,  

In the following sub-section, complete description of the 
algorithm which can be referred to [1, 2] is briefed. It starts with 
the vital parameters, and then highlights its basic operation. 
Then the sequence of key generation  is described. 

2.1.2  Encryption/Decryption and Key 

 Generation 

The encrypt round FE, decrypt round FD and key round FK are 
defined as: 

Encryption Round FE : 

 Li+1, Ri+1 = FE Li , Ri , Ki ⟺ Ri+1

= R Li ⨁r S Ri ⊞ Ki  , 

Li+1 = Ri  

Decryption Round FD : 

 Li+1, Ri+1 = FD Li , Ri , Ki ⟺ Ri+1

= R−1  Li⨁r S Ri ⊞ Ki   , 

Li+1 = Ri  
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Figure.2.1. Encryption and decryption and key  
scheduling [1, 2] 

Key Scheduling Round FK : 

 

 KLi+1, KRi+1 = FK KLi , KRi , Ci ⟺ KRi+1

= KLi⨁R r S KRi ⊞ Ci   , 

KLi+1 = KRi  

 

2.1.3 Cipher Description 
This ciphering is based on the number of rounds nr and uses 
iterative based loop design.  The pseudo code given in Figure 
2.2 illustrates the necessary steps for encrypting a plain-text.  

where, P: Plain-text,  
            C: Cipher-text  
            K: Key 
and all these three are parameterized by bit size n. Taking into 

account the parametric b-bit words, the operations are done in 
the cipher.  

Since nr is odd, referring to Figure 2.2 for key scheduling and 
encryption, the value of nr must be rounded up or down. 

Rounding up or ceil is denoted as ⌈⌉ and rounding down or floor 

is denoted as ⌊⌋. 

 

 
Figure 2.2: Pseudo Code description [1, 2] 

 

2.1.4 Recommended Number of rounds 
 The expression nr =  [3(n/4) + 2((n/2b )+ b/2)] evaluates the 
number of rounds, nr, required to sufficiently secure against 
conventional attacks. i.e, calculation of nr is related to resist 
either differential or linear attacks adding to twice the number of 
rounds to get absolute diffusion. Consecutively, it prevents 

statistical and structural attacks. The value of nr must be always 
odd, if not, 1 must be added to make it odd [1,2]. 
 

3. HARDWARE IMPLEMENTATION 

3.1 Implementation Description 
The first investigation step to the [1] hardware implementation 
of SEA proposes to take a look at a straightforward 
implementation of the algorithm on an FPGA platform, 
achieving a round/clock cycle and denoted as the loop 
implementation. It is known that the S-boxes and the mod 2b  
adder are the operators that cost more in hardware 

implementation; but the operators like Word Rotate and Bit 
Rotate blocks in the cipher are realized by swapping wires. As 
per the specifications of SEA [1], the key generations consist of 
two multiplexers to switch the right and left part of the key when 
the algorithm reaches half.  The execution is done by the 
suitable control signal called Swap. The switch controlled 
multiplexer supplies the looping function with the right part of 
the  key during  the execution of first half of round and pass on 

its left part after the switch. The Generic Loop Architecture is 
simple and only changes in the location of the R and R-1 Block. 
In this paper, we mainly focus to describe [12] a light weight 
Modular adders to modify modulo 2b addition operator in SEA 
so as to achieve considerable low power optimization at the 
synthesizable VHDL design level.  
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3.2 Implementation of Modified SEA with 

efficient Modular adders 

Addition modulo m of x and y  {0,1,2,…..m-1} is given by the 

equation: 
(x + y) mod m = x + y,  if  x + y < m, and  

                        = x + y – m,  if x + y ≥ m,                       (3.1) 

 
which can be simply realized using a suitable basic arithmetic 
operators. But, their implementation is complex, as they require 
more space and speed. The algorithm described allows to 

liberate the implementation cost and thus results in powerful 
hardware operators. Here, the equation  

k = [log2 m]+1 designates the number of bits which are essential 

to predetermine output and inputs of a modulo m adder. 
Fundamentally an addition modulo m can be performed by three 
methods [12]: 

1. Table based operator method 

2. Hybrid based operator method 
3. Adder-Based operator method. 

 

Adder-Based Operators: Implementing Equation (3.1) and 

illustrated by Algorithm 3.1 directs to attain architectures in 
Figure 3.1 and [12] delivers in detail the proof of validation of 
this method. This algorithm implementation resulted in use of 
two carry-propagate adders and a Multiplexer and is considered 
to be  appropriate for FPGAs. 

 
Algorithm 3.1 Addition Modulo m. 

 

Determine k  2
k-1

 < m < 2
k 

 Assign s0 ← x + y 

Assign s1 ← (s0 mod 2
k
) + 2

k
 − m 

 if  the carry-out bit of s0 or s1 is one then 

 (x + y) mod m ← s1 mod 2
k
 

 else 

 (x + y) mod m ← s0 mod 2
k 

 end if 

 
The architecture of implemented algorithm 3.1 is portrayed in 
Figure 3.1. Our proposed modulo addition algorithm leads to 
smallest circuits, in turn reduced overall circuit complexity of 
SEA.   

 

 

 Figure 3.1 

4.  IMPLEMENTATION RESULTS 
The results were derived by synthesizing the algorithm using 
Xilinx ISE 9.2i tool on VIRTEX-4 platform device XC4VLX25 
with speed grade-12 and XC3S1400, SPARTAN-3 platform 

with speed grade -4. XPower Analyzer tool was used to analyze 
the power consumption of the implementation. The 
implementation was done for variants bit data (n) and a 
processor word size (b).  We achieved reduction in number of 
slices (Figure 4.1), high throughputs (Figure 4.2) and increase in 
work frequency (Figure 4.3) in implementation compared to 
implementation of [1]. Throughput /Area ratios are also shown 
in Figure 4.4. Our implementation of SEA exhibited 

consumption of small area and move toward at the cost of 
increased throughput and reduced power consumption as in 
Figure 4.5. As a result, it can be well thought-out as the 
attractive substitute for constrained devices.  
 

  

Figure 4.1 
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Figure 4.2  

 

      

Figure 4.3 

 

     Figure 4.4 

 

Figure 4.5 

5.  CONCLUSION 
SEA was originally proposed for efficient implementation in 
software. Considering the need for efficient implementation in 
hardware, with the new design criteria, it was found to have 
better solutions as compared to software implementation. 
Through the hardware investigation of the SEA, we show that 

this modular symmetric algorithm, targeted for low-resources 
software solutions, can interestingly respond to constrained 
hardware needs. We first demonstrated that the scalability of this 
algorithm can be kept in the hardware description 
language(VHDL). The simple iterative loop design achieves 
interesting performance in area and power reduction, improvise 
throughputs in FPGA.  In addition, we analysed the power 
consumed by the SEA module for different variants in data 

block and word size. It is also significant to highlight a number 
of merits in SEA compared to recent block ciphers, specifically 
its simplicity, scalability(re-implementing SEA for a new block 
size does not necessitate to re-write code), and being a splendid 
design of encryption and decryption.  
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