Skip to main content
Log in

Weakly mixing operators on topological vector spaces

Operadores débil mezclantes en espacios vectoriales topológicos

  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

In this paper we review some known characterizations of the weak mixing property for operators on topological vector spaces, extend some of them, and obtain new ones.

Resumen

En este artículo revisamos algunas caracterizaciones conocidas de la propiedad débil mezclante para operadores en espacios vectoriales topológicos, extendemos alguna de ellas, y obtenemos otras nuevas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E., (1997). Recurrence in topological dynamics. Furstenberg families and Ellis actions, Plenum Press, New York.

    MATH  Google Scholar 

  2. Ansari, S. I., (1995). Hypercyclic and cyclic vectors, J. Funct. Anal., 128, 374–383.

    Article  MATH  MathSciNet  Google Scholar 

  3. Ansari, S. I., (1997). Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal., 148, 384–390.

    Article  MATH  MathSciNet  Google Scholar 

  4. Badea, C. and Grivaux, S., (2007). Unimodular eigenvalues, uniformly distributed sequences and linear dynamics, Adv. Math., 211, 766–793.

    Article  MATH  MathSciNet  Google Scholar 

  5. Badea, C.; Grivaux, S. and Müller, V., (2009). Multiples of hypercyclic operators, Proc. Amer. Math. Soc., 137, 1397–1403.

    Article  MATH  MathSciNet  Google Scholar 

  6. Banks, J., (1999). Topological mapping properties defined by digraphs, Discrete Contin. Dyn. Systems, 5, 83–92.

    Article  MATH  Google Scholar 

  7. Bayart, F. and Grivaux, S., (2006). Frequently hypercyclic operators, Trans. Amer. Math. Soc., 358, 5083–5117.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bayart, F. and Matheron, É., (2007). Hypercyclic operators failing the hypercyclicity criterion on classical Banach spaces, J. Funct. Anal., 250, 426–441.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bayart, F. and Matheron, É., (2009). (Non-)weakly mixing operators and hypercyclicity sets, Ann. Inst. Fourier (Grenoble), 59, 1–35.

    MATH  MathSciNet  Google Scholar 

  10. Bayart, F. and Matheron, É., (2009). Dynamics of linear operators, Cambridge Tracts inMathematics, 179. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  11. Bermúdez, T.; Bonilla, A.; Conejero, J. A. and Peris, A., (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math., 170, 57–75.

    Article  MATH  MathSciNet  Google Scholar 

  12. Bermúdez, T.; Bonilla, A. and Peris, A., (2004). On hypercyclicity and supercyclicity criteria, Bull. Aust. Math. Soc., 70, 45–54.

    Article  MATH  Google Scholar 

  13. Bermúdez, T. and Kalton, N. J., (2002). On the range of operators on von Neumann algebras, Proc. Amer. Math. Soc., 130, 1447–1455.

    Article  MATH  MathSciNet  Google Scholar 

  14. Bernal-González, L., (1999). On hypercyclic operators on Banach spaces, Proc. Amer. Math. Soc., 127, 1003–1010.

    Article  MATH  MathSciNet  Google Scholar 

  15. Bernal-González, L. and Grosse-Erdmann, K.-G., (2003). The hypercyclicity criterion for sequences of operators, Studia Math., 157, 17–32.

    Article  MATH  MathSciNet  Google Scholar 

  16. Bès, J. and Peris, A., (1999). Hereditarily hypercyclic operators, J. Funct. Anal., 167, 94–112.

    Article  MATH  MathSciNet  Google Scholar 

  17. Bonet, J., (2000). Hypercyclic and chaotic convolution operators, J. Lond. Math. Soc. (2), 62, 253–262.

    Article  MATH  MathSciNet  Google Scholar 

  18. Bonet, J.; Frerick, L.; Peris, A. and Wengenroth, J., (2005). Transitive and hypercyclic operators on locally convex spaces, Bull. Lond. Math. Soc., 37, 254–264.

    Article  MATH  MathSciNet  Google Scholar 

  19. Bonet, J.; Martínez-Giménez, F. and Peris, A., (2001). A Banach space which admits no chaotic operator, Bull. Lond. Math. Soc., 33, 196–198.

    Article  MATH  Google Scholar 

  20. Bonet, J. and Peris, A., (1998). Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal., 159, 587–595.

    Article  MATH  MathSciNet  Google Scholar 

  21. Bourdon, P. S., (1993). Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc., 118, 845–847.

    MATH  MathSciNet  Google Scholar 

  22. Conejero, J. A.; Müller, V. and Peris, A., (2007). Hypercyclic behaviour of operators in a hypercyclic C 0-semigroup, J. Funct. Anal., 244, 342–348.

    Article  MATH  MathSciNet  Google Scholar 

  23. Conejero, J. A. and Peris, A., (2005). Linear transitivity criteria, Topology Appl., 153, 767–773.

    Article  MATH  MathSciNet  Google Scholar 

  24. Conejero, J. A. and Peris, A., (2009). Hypercyclic translation C 0-semigroups on complex sectors, Discrete Contin. Dyn. Syst., 25, 1195–1208.

    Article  MATH  MathSciNet  Google Scholar 

  25. Costakis, G. and Hadjiloucas, D., (2009). The hypercyclicity criterion and hypercyclic sequences of multiples of operators, J. Operator Theory, 62, 341–355.

    MATH  MathSciNet  Google Scholar 

  26. Costakis, G. and Sambarino, M., (2004). Topologically mixing hypercyclic operators, Proc. Amer. Math. Soc., 132, 385–389.

    Article  MATH  MathSciNet  Google Scholar 

  27. De La Rosa, M. and Read, C., (2009). A hypercyclic operator whose direct sum T ⊕ T is not hypercyclic, J. Operator Theory, 61, 369–380.

    MATH  MathSciNet  Google Scholar 

  28. Desch, W. and Schappacher, W., (2005). On products of hypercyclic semigroups, Semigroup Forum, 71, 301–311.

    Article  MATH  MathSciNet  Google Scholar 

  29. Desch, W. and Schappacher, W., (2006). Discrete subsemigroups of hypercyclic C 0-semigroups are hypercyclic, Ergodic Theory Dynam. Systems, 26, 87–92.

    Article  MATH  MathSciNet  Google Scholar 

  30. Furstenberg, H., (1967). Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1, 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  31. Glasner, E., (2003). Ergodic theory via joinings, Mathematical Surveys and Monographs, 101, American Mathematical Society, Providence, RI.

    Google Scholar 

  32. Godefroy, G. and Shapiro, J. H., (1991). Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., 98, 229–269.

    Article  MATH  MathSciNet  Google Scholar 

  33. Grivaux, S., (2005). Hypercyclic operators, mixing operators, and the bounded steps problem, J. Operator Theory, 54, 147–168.

    MATH  MathSciNet  Google Scholar 

  34. Grosse-Erdmann, K.-G., (1999). Universal families and hypercyclic operators, Bull. Amer.Math. Soc. (N.S.), 36, 345–381.

    Article  MATH  MathSciNet  Google Scholar 

  35. Grosse-Erdmann, K.-G., (2003). Recent developments in hypercyclicity, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 97, 273–286.

    MATH  MathSciNet  Google Scholar 

  36. Grosse-Erdmann, K.-G. and Peris, A., (2005). Frequently dense orbits, C. R. Math. Acad. Sci. Paris, 341, 123–128.

    MATH  MathSciNet  Google Scholar 

  37. Grosse-Erdmann, K.-G. and Peris, A.. Linear Chaos, Universitext, Springer-Verlag (to appear).

  38. Kitai, C., (1982). Invariant Closed Sets for Linear Operators, Ph. D. thesis, Univ. of Toronto.

  39. Leó N-Saavedra, F., (2003). Notes about the hypercyclicity criterion, Math. Slovaca, 53, 313–319.

    MathSciNet  Google Scholar 

  40. Leó N-Saavedra, F. and Müller, V., (2004). Rotations of hypercyclic and supercyclic operators, Integral Equations Operator Theory, 50, 385–391.

    Article  MathSciNet  Google Scholar 

  41. Martí Nez-Giménez, F. and Peris, A., (2003). Universality and chaos for tensor products of operators, J. Approx. Theory, 124, 7–24.

    Article  MathSciNet  Google Scholar 

  42. Moothathu, T. K. S., (2009). Weak mixing and mixing of a single transformation of a topological (semi)group, Aequationes Math., 78, 147–155.

    Article  MathSciNet  Google Scholar 

  43. Peris, A., (2005). Topologically ergodic operators, Function Theory on Infinite Dimensional Spaces IX, Madrid. http://www.mat.ucm.es/~confexx/web confe 05/index.htm

  44. Peris, A. and Saldivia, L., (2005). Syndetically hypercyclic operators, Integral Equations Operator Theory, 51, 275–281.

    Article  MATH  MathSciNet  Google Scholar 

  45. Rezaei, H. and Yousefi, B., (2006). Conditions for hypercyclicity criterion, Int. J. Contemp. Math. Sci., 1, 99–107.

    MATH  MathSciNet  Google Scholar 

  46. Wengenroth, J., (2003). Hypercyclic operators on non-locally convex spaces, Proc. Amer. Math. Soc., 131, 1759–1761.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Manuel Valdivia on the occasion of his 80th birthday

Submitted by Fernando Bombal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosse-Erdmann, KG., Peris, A. Weakly mixing operators on topological vector spaces. RACSAM 104, 413–426 (2010). https://doi.org/10.5052/RACSAM.2010.25

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.5052/RACSAM.2010.25

Keywords

Mathematics Subject Classifications

Navigation