

Magnesium ion effect in the process of lithium migration in salt lake

Xin Liu^{a,b,c,d,†}, Yanfang Ma^{b,c,d,*}, Guojian Liu^e, Shaoji Xiang^{d,f}, Zhenhua Cui^{d,f}

^aUniversity of Chinese Academy of Sciences, Beijing 100190, China, email: liuxin192@mails.ucas.ac.cn (X. Liu)

^bKey Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes,

Chinese Academy of Sciences, Xining 810008, China, email: mayanfang@isl.ac.cn (Y. Ma)

^cKey Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810008, China

^dInnovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China,

emails: xiangshaoji@163.com (S. Xiang), cuizhenhua@sioc.ac (Z. Cui)

^eQinghai Salt Lake Magnesium Co., Ltd., Geermu, Qinghai 81099, China, emails: 2298198658@qq.com

^fKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China

Received 10 September 2021; Accepted 30 December 2021

ABSTRACT

The Mg/Li ratio is an important factor in the extraction of Li⁺ from salt lake brine. Since Mg²⁺ can exist by competing with Li⁺ in the carbonate phase, the cost and energy consumption of Li extraction from salt lakes, is directly affected by the ratio. This article considers the influence of different content of Mg²⁺ on Li₂CO₃ crystal in Na⁺, Li⁺, CO₃²⁻//H₂O crystallisation system. In the experiment and calculation simulations, the morphology, particle size and purity of Li₂CO₃ crystals under various Mg/Li ratios were studied. We analysed the mechanism of Mg²⁺ in the Li₂CO₃ crystallisation system, and established the governing equation in relation to the Mg²⁺ content and specific surface area. This research provides theoretical guidance for improving the utilisation rate of Li resources and strengthening the Li₂CO₃ crystallisation process in salt lakes.

Keywords: Salt lake; Li₂CO₃; Mg²⁺; Specific surface area; Adsorption and doping; Density functional theory

* Corresponding author.

⁺ Co-first author.

1944-3994/1944-3986 © 2022 Desalination Publications. All rights reserved.