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ABSTRACT
Joining streams is an essential and resource-demanding oper-
ation in stream processing engines (SPEs). Recent works have
shown significant performance benefits by offloading stream-join
processing to hardware accelerators, including GPUs. As a result,
a wide variety of GPU-accelerated stream join algorithms (SJAs)
have emerged. However, existing works evaluate the proposed
GPU-accelerated SJAs only in isolation, on different hardware,
and not using a common workload. As a result, it is difficult
to compare different SJAs and select the best-suited SJA for a
particular situation.

In this paper, we shed light on the performance characteristics
of GPU-accelerated SJAs. To this end, we explore the configura-
tion parameter space of SJAs and investigate the impact of each
parameter. We evaluate the performance of well-known SJAs
under multiple configurations of the underlying join algorithm,
the parallelization strategy, the algorithm progressiveness, and
the GPU type. Our results show that each variant of SJA has its
strengths and weaknesses and that ill-suited configurations of
parameters lead to up to two orders of magnitude difference in
throughput. Based on the results, we developed a guideline for
selecting SJA variants for different circumstances.

1 INTRODUCTION
Modern data analytic workloads, such as traffic analysis [8], sys-
tem monitoring [12], online advertisement [1], and managing
user engagement in online games [14] leverage event streams
originating from multiple sources to produce rich analyses. To
this end, the underlying analytic pipeline needs to join these
event streams before processing them further. State-of-the-art
stream processing engine (SPE) provide the stream join operator
to accomplish such operation [4] [34] [29]. However, their scale-
out solution does not exploit the underlying hardware efficiently
in facing the increasing rate of data streams [35].

Recently, the research community has investigated different
methods to scale stream join computation using Graphic Process-
ing Units (GPUs) [15, 18, 19, 23, 38]. However, existing works
evaluate their algorithm in isolation. Thus, it is difficult to com-
pare the results of different papers. In turn, it is unclear which
algorithm is the best under which circumstances.

In the following, we identify three issues that hinder us from
comparing SJAs proposed in previous works.
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Table 1: Different stream join workloads in related works.

Related
Work

Join
Predicate

Window
Type

Window
Measure

HELLSJoin [15] Band Join Sliding Time-based
SABER [18] Theta Join Tumbling Count-based
EPHSA [19] Theta Join Sliding Count-based
FineStream [38] Theta Join Tumbling Count-based
EcoJoin [23] Equi Join Interval Time-based

Table 2: Evaluation parameters used in related works.

Related
Work

Window Size
Scaling

Batch Size
Scaling

Comparison
with CPUs

HELLSJoin [15] Yes No Yes
SABER [18] No Yes No
EPHSA [19] Yes No Yes

FineStream [38] No No No
EcoJoin [23] No Yes Yes

Lack of a comparable workload. First, existing works use
different stream join workloads, as shown in Table 1. Existing
works evaluate workloads with different combinations of join
predicates, window types, and window measures. In terms of
join predicate, existing works use band-joins, theta joins, or equi-
joins. In terms of window type, they use either a sliding window,
tumbling window, or interval window. Existing works also evalu-
ate different window measures, including time- and count-based
windows. Different workloads have different semantics, and thus
their performance comparison is not meaningful.

Unsystematic evaluation of the configuration param-
eter space of SJA. Second, existing works evaluate different
parameters to demonstrate the performance of their algorithm.
In Table 2, we list the experiment parameters evaluated in ex-
isting work. Only HELLSJoin [15] and EPHSA [19] investigate
varying window sizes. Concerning batch size, only SABER [18]
and EcoJoin [23] explore its impact on the performance of their
algorithm. Finally, only HELLSJoin [15] and EPHSA [19] are con-
cerned with the performance comparison of their algorithm to a
single-threaded implementation of stream join on CPUs. Thus,
each evaluation only shows us a snapshot rather than an overarch-
ing view of the performance characteristics of SJAs. Furthermore,
existing works also do not consider other parameters that could
affect the performance of a stream join implementation, such as
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Table 3: Metrics measured in related works.

Related Work Measured Metric

HELLSJoin [15] Latency
SABER [18] Throughput and Latency
EPHSA [19] Relative Speedup to CPU-based Approaches

Finestream [38] Latency, Price-Throughput Ratio
EcoJoin [23] Throughput, Latency, Energy Consumption

the distribution of the join keys, the number of distinct keys, the
parallelization strategy, and the progressiveness of the algorithm.
Hence, the configuration parameter space and the robustness of
the proposed GPU-accelerated SJAs are unclear.

Missing or incomparable performance metric. Third, ex-
isting works in GPU-accelerated SJAs report varying perfor-
mancemetrics, as listed in Table 3. These metrics include through-
put, latency, relative speed-up, price-throughput ratio, and energy
consumption. However, existing works use different combina-
tions of these metrics. Thus, it is difficult to compare the reported
performance of the proposed SJAs

OurContribution. In this paper, we shed light on performance-
impacting factors of GPU-accelerated SJAs and enable compari-
son of different variants of SJAs through a structured experiment
and analysis. In particular, we make the following contribution.

(1) We describe the configuration parameter space of GPU-
accelerated SJAs, which includes the choice of the un-
derlying join algorithm, the progressiveness mode of an
SJA, the parallelization strategy, and the type of GPUs to
execute an SJA.

(2) To reduce the complexity of exploring the configuration
parameter space, we develop a general and extensible
benchmarking framework for SJAs. We make our bench-
marking framework available in our repository to allow
further extension.

(3) We reveal the performance implications of each parameter
and examine their performance-limiting factors.

(4) We create a clear guideline for choosing the best SJA for a
given use case.

We organize the remainder of this paper as follows. We first
recap the fundamentals of stream joins and query processing on
GPUs in Section 2. In Section 3, we describe our experimental
methodology and approach for conducting the experiments and
analysis. We present the results of our experiments and give an
interpretation in Section 4. In Section 5, we present a holistic dis-
cussion of all experimental results and provide a recommendation
on how to choose a variant of SJA for a certain circumstance. We
list out related works in Section 6. Finally, we provide an overall
conclusion of our paper and potential future work in Section 7.

2 BACKGROUND
In this section, we introduce the semantics and the design space
of stream join algorithms (Sec. 2.1) and provide an overview of
data processing on GPUs (Sec. 2.2).

2.1 Stream Join
A stream join operator processes potentially unbounded streams.
A stream 𝑠 is a sequence of tuples (𝑡1, 𝑡2, ...), where each tuple
is structured according to a given schema T [5]. To find join
matches, an SJA first discretizes the continuous stream 𝑠 into
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Figure 1: Two underlying algorithms to execute stream
join.
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Figure 2: Two strategies for parallelizing stream joins.

finite windows. A window 𝑤𝑖 = 𝑠 ( [𝑏𝑖 , 𝑒𝑖 ]) is a substream of 𝑠 ,
with the tuples 𝑏𝑖 and 𝑒𝑖 located at the beginning and the end
of 𝑤𝑖 in stream 𝑠 [13, 28]. Following Shahvarani et al. [27], we
denote a stream join operation as 𝑤𝑙

𝑖
⊲⊳𝜃 𝑤

𝑟
𝑗
, where 𝑤𝑙

𝑖
and 𝑤𝑟

𝑗

are windows in two streams 𝑠𝑙 and 𝑠𝑟 , and 𝜃 is the join predicate.
An SJA emits all pairs (𝑝𝑙

𝑖
, 𝑝𝑟

𝑗
) as join results such that 𝑝𝑙

𝑖
∈ 𝑤𝑙

𝑖

and 𝑝𝑟
𝑗
∈ 𝑤𝑟

𝑗
and the predicate 𝜃 is satisfied. We can characterize

an SJA by its underlying join algorithm, parallelization strategy,
and progressiveness mode.

2.1.1 Join Algorithm. The underlying join algorithm defines
the logic to find join matches in two streams. To this end, existing
SJAs discretize the join evaluation of unbounded streams in win-
dows. Thus, the join state and the join evaluation of a window
are independent of other windows. In the case of Streaming Hash
Join (SHJ) (Figure 1a), the algorithm first builds a hash table using
tuples from one stream source in each window[23]. Subsequently,
it probes the hash table using tuples from the other stream source
in the same window to find join matches. In the case of Stream-
ing Sort-Merge Join (SSMJ) (Figure 1b), the algorithm first sort
the tuples from both stream sources in each window and then
find join matches by scanning the sorted tuple from both stream
sources in the same window [7, 39].

2.1.2 Parallelization Strategy. An SPE can execute stream
join workloads using three different parallelization strategies,
i.e., intra-window parallelization, inter-window parallelization,
and hybrid window parallelization. With the intra-window paral-
lelization strategy (Figure 2a), an SPE employs multiple threads
to evaluate a single window and execute subsequent windows
sequentially. This strategy is common in existing stream join al-
gorithms [15, 18, 19, 23, 39]. Alternatively, with the inter-window
parallelization strategy (Figure 2b), an SPE utilizesmultiple threads
to evaluate joins on different windows at a time. Each thread is
responsible for the execution of a window. Third, an SPE can
combine intra and inter-window parallelization strategies in a
hybrid strategy, i.e., executing multiple windows simultaneously,
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each utilizing multiple threads. The choice of which strategy to
choose may impact the performance of the SJA.

2.1.3 Algorithm Progressiveness. Depending on how SJAsmake
progress in delivering stream join results, we can characterize
SJAs to two different progressiveness modes [39]. First, in the lazy
mode (Figure 3), an SJA buffers incoming tuple until it reaches
a trigger to evaluate the join operation, e.g., when the window
is closed in the case of a tumbling window (i.e., a consecutive
and non-overlapping windows of equal size [31]). Thus, it results
in a latency between the tuples’s arrival and the join evaluation.
However, this characteristic allows SJAs to evaluate the join on
a larger granularity.

Second, in the eager mode (Figure 4), an SJA starts producing
results as soon as a tuple (or a batch of tuples) arrives at the sys-
tem. To this end, SJAs with eager progressiveness mode perform
symmetric operations on both sides to find join matches [28, 32].
As a result, the eager progressiveness mode minimizes the la-
tency between arrivals and the join execution of the tuples. This
characteristic is advantageous for cases such as interactive ap-
plications [20], data visualization [7], and when operating on
unreliable infrastructures [24]. However, the eager mode also
triggers more function invocations to find join matches.

2.2 Query Processing on GPUs
A data processing system has to address challenges that arise
when utilizing GPUs, including a distinct processing model, in-
terconnect bottleneck, and large configuration space.

A Different Hardware Architecture. GPUs have a different
architecture and design trade-off compared to CPUs. CPUs lever-
age complex microarchitecture features (e.g., branch prediction,
speculative execution, out-of-order execution) to optimize the la-
tency of few, usually compute-intensive threads [25]. In contrast,
GPUs provide high throughput by exploiting explicit data par-
allelism. To this end, GPU architectures feature a large number
of simple processing cores compared to CPUs. Latency hiding in
GPUs is enabled by oversubscriptions of threads, i.e., allowing a
single streaming multiprocessor (SM) to manage the execution
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Figure 5: A benchmarking framework for SJAs.

of many threads. The capability to store states of threads in (rel-
atively) large SM registers allows the GPU to switch between
threads with low overhead compared to CPUs [25].

Interconnect Bottleneck. Data processing on the GPUs in-
volves transferring the input data to the GPU and transferring
the output back from the GPU through an interconnect. In the
case of PCI-E 3.0 interconnect, the bandwidth is smaller than
the system’s main memory and GPU memory bandwidth. Thus,
the data transfer through interconnects with small bandwidth
becomes one of the major bottlenecks in GPU-accelerated data
processing systems [3, 21, 22].

Furthermore, GPUs have smaller memory capacity compared
to CPUs [3, 21, 25]. A single high-end GPU (e.g., Nvidia V100)
has only up to 32GB of memory. Processing data larger than
GPU memory requires spilling the data to the host memory. This
process triggers more data movement between the GPU and
system’s main memory [21].

Large Configuration Space. GPUs have multiple parame-
ters that must be configured appropriately before executions,
e.g., grid sizes, block sizes, and amount of shared memory per
block. The configuration may vary depending on the type of
each executed workload. Furthermore, the best configuration for
a type of GPU hardware may not translate well to other types
of GPUs, e.g., between dedicated GPUs (dGPU) and integrated
GPUs (iGPUs) [26].

3 METHODOLOGY
In this section, we describe our benchmarking framework (Sec. 3.1),
the performance metrics (Sec. 3.2), default parameters (Sec. 3.3),
and the hardware setup (Sec 3.4).

3.1 Benchmarking Framework
As no common framework exists for evaluating different SJAs,
we develop an extensible stream join benchmarking framework.
We illustrate our benchmarking framework in Figure 5. We aim
to provide a benchmarking framework that delivers accurate,
precise, reproducible results and is extensible to future SJAs. Thus,
we design our benchmarking framework to fulfill the following
goals.

Low Overhead. Our benchmarking framework separates the
data generator 1a from the processing engine 1b to isolate the
measurement of the performance of the evaluated SJA. Our data
generator initializes a buffer of event streams and stores them
in the main memory. Thus, it does not incur memory allocation
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and data generation overhead during executions of SJAs. To
produce a streaming workload, our data generator continuously
pushes a batch of pre-generated event streams to the window
manager in the processing engine. The window manager 1c
is responsible for assigning the incoming tuples to a window.
We store the assignment of tuples to windows in a queue for
bookkeeping. The window manager handles the incoming tuple
in two different ways. First, for SJAs that do not require buffering,
e.g., SJAs with the eager progressiveness mode (see Section 4.3),
the window manager updates the assignment of windows and
forwards incoming tuples directly to the SJA. Second, for SJAs
that require buffering, the window manager uses two circular
buffers, i.e., one for each join side, to store the incoming tuples
temporarily. In this case, the assignment contains the index of the
circular buffer. SJAs utilize these indexes to read event streams
to join from the circular buffer. When a window is expired, the
window manager pops the indexes of circular buffers belonging
to the window from the queue, i.e., allowing the next incoming
tuples to write in those buffers.

Reusable Components.We design our benchmarking frame-
work to be extensible and allow for evaluations of different SJAs
on common ground. To this end, we decouple the implementation
of SJAs from the processing engine using an abstract interface 2 .
Each concrete SJA implements abstract methods to produce join
results from the given input. This abstraction makes our bench-
marking framework independent of the implementation of the
SJA, e.g., with regard to the target hardware.

In Figure 6 we show the abstract interface of SJAs in our bench-
marking framework. In particular, we emphasize two important
aspects. First, our benchmarking framework features a generic
Base Window Manager that provides two interfaces to receive
Left and Right tuples from the stream during runtime. With this
interface, we can implement different kinds of windowing logic.
Our Window Manager also contains a pointer to an implemen-
tation of an SJA, from which it can invoke the join evaluation.
Second, our generic SJA interface provides an execute() method
that accepts arrays of Left and Right tuples (i.e., collected by the
WindowManager). In the case of a GPU implementation, it copies
these arrays to the GPU memory and performs the join opera-
tion. This interface allows us to implement different operations
required by an SJA to produce join results, such as managing
join states. At the end of the operation, it returns the number of
join matches and the actual result tuples (i.e., containing the join
keys and the payload from both sides).

We publish our benchmarking framework in our code repos-
itory1. Thus, allowing for further extension of the benchmark
by evaluating custom SJAs, custom windowing logic, or experi-
menting with different execution environments.

Configurable Query and Data Characteristics. To inves-
tigate the behavior of each SJA under different circumstances,
we design the query and data characteristics used in the bench-
mark to be configurable. To this end, we parameterize the stream
characteristics 3a , including the number of distinct keys and
the key distribution for the generated data. In terms of query
characteristics 3b , we design our window manager to accept
different window sizes.

Result Verification. Each join implementation has access to
the sink 4 . The sink contains a match counter and an output
buffer that can be modified by an SJA implementation. Thus, we

1https://github.com/TU-Berlin-DIMA/gpu-stream-join-benchmark

Table 4: Default data and query characteristics.

Parameter Domain Default Value

Number of Distinct Keys Integer 1000
Zipf Exponent Float 0
Batch Size (in KB) Integer 128 KB

Window Size (in MB) Integer 1 MB

Table 5: Default parameters for SJA configuration.

Parameter Domain Default Value

Join Algorithm {Nested Loop Join, Hash
Join, Sort-Merge Join} Hash Join

Parallelization
Strategy

{Inter-Window, Intra-
Window, Hybrid} Inter-Window

Progressiveness {Lazy, Eager} Lazy

Result
Materialization

{No Materialization,
Count-Kernel,Atomic,
Estimated Selectivity}

No
Materialization

can verify the correctness of an SJA by comparing the produced
tuples with the expected result.

3.2 Performance Metrics
In this paper, we consider four metrics for comparing SJAs. First,
we measure the maximum sustainable throughput of each join
algorithm. Karimov et al. [14] define the maximum sustainable
throughput as the highest load the system can handle without
inducing backpressure. Second, we measure the average window
processing time, i.e., the time an algorithm requires to fully com-
pute the join matches on a single window. Third, we measure the
progressiveness of SJAs. To this end, we measure the cumulative
percentage of produced tuples over time. Fourth, we also measure
the energy efficiency of the SJAs.

3.3 Default Parameters
Based on our exploratory evaluations, we define several default
parameters used in our experiments as we show in Table 4 and
Table 5. We set the default batch size to 128KB (i.e., 8000 tuples),
the default number of distinct keys to 1000, and the default key
distribution to uniform (i.e., by setting the Zipf exponent to 0).
We also set the default parallelization strategy to inter-window
parallelization and the default progressiveness mode to the lazy
mode. Except in the result materialization experiment (Sec 4.5),
we do not write the join matches to the sink’s output buffer and
only count the number of join matches. In our later experiment,
we state which parameters we change and report the impact on
the performance of SJAs. Furthermore, we run our experiment
using tuples generated by our data generator. Each tuple consists
of 4 bytes key, 4 bytes payload value, and 8 bytes timestamp
arranged in a row-oriented layout.

3.4 Hardware
We execute our experiment on a machine with 2x Intel Xeon Gold
5115 processor (2.4Ghz 20 cores, with Intel Hyper-Threading
Technology) arranged in two sockets, 192 GB of main memory,
and an Nvidia Tesla V100 with 16GB GPU memory. We also
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<<<abstract>>>
Base Window Manager

# sink:Sink

+ onIncomingLeft(b: Batch)
+ onIncomingRight(b: Batch)

Lazy Windowing

# joiner: LazyJoiner [..* ]

+ onIncomingLeft(b: Batch)
+ onIncomingRight(b: Batch)
+ evaluate()

Eager Windowing

# joiner: EagerJoiner [..* ]

+ onIncomingLeft(b: Batch)
+ onIncomingRight(b: Batch)

Lazy-GPU-SHJ

- GPUHashTable: Tuples: Tuples[..* ]

+ execute(l: Tuples[..* ], r: Tuples[..* ], s: 
Sink)

Lazy-GPU-SMJ

- SortedLeftTuples: Tuples [..* ]
- SortedRightTuples: Tuples [..* ]

+ execute(l: Tuples[..* ], r: Tuples[..* ], s: 
Sink)

<<<abstract>>>
BaseJoiner

+ execute(l: Tuples[..* ], r: Tuples[..* ], s: 
Sink)

Figure 6: Windowing and SJA interface in our benchmarking framework.

execute several experiments on an Nvidia Jetson AGX Xavier
with 512 CUDA cores and 4GB memory. We compile our bench-
marking framework using g++ 9.3.0 and run the experiment on
Ubuntu 22.04 LTS with CUDA Toolkit 11.7.

4 EVALUATION
In this section, we evaluate the impact of different parameters on
the performance of SJAs. In particular, we evaluate the impact
of data stream characteristics on different underlying join algo-
rithms (Sec 4.1), the impact of parallelization strategies (Sec 4.2),
the impact of algorithm progressiveness (Sec 4.3), the energy
efficiency (Sec 4.4) and result materialization method (Sec 4.5). In
addition, we also evaluate state-of-the-art GPU-accelerated SJAs
using our benchmarking framework in Section 4.6.

4.1 Join Algorithm
The different underlying operations of SHJ and SSMJ make the
two algorithms sensitive to different workload characteristics.
Although there have been numerous works that compare the
performance of HJ and SMJ for data at rest [2, 9, 17], the evalu-
ation in previous work for streaming fashion [39] is limited to
specific cases. Hence, in this section, we conduct a more in-depth
investigation into the impact of varying data characteristics on
the performance of SHJ and SSMJ. In particular, we evaluate the
impact of numbers of distinct keys (Sec 4.1.1) and skewness (Sec
4.1.2) of the join keys.

4.1.1 Distinct Keys. In this experiment, we evaluate the sen-
sitivity of SHJ and SSMJ to the number of distinct keys in the
streams. To this end, we execute stream join queries on streams
with varying numbers of distinct keys and measure the maxi-
mum sustainable throughput of CPU and GPU variants of SHJ
and SSMJ. In particular, we use distinct key values of 0.1K, 1K,
and 10K keys. Our preliminary experiment shows that the result
of other distinct keys generalizes to these values. In addition,
we run the experiment on different window sizes to vary the
workload size and reveal its performance implications in relation
to the number of distinct keys.

Figure 7 shows the maximum sustainable throughput achieved
by the CPU and GPU variants of the SHJ and SSMJ on differ-
ent numbers of distinct keys. On the x-axis, we show the win-
dow sizes, and on the y-axis, we show the maximum sustainable
throughput of each algorithm. Our observations are as follows.
First, a higher number of distinct keys lead to a higher maximum
sustainable throughput in CPU-SHJ and GPU SHJ. This pattern
is present across different window sizes. When joining streams
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Figure 7: Performance of Hash Join and Sort-Merge Join
on different numbers of distinct keys.

Table 6: Execution time breakdown of GPU-SHJ and GPU-
SSMJ on different numbers of distinct keys.

Distinct
Keys

GPU-SHJ GPU-SSMJ

Build Probe Sort Merge

0.1K 0.84 ms 5.57 ms 1.68 ms 0.05 ms
1K 0.71 ms 0.95 ms 1.51 ms 0.06 ms
10K 0.9 ms 0.33 ms 1.47 ms 0.08 ms

with 10K distinct keys, GPU-SHJ outperforms GPU-SSMJ, i.e.,
achieving up to 9% higher throughput. In contrast, CPU-SSMJ
and GPU-SSMJ tend to achieve similar performance for different
numbers of distinct keys. Second, Figure 7 also shows that using
GPUs does not always lead to a higher sustainable throughput.
For instance, CPU-SSMJ achieves 24 − 33× higher throughput
than GPU-SHJ when processing streams with 100 distinct keys.
Thus, understanding the suitability of an algorithm to the char-
acteristic of the workload is an essential step before offloading
its processing to GPUs. To reveal the driving factors of these
performance characteristics, we break down the execution time
as follows.

Breakdown. Table 6 shows execution time breakdowns of
GPU-SHJ and GPU-SSMJ in processing stream joins with dif-
ferent numbers of distinct keys on a window size of 4 MB. We
observe that GPU-SHJ shows 2.9 − 5.8× longer average probe
time in processing streams with an order of magnitude fewer
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Figure 8: Performance of Hash Join and Sort-Merge Join
for different degrees of skewness.

number of distinct keys. Lower numbers of distinct keys generate
larger buckets, which take longer to probe. In contrast, different
numbers of distinct keys only show a minor impact on the sort
phase of GPU-SSMJ, which takes most of its computation time.

Summary. SSMJ is more robust against the number of
distinct keys compared to SHJ, both in its CPU and GPU
variants. In addition, our experiment also shows that CPU-SSMJ
can reach higher throughput than GPU-SHJ, which indicates that
using GPUs does not always result in better performance. This
finding further emphasizes the importance of understanding the
workload characteristics before offloading stream join workload
to GPUs.

4.1.2 Skewness. In this experiment, we investigate the impact
of different key skewness on the performance of SJAs. To this
end, we vary the skewness of the input stream by choosing dif-
ferent Zipf exponents [10] in our data generator, i.e., higher Zipf
exponents generate more skewed join keys in our input tuples.
Following our preliminary experiment, we set the window size
to 2 MB, i.e., a moderate window size, such that the impact of
window size scaling does not interfere with the impact of skew-
ness. As for the performance metric, we measure the maximum
sustainable throughput achieved by the CPU and GPU variants
of SHJ and SSMJ.

Figure 8 shows the performance comparison of CPU and GPU
variants of SHJ and SSMJ on different degrees of skewness. The
x-axis shows the different Zipf exponent and the y-axis shows the
maximum sustainable throughput achieved by each algorithm.
SSMJ is more robust to skewness in the join key than SHJ in both
CPU and GPU variants. In the case of CPU variants, the through-
put of CPU-SHJ decreases with higher degrees of skewness, i.e.,
from 1.91 GB/s to 0.58 GB/s when the Zipf exponent is increased
from 0.1 to 1. In contrast, the throughput of CPU-SSMJ remains
similar with higher degrees of skewness, i.e., between 3.68 GB/s
at a Zipf exponent of 0.1 and 4.0 GB/s at a Zipf exponent of 1.
In the case of GPU variants, GPU-SHJ and GPU-SSMJ show a
similar pattern to their CPU variants. GPU-SHJ also achieves
lower maximum sustainable throughput on higher degrees of
skewness. However, the throughput drops at a higher rate, i.e.,
from 11.14 GB/s at a Zipf exponent of 0.6 to 4.09 GB/s at a Zipf
exponent of 1. The throughput of GPU-SSMJ remains around 8.75
GB/s throughput different degrees of skewness. In the following,
we break down the execution time of GPU-SHJ and GPU-SSMJ
to further investigate how skewness in the join key impacts the
throughput of the two algorithms.

Breakdown. Table 7 shows the average build and probe time
of GPU-SHJ and the average sort and merge time of GPU-SSMJ.

Table 7: Execution time breakdown for different degrees
of skewness.

Zipf
Exponent

GPU-SHJ GPU-SSMJ

Build Probe Sort Merge

0.1 0.42 ms 0.29 ms 0.82 ms 0.05 ms
0.8 0.45 ms 0.62 ms 0.87 ms 0.05 ms
1 0.50 ms 1.15 ms 0.88 ms 0.05 ms
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Figure 9: Maximum sustainable throughput of the Intra-
Window, the Inter-window, and the Hybrid parallelization
strategies on the CPU.

In GPU-SHJ, the longer average probe time accounts for the lower
maximum sustainable throughput when the distribution of the
join key is skewed. A skewed distribution of join keys leads to
up to 4× higher average probe time on GPU-SHJ, i.e., from 0.29
ms to 1.15 ms with an increase of the Zipf exponent from 0.1 to
1. In this case, a higher number of GPU threads leads to larger
buckets to scan on the probe phase. GPU-SSMJ only shows a
marginal increase in average sort time with higher degrees of
skewness. In particular, an increase of Zipf exponent from 0.1 to
1 only increases the average sort time from 0.82 ms to 0.88 ms.
Thus, the maximum sustainable throughput of GPU-SSMJ drops
at a lower rate compared to GPU-SHJ on increasing degrees of
skewness.

Summary. Different degrees of skewness induce a similar
impact on the performance of SJAs as the impact of different
numbers of distinct keys. Thus, in this case, SSMJ is also more
robust to different degrees of skewness compared to SHJ.
However, SHJ algorithms can outperform SMJ algorithms in spe-
cific use cases, i.e., when the join keys are more uniformly dis-
tributed. Thus, we suggest practitioners to use SHJ for uniformly
distributed keys and use SSMJ when the join keys are skewed.

4.2 Parallelization Strategy
Existing SJAs typically implement the Intra-window paralleliza-
tion strategy, irrespective of the computational workload of the
underlying stream join operation [15, 18, 19, 23, 39]. In this ex-
periment, we compare the performance of the Intra-window
parallelization strategy against two alternatives, i.e., the Inter-
window and the Hybrid parallelization strategies. In particular,
we analyze the throughput of these three parallelization strate-
gies on an increasing window size from 1 MB to 16 MB and using
the default values for other parameters.
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Figure 10: Maximum sustainable throughput of Intra- and
Inter-window parallelization strategies on GPU.

4.2.1 Impact on CPU. Figure 9 shows the performance of the
three parallelization strategies on the CPU. Only using the Intra-
window parallelization strategy prevents the SJA from achieving
higher maximum sustainable throughput on relatively small win-
dows (for example, for a window size of 1MB). In contrast, the
Inter-window parallelization strategy allows the SJA to achieve a
higher throughput on smaller window sizes (i.e., up to 6.0 GB/s),
despite decreasing as the window size increases. The hybrid strat-
egy offers a middle ground. The throughput of the hybrid strategy
on small windows is lower compared to the Inter-window paral-
lelization strategy, i.e., 3.0 GB/s compared to 6.0 GB/s. However,
the throughput of the hybrid strategy decreases at a slower rate
compared to the Inter-window parallelization strategy as the
window size increases. Thus, at window sizes of 4MB and 8MB, it
achieves the highest maximum sustainable throughput compared
to the Inter-window and Intra-window parallelization strategies.

4.2.2 Impact on GPU. State-of-the-art GPU-accelerated SJAs
parallelize their computation on the GPU by employing the Intra-
window parallelization strategy [15, 18, 19, 23, 39]. However, as
an alternative, we can also use the Inter-window parallelization
strategy to preemptively collect tuples belonging to a window
and transfer the tuples to the GPU memory. Thus, the GPU can
immediately evaluate the stream join on one window after an-
other.

In Figure 10, we show the performance of the Intra-window
and the Inter-window parallelization strategies on GPU. The
Intra-window strategy only accelerates the SJA in one dimension,
i.e., by shortening the window processing latency. As a result, the
Intra-window parallelization strategy on GPU achieves 4.7−8.6×
higher throughput compared to on CPU. However, the advantage
diminishes as the window size gets smaller. At a window size
of 1 MB, the throughput of the Intra-window parallelization
strategy on GPU is even lower than on CPU with the Inter-
window parallelization strategy, i.e., reaching only 5.25 GB/s
compared to 6.0 GB/s.

In contrast, applying the Inter-window parallelization strategy
allows optimization on another dimension. In the case of the
Inter-window parallelization strategy, we allow the SJA to utilize
all CPU threads to collect incoming tuples for a window and
transfer it to the GPU while the GPU evaluates the kernel of
other windows. As a result, the inter-window parallelization
strategy achieves 1.2× to 1.86× higher throughput compared
to the Intra-window parallelization strategy. This optimization
is especially important in the case of small windows when the
transfer and the computation take a similar time. In the case of
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Figure 11: Result production time of the Lazy and the Eager
progressiveness modes.
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Figure 12: Cumulative percentage over an extended dura-
tion of stream.

the Intra-window parallelization strategy, this optimization is
not possible as we only have a single thread receiving tuples and
performing the windowing logic.

Summary. Our experiment shows that only using the Intra-
window parallelization strategy without considering the com-
putational workload leads to suboptimal performance.The Inter-
windowparallelization strategy allows us to optimize stream
join on small windows.When a GPU is available, we recom-
mend offloading the Intra-window processing to the GPU as
performed in state-of-the-art SJA in conjunction with the inter-
window parallelization strategy to prevent the GPU from waiting
for data to process.

4.3 Progressiveness Modes
In this section, we analyze to which extent the frequency of
function invocation impacts the performance of SJAs. To this
end, we run an experiment by executing a stream join workload
using SHJ in the Eager and Lazy progressiveness modes. We
implement a CPU and a GPU version for each mode, i.e., totaling
four different variants: CPU-Lazy, CPU-Eager, GPU-Lazy, and
GPU-Eager. All variants use intra-window parallelization, as the
Eager mode only allows SJAs to operate on one active window
at a time. We set other parameters to default and measure the
cumulative percentage of produced join matches over time and
the maximum sustainable throughput.

Figure 11 illustrates the impact of progressiveness mode on
the cumulative percentage of produced join results over time
for a single window. SJAs with the Eager progressiveness mode
produce join results each time they receive a batch of tuples. In
contrast, SJAs with the Lazy progressiveness mode wait for the
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Figure 14: Kernel execution time breakdown of SJAs with
the lazy and eager progressiveness mode.

entire tuples of the window to arrive and produce the join results
once. Thus, we show it as a single point in the figure. Despite
starting later than the Eager mode, the Lazy mode finishes the
join computation of all tuples in the window earlier. Specifically,
the CPU-Lazy takes 3.59 ms and CPU-Eager takes 4.38 ms, while
GPU-Lazy takes 0.93 ms and GPU-Eager takes 1.56 ms.

In Figure 12 and 13, we scale our experiment on a longer dura-
tion of the stream. Our observations are twofold. First, the impact
of progressiveness modes on the cumulative percentage of pro-
duced join results is greater, especially on the GPU, as we show in
Figure 12. In this case, the number of join invocations in the Eager
mode is even more frequent. Second, the more frequent kernel
invocation on the Eager mode also leads to a lower maximum
sustainable throughput on the GPU, as we show in Figure 13.
GPU-Lazy achieves 3.56× higher throughput compared to GPU-
Eager. In contrast, the throughput of CPU-Lazy and CPU-Eager
are similar. To further study the reasons behind this pattern, we
break down the execution time of GPU-Eager and GPU-Lazy as
follows.

Figure 14 shows the total and average kernel execution time
of GPU-Eager and GPU-Lazy. The join kernels of GPU-Lazy
exhibit a longer average execution time than GPU-Eager due to
performing build and probe operations at the window granularity.
In contrast, GPU-Eager performs build and probe operations at
the batch granularity, resulting in a lower average execution
time. However, since GPU-Eager needs to perform more kernel
invocations to produce all join results for the window, i.e., 2 ∗
𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒/𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 (as it performs a symmetric hash join),
its shorter average kernel execution time is not sufficient to
compensate for the higher number of invocations it generates.
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Figure 15: Impact of batch sizes to kernel execution.

Consequently, the total time of GPU-Eager is longer than that of
GPU-Lazy.

In Figure 15, we extend this breakdown experiment on GPU-
Eager with varying batch sizes, i.e., from 32 KB to 512 KB. Smaller
batch sizes lead to shorter average kernel execution times, as it
needs to process less number of tuples. However, smaller batch
sizes require GPU-Eager to perform more kernel invocations.
Similar to the comparison between GPU-Eager and GPU-Lazy,
the shorter kernel execution time cannot compensate for the
growth in the number of kernel invocations. Thus, it leads to a
higher total kernel execution time on smaller batch sizes.

Overall, our findings suggest that a higher frequency of smaller
workloads results in higher join execution latency. This pattern
holds for progressiveness mode and batch sizes and other sources
of small workloads, such as small window sizes. In such cases,
smaller window sizes resemble smaller batches, triggering more
invocations and leading to higher latency.

Summary. We show that early results generated by the
Eager progressiveness mode come at the price of a longer
window processing time and a lowermaximum sustainable
throughput. In addition, our results also detail the impact of
progressiveness modes on SJAs’ throughput and cumulative per-
centage of produced join results in the case of multiple windows.
Thus, it further highlights the throughput difference between the
Eager and the Lazy progressiveness, which was not discussed in
previous work [39]. With this finding, we recommend using the
Lazy progressiveness mode to achieve an overall higher cumu-
lative percentage when executing stream joins and only opt for
the Eager progressiveness mode on specific cases when knowing
the first results of the join is necessary.

4.4 Energy Efficiency
The energy utilization of an algorithm is an important yet chal-
lenging issue. On the one hand, an energy-efficient algorithm
could lead to lower operational costs, e.g., lowers electricity us-
age in a cloud infrastructure [16]. On the other hand, compute
performance are directly proportional to energy utilization, i.e.,
high-energy utilization allows for faster processing [30]. This
characteristic also applies to SJAs. Thus, it is essential to under-
stand the energy efficiency of SJAs, especially when running on
different hardware.

In this section, we investigate the energy efficiency of SJAs
on two different classes of GPUs, i.e., dedicated GPU (dGPU) and
integrated GPU (iGPU). To this end, we run an SHJ algorithmwith
a window size of 1 MB, using an inter-window parallelization
strategy and lazy progressiveness mode. We measure energy
efficiency as the amount of data that can be processed (in GB)
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Figure 16: Energy efficiency and maximum sustainable
throughput on different GPU models.

per one Watt-hour(Wh). We measure the energy efficiency of
an end-to-end stream join within the computing node, including
the CPU, the GPU, and the interconnect between them. We also
set the experiment parameter to allow the SJAs to reach their
maximum sustainable throughput when measuring the energy
efficiency of the SJAs.

Figure 16a shows the total processed data for every Watt-hour
consumed by two GPU models. The Jetson-AGX integrated GPU
produces more processed data per Watt-hour compared to the
V100 dGPU, i.e., 1243.85 GB. In this case, the Jetson-AGX GPU
operates on around 7 Watts to run the workload at its maximum
sustainable throughput. The dedicated GPU, i.e., V100, shows
significantly lower energy efficiency, i.e., 557.28 GB/Watt-hour.
The V100 operates at around 65 Watts to run the workload at
its maximum sustainable throughput. The power at which a
GPU operates further impacts the runtime performance (e.g.,
maximum sustainable throughput) that can be achieved.

Figure 16b shows the throughput achieved by each GPUmodel
on a stream join workload. Despite having lower energy effi-
ciency, the higher power cap in the dedicated GPUs (i.e., 35 Watts
and 65 Watts) compared to iGPU (i.e., 7 Watts) allows them to
spend more Watt-hour in a given period. Consequently, dedi-
cated GPUs achieve a higher maximum sustainable throughput.
Specifically, the V100 achieves 10.0 GB/s. In contrast, the Jetson
AGX can only achieve a maximum sustainable throughput of
1.75 GB/s.

Summary. In summary, iGPU has a higher energy efficiency,
i.e., iGPU can process a higher amount of data per Watt-
hour at the price of lower maximum sustainable through-
put. Thus, iGPUs are suitable for caseswhen the required through-
put is relatively low and when operating on energy-constrained
devices. Conversely, dedicated GPUs deliver a higher maximum
sustainable throughput and are suitable for cases with reliable
energy sources, such as in the cloud environment.

4.5 Result Materialization
Existing GPU-accelerated SJAs employ various result materializa-
tion methods . However, these methods are tightly coupled and
evaluated implicitly with the proposed SJA. Thus, their impact on
the overall performance of the SJA remains unclear. This section
examines how different result materialization methods affect the
overall throughput of SJAs.
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Figure 17: Impact of materialization result methods.

To this end, we implement SSMJ and SHJ using two result ma-
terialization methods, i.e., Count Kernel (𝐶𝐾) and Atomic (𝐴𝑇 ).
In the case of 𝐶𝐾 , the algorithm creates a kernel to count the
number of possible join matches, i.e., using the probe kernel in
SHJ and the merge kernel in the SSMJ. Subsequently, it allocates
an output buffer in the GPU to write the join result, write the
join result to the buffer, and then copy the output buffer to the
main memory. This method is similar to the result materializa-
tion performed in SABER [18]. In 𝐴𝑇 , the algorithm uses atomic
operation to determine the offset in the output buffer to which
it should write the join result. In this case, the output buffer
is located in pinned main memory. Thus it does not explicitly
perform a memory copy to the main memory. In addition, we
implement two baselines in our experiment. First, we implement
No Materialization (𝑁𝑀), which only counts the number of join
matches and does not materialize them. Second, we implement
Estimated Selectivity (𝐸𝑆), which assumes that the join selectivity
is known and thus can be used to estimate the number of join
matches. In this case, 𝐸𝑆 can then directly allocate the output
buffer.

We set the SJA to use inter-window parallelization and lazy
progressiveness mode. We run experiments on increasing win-
dow sizes from 1MB to 4MB and set other parameters to default.

In Figure 17, we show the impact of result materialization
on the maximum sustainable throughput achieved by each SJA
over an increasing window size. Result materialization accounts
for up to three orders of magnitude difference in maximum sus-
tainable throughput. In SHJ, the throughput of the NM variant
ranges between 8.7 GB/s - 11.2 GB/s, while the ES variant, which
adds only the materialization step, can only achieve a maximum
sustainable throughput between 39.9 MB/s - 152 MB/s. Similarly,
the ES variant of SSMJ can only achieve between 39.9 MB/s - 144
MB/s, while the NM variant achieves between 6.1 GB/s - 8.1 GB/s.
The reason is that result materialization requires copying the join
result to a result buffer (i.e., a buffer in the sink of the stream pro-
cessing). The number of join results is significantly higher than
the input, i.e., it can grow to 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 × |𝑊𝑖𝑛𝑑𝑜𝑤 | × |𝑊𝑖𝑛𝑑𝑜𝑤 |.
Hence, as the window size increases, the number of join results
that need to be copied also increases and reduces the overall
throughput of the SJA. Furthermore, in both SHJ and SSMJ, 𝐴𝑇
shows the lowest maximum sustainable throughput. 𝐴𝑇 copies
the same amount of data to the CPU as 𝐸𝑆 and𝐶𝐾 . However, 𝐴𝑇
copies the result at a tuple granularity and thus is inefficient.
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Table 8: Parameters of State-of-the-art SJAs.

SJA Join
Alg.

Par.
Strategy

Progres-
siveness

Result
Materialization

HELLSJoin NLJ Intra Eager Bitmap
SABER NLJ Intra Lazy Count Kernel

FineStream NLJ Intra Lazy Count Kernel
EcoJoin HJ Intra Eager No Materialization
EPHSA HJ Intra Eager Atomic

Figure 17 also shows that the CK the method leads to different
performance patterns in SHJ and SSMJ. Specifically, CK further
lowers the throughput of SHJ but does not impact the throughput
of SSMJ. In SHJ, the probe kernel, which is used to compute the
count of join matches, incurs random reads in the GPU memory
and thus is inefficient as it prevents coalesced access to the GPU
global memory. In contrast, the merge kernel of SSMJ works
on sorted tuples and thus is more efficient and should be used
when the number of join result of the join needs to be deduced as
the stream progress. Thus, besides buffer copying, the inherent
method from the underlying algorithm can further impact the ex-
tent of performance slowdown induced by result materialization.
This finding enriches our understanding of the impact of result
materialization, which is not discussed in prior work [18, 19]

In addition to window size, the selectivity of the join also im-
pacts the number of join matches. Figure 17 shows the maximum
sustainable throughput of SHJ and SSMJ on different selectivities.
A higher selectivity rate produces more join matches to material-
ize. Thus, we observe a similar pattern to Figure 17, i.e., lower the
maximum sustainable throughput as the selectivity increases.

Summary. In summary, join result materialization can
be the bottleneck of SJA as it leads to up to one order of
magnitude lower maximum sustainable throughput. Thus,
considering result materialization and changing data character-
istics, practitioners should use SSMJ with a count kernel, as its
merge kernel is more efficient compared to the probe kernel of
SHJ.

4.6 Evaluating State-of-the-art SJAs
In this section, we model state-of-the-art SJAs using our bench-
marking framework and evaluate the concrete instance of each
model. To this end, parameterize the model by setting the join
algorithm, the parallelization strategy, the progressiveness, and
the result materialization method according to the proposed
approach in the state of the art. In Table 8, we show the pa-
rameter of five state-of-the-art GPU-accelerated SJAs, including
HELLSJoin [15], SABER [18], FineStream [38], EcoJoin [23], and
EPHSA [19]. Each of these states of the arts represents a par-
ticular point in the design space of GPU-accelerated SJA. We
measure the maximum sustainable throughput of each variant
on an increasing window size from 1 MB to 5 MB and set other
parameters to default.

In Figure 18a, we show the performance of state-of-the-art
SJAs without result materialization. In this case, the different
underlying algorithm leads to a major performance difference.
EPHSA and EcoJoin use a hash join, and thus achieve a higher
maximum sustainable throughput, compared to SABER, FineStream,
and HELLSJoin, which are based on a nested loop join. In addi-
tion, the lazy progressiveness of SABER and Finestream leads to
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Figure 18: Maximum sustainable throughput of state-of-
the-art GPU-accelerated SJAs.

a slightly higher throughput compared to the eager progressive-
ness of HELLSJoin, i.e., following our finding in Section 4.3.

Figure 18b shows the performance of state state-of-the-art
SJAs with result materialization. Our observations are as follows.
First, result materialization takes significant processing time on
each SJA and results in orders of magnitude lower maximum sus-
tainable throughput. At a window size of 1 MB, EPHSA sustains
a maximum sustainable throughput of 1.17 GB/s without result
materialization, and only 23.4 MB/s with result materialization.
This result follows our finding in Section 4.5. Second, the choice
of the underlying algorithm provides a higher impact compared
to the result materialization method. Despite using the Atomic
result materialization method, EPHSA, which is based on a hash
join, achieves a higher maximum sustainable throughput com-
pared to SABER and FineStream which are based on nested loop
join and using the count kernel result materialization method.

Summary. In summary, our benchmarking framework
allows us to model state-of-the-art SJAs in the design space
and evaluate them. Our experiment results show that utilizing a
more efficient underlying algorithm leads to higher performance
differences compared to the choice of parallelization strategy and
result materialization methods.

5 DISCUSSION
In this section, we summarize our findings from evaluating SJAs
with different parameters. In particular, we provide a guideline to
select a suitable variant of SJA for a given circumstance (Sec 5.1),
describe our key lessons learned (Sec 5.2), and discuss open chal-
lenges in regarding GPU-accelerated SJAs (Sec 5.3).

5.1 Selecting a Stream Join Algorithm
In Figure 19, we provide a guideline to select a variant of SJA for
a given setup. We decompose the processes of selecting a variant
of SJA into four independent decisions: the progressiveness, the
underlying join algorithm, the parallelization strategy, and the
energy constraint. First, depending on the need for early result
production, we can choose either the eager or the lazy progres-
siveness mode. The eager mode is more suitable than the lazy
mode if the query requires the system to report early results.
Otherwise, we can opt for the lazy progressiveness mode, which
can sustain a higher ingestion rate. Second, we can choose either
SSMJ or SHJ based on the characteristics of the event stream, i.e.,
the number of distinct keys and their distribution. We can choose
the SHJ when processing streams with low numbers of distinct
keys, which are uniformly distributed. In contrast, SSMJ is more
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Figure 19: A guideline on choosing a suitable stream join algorithm.

robust to different numbers of distinct keys and key distribution.
Third, we can choose either intra-window or inter-window paral-
lelization based on whether we target GPUs or CPUs and the size
of the window we are working on. The intra-windows strategy
is suitable when we only use CPUs to process large windows.
Otherwise, choosing the inter-window strategy leads to a higher
maximum sustainable throughput. Fourth, we can use dGPUs to
sustain use cases with high ingestion rates and iGPUs for their
energy efficiency. Furthermore, regarding result materialization,
we recommend using the Count-Kernel method to achieve the
maximum throughput. With the chosen option from each param-
eter, practitioners can then implement an SJA that best suits their
query, data, and hardware characteristics.

5.2 Key Lessons Learned
In the following, we summarize further lessons learned from our
experiments.

(1) GPUs can speed up SJA computation, but not in all
cases. Our evaluation shows that GPUs are a feasible device
to accelerate stream join processing. With the possibility to ex-
ploit both the intra-window and the inter-window parallelization
strategies, GPU variants of SJA achieve up to 1.63× speed-up
compared to the CPU variants. However, frequent kernel invo-
cations, which are the consequence of using small batch sizes,
processing small windows, or using an SJA with eager progres-
siveness mode, lead to lower throughput in GPUs than CPUs.
Therefore, a careful examination of the characteristics of the
workload is an essential step before offloading SJA processing to
GPUs.

(2) SSMJ algorithms are more robust to data characteris-
tics, but SHJ shows a higher peak performance. We observe
that the SSMJ algorithm is more robust to skewed key distri-
bution and a low number of distinct keys in the event stream
compared to SHJ. However, in the case of GPU, our experiment
shows that GPU-SHJ achieves up to 9% higher peak performance
when processing streams with a large number of distinct keys
(i.e., 10K keys).

(3) SJAs with the eager progressiveness mode produce
early results but induce higher processing time. Performing
the join processing tasks as soon as a batch of tuples arrives
allows SJA with the eager progressiveness mode to produce join
results early. Early production of join matches is useful for cer-
tain use cases, such as producing fast visualizations to decide
actions for the rest of the join operation [7]. However, the eager

progressiveness mode also incurs a high cost and thus results
in poor performance, i.e., up to 1.2× longer execution time per
window on CPUs and 1.7× on the GPU.

(4) Edge-grade GPUs achieve a lower throughput but
are more energy efficient. The integrated GPU only achieves a
fraction of the throughput of the dedicated GPU, i.e., by a factor
of 5. However, iGPUs are more energy efficient both during active
executions of stream joins and in idle time. Our experiment shows
that iGPUs could process up to 2.2× data as dGPUs for the same
Watt-hour consumed by the devices.

(5) Result materialization methods account for an order
of magnitude lower maximum sustainable throughput. De-
spite writing the same amount of data, different result materializa-
tion method leads to different degrees of performance overhead.
Our experiment shows that the Count-Kernel method achieves
up to 10.2× a higher throughput than the Atomic method.

5.3 Open Challenges
On top of our findings, the direction of future SJAs on GPUs
should focus on lifting assumptions taken by research proto-
types [15, 18, 19, 23, 38]. Consequently, we should address the
following resulting open challenges to allow swift integration of
GPU-accelerated SJAs into SPEs and tackle real-world problems.

Stream I/O. We should lift the assumption that the event
streams are already present in the system’s main memory. SPEs
typically accept event streams that are ingested through a net-
work interface [4, 34, 36, 37]. The indirect communication be-
tween the network interface and the GPU may prevent us from
supplying the GPU with data to process in a timely manner. Thus,
we need to rethink how to directly ingest even streams to the
GPU to fully reap the benefit of its acceleration.

System Concurrency. We should not assume that an SPE
exclusively runs a single stream join query. Multiple streaming
queries may run indefinitely and share the limited resources on
a GPU. Therefore, we should consider the current system’s load
when parameterizing SJAs on GPUs. Furthermore, we also need
to take care of efficient execution of concurrently running queries
on a system.

Data Arrival Pattern. we should not assume constant char-
acteristics of event streams throughout the lifetime of a query.
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Real-world event streams may continuously change, have a sud-
den burst and drop in their ingestion rate, and arrive in an out-
of-order manner. Thus, we need to adapt to the changing char-
acteristics while the event streams continue to arrive without
losing any data.

6 RELATEDWORK
In this section, we describe related work and group them into
three topics, i.e., GPU-accelerated stream processing engines,
SJAs on GPUs, and existing performance comparisons of different
GPU-accelerated SJAs.

GPU Accelerated Stream Processing Engines. The grow-
ing volume and velocity of data stream to process and the in-
creasing availability of GPUs have led to the emergence of GPU-
accelerated stream processing engines. In general, recent works
in this area are either extending an existing system to utilize
GPUs [6, 33] or creating a prototype for a new system [18, 19, 38].
The findings from both lines of work show a highly varied perfor-
mance benefit from utilizing GPUs and thus are hard to interpret.
In this paper, we focus our analysis on stream join queries and
provide a practical guideline to help practitioners efficiently uti-
lize GPUs for their stream join use cases.

Stream Joins on GPUs. There have been several approaches
proposing the utilization of GPUs to accelerate the execution
of stream joins. On the one hand, Karnagel et al. [15] propose
HELLS-Join to execute band join on time-based sliding windows.
Their approach leverages integrated GPUs and divide the work-
load between CPU and GPU. Similarly, Körber et al. [19], and
Michalke et al. [23] also utilize the integrated GPU to accelerate
stream join processing. On the other side, Kaliousis et al. [15]
and Zhang et al. [38] use dedicated GPUs to accelerate stream
joins. In both cases, the authors perform the comparison in iso-
lation and only cover a narrow set of dimensions that impact
the performance of GPU-accelerated stream joins. In this paper,
we cover parameters from multiple dimensions (e.g., data, query,
and hardware) and reveal their impact on the performance of
stream join executions. We also extend the variety of underlying
join algorithms in our analysis by including SMJ-based SJAs, par-
allelization strategies, and progressiveness modes. Furthermore,
we provide a recommendation on selecting the best algorithm
in a given circumstance. Thus, helping practitioners and system
builders implement SJAs for a given environment.

Comparing GPU-Accelerated SJAs. The development of dif-
ferent techniques to perform stream joins on GPUs has led recent
works to assess and compare their performance. Zhang et al. [38]
compare the join performance of their SPE with Saber [18] using
the same dataset and queries. In their evaluation, the authors
show that CPUs deliver a higher throughput compared to inte-
grated GPUs in executing stream join workloads. However, there
is no discussion on the workload characteristics, and the result
only gives us a snapshot of stream join performance for a single
case. In our experiment, we show a more comprehensive view of
the performance characteristics by considering both cases where
either CPUs or GPUs achieve higher throughputs. In another
research, Körber et al. [19] compare the stream join operator
of their system with HELLSJoin [15]. In their experiment, the
author shows that frequent kernel invocations may deteriorate
the performance of GPU-accelerated SJAs. However, the authors
only report the throughput and do not discuss whether the per-
formance difference comes from the kernel invocation overhead.
In our experiment, we isolate the problem of frequent kernel

invocations and point out the case where it becomes the major
performance-impacting factor. In general, apart from comparing
limited numbers of algorithm variants, existing works use dif-
ferent workloads and devices and measure different metrics in
their experiments. Thus, they are also not comparable. In our pa-
per, we set up a common ground for different SJAs and measure
the same metrics in different workload scenarios to reveal the
characteristics of SJAs.

7 CONCLUSION
In this paper, we shed light on the configuration parameter space
of SJAs andmake existing approaches comparable. To this end, we
investigated performance-impacting factors of GPU-accelerated
SJAs and revealed their performance characteristics. In particular,
GPUs are feasible for accelerating SJAs, but they require multi-
ple parameters that must be carefully tuned for each workload
and the underlying hardware. Based on that, we summarized the
lessons learned and presented a simplified guideline to help prac-
titioners to implement an SJA for their unique requirements.With
this work, we lay the foundation for efficient GPU-accelerated
SJAs.

For futurework, we envision leveraging and integrating knowl-
edge that we have learned from this paper into existing or next-
generation SPEs (such as NebulaStream [36]). For instance, by
incorporating the knowledge into a query compilation engine
to generate code for stream join operators depending on the
query, data, and hardware characteristics[11]. Furthermore, as
our benchmarking framework is open-source, we enable other
researchers to test their approaches in a representative setting
against state-of-the-art solutions. Finally, we also envision ex-
tending the analysis to a wider range of hardware accelerators,
such as DPU, HBM, and FPGA, which could bring benefit to more
specialized use cases.
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