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ABSTRACT
Graphs are unifying abstractions to encode, inspect and update in-

terlinked data. They are becoming popular in several application

domains with real users. In many cases, graph data is inconsistent

and necessitates transformations to fix the underlying constraint

violations. In this paper, we address the problem of interactive

graph repairing, where users are key to the process of selecting

and validating graph transformations after neighborhood con-

straint violations. We propose a theoretical approach to model

the user involvement in the graph repair process, and we prove

that minimizing the number of interactions is NP-hard. Then,

we abstract away the solution space to Question-Answer-Repair

(QAR) frameworks, composed of three key elements: selecting

the question to be asked to the user, selecting the answer, and

applying the answer as a graph repair operation. Then, we define

and study the properties of termination, oracle optimality, and

question difficulty to further characterize the solutions beyond

the number of interactions. We evaluate our approach and the

QAR frameworks on both synthetic and real-world datasets, con-

sidering different classes of users. We show that relatively high

repair quality can be achieved with users that provide random an-

swers, whereas more sophisticated users such as oracles achieve

results equivalent to the ground truth.

1 INTRODUCTION
Graph data is ubiquitous in several application domains, such as

life sciences, finance, security, logistics and planning, to name a

few [36]. According to a recent survey with real users of graph

processing systems [35], data cleaning is one of the computa-

tional tasks on which the participants routinely spend their time

when working on graph applications. Several approaches exist in

the literature to express graph constraints of different expressive-

ness to detect potential glitches and adopt automatic repairing

strategies [8, 14, 38]. All these methods target the efficiency of

the algorithms and repair optimizations while disregarding the

role of the user in the repairing process.

However, there are situations in which a repair is preferred

over another repair for several reasons, such as the freshness of

the source or the most recent timestamp. A priority relation can

be defined among all the repairs [39]. However, the underlying

assumption in this previous work is that the priority relation

is known in advance and characterizes the space of all repairs.

In our work, we fall under the hypothesis of preferred repairs

when the priority relation is not known in advance and the user

is included in the repairing process. In particular, the appropriate

repair is a decision that involves the users as they need to see

the effect of the repair on the database (i.e. the repaired graph).
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Interactivity for improving the quality of knowledge graphs

and knowledge bases, consisting of a set of facts, has been intro-

duced in early work [5, 26]. The first approach uses existential

rules to add new facts to the knowledge base and adopts an

oracle-based approach, whereas the latter work relies on one-

shot learning to reduce manual effort. The above works either

propose only a marginal involvement of the users - e.g., just at

the beginning - or oversimplify their characteristics - e.g., by

considering humans as oracles. This ignores issues related to

the quality of the responses with suboptimal users, which might

become a hurdle in the process.

In this paper, for the first time we focus on the problem of

enabling and computing interactive graph repairs under graph
constraints, by involving the users in the process of choosing

and validating the graph transformations needed for the repairs

and thus incrementally constructing the ground truth. Our repair

model considers both graph update [45] (e.g., vertex relabeling)

and graph delete operations [11] - specifically deletion of edges.

We adopt neighborhood constraints [38], that are inherently easy

to understand and visually intuitive for the users. Indeed, such

constraints check the consistency of pairs of edge labels in a

graph. This type of constraint can be built using some external

knowledge (e.g., as we show in the construction of the datasets

Restaurant and Sepsis in our experimental study), obtained from a

reliable source (e.g., in the generated datasetCo-authors, as shown
later in the paper), or built using entity resolution methods on

graph [38]. To deal with suboptimal users, we design cost models

that account for repair efficiency in terms of user interactions as

well as question difficulty.

We illustrate the problem with the following motivating ex-

ample.

Assume a graph-based healthcare application about patients,

their symptoms, and treatments. Figure 1(a) depicts a labeled

graph 𝐺 that exemplifies the data in this application. The graph

includes two patients, :ali and :irene, who are under the care of

their doctor, :dr grace. From the graph, we observe that :irene has
experienced :fever twice and has been treated with :aspirin, in
addition to receiving :syrup for a :cough. On the other hand, :ali
has been treated with :aspirin once for a :fever.

Then, an expert can express constraints on these relations,

which can be translated into neighborhood constraints. Neigh-

borhood constraints allow us to check which pairs of labels are

allowed to be connected. They can be represented visually as a

graph, which we will call Neighbourhood Constraint Graph S as
shown in Figure 1(a).

In the given example, both patients, :irene and :ali, can have

:fever and :cough since 𝑆 has edges connecting each of them to

the :fever and :cough nodes. Furthermore, they can both receive

treatment with :paracetamol, while only :irene can be treated with
:aspirin. This distinction arises from the fact that :ali is allergic,
as indicated by the absence of an edge towards the :aspirin
node. Consequently, the fact that :ali was treated with :aspirin
- as depicted in G - represents a violation of the neighborhood

constraints (highlighted in red).
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Figure 1: Inconsistent data detected by neighborhood con-
straints, and possible repairs.

This violation can be repaired in many possible ways, for

example, as shown in Figure 1(b), either relabeling the node

:aspirin into :paracetamol or deleting the edge between the two

nodes.

A non-interactive algorithms, like in [38], or methods that

prioritize repairs [39] cannot easily choose which repair to apply

because they do not understand the semantic context as it lacks

domain-specific knowledge (e.g., the fact that, in the example,

the fever needs to be treated with medicine - the paracetamol).

Although configuration parameters such as weights in the al-

gorithm, or other information about the data and its source [39]

can tune the approach to either prefer delete or update repairs,

this preference would be applied to every violation globally for

the entire graph and not a case by case basis. Instead, a user

would be able to evaluate each specific case independently (e.g.,

knowing that the proper solution for a given patient is to admin-

ister paracetamol instead of aspirin whereas for another patient

the opposite prescription would be the correct fix). Also, while

schema-level knowledge may help to decide which repair to per-

form (e.g., enforcing that :ali needs to be treated with a medicine),

many real-world graphs do not exhibit a schema [35] and the

proposals for schemas for graphs are still undergoing [4].

Contributions. In this work, we address the problem of in-

teractive graph repair. Our contributions can be summarized as

follows. First we provide a theoretical model of the user involve-

ment in the graph repair process, and we show that minimizing

the number of interactions under our assumptions is NP-hard.

The solution space is represented using Question-Answer-Repair
(QAR) frameworks, consisting of (1) the space of possible ques-

tions, (2) the space of admitted answers, and (3) the application of

answers to repair the graph. Second, we define a set of desirable

properties, namely termination, oracle optimality, and question

difficulty to characterize our solution. In addition, we propose

different variations of solutions built by defining an assortment

of QAR frameworks. Finally, we evaluate our approach for the

presented QAR frameworks with both synthetic and real-world

datasets, considering different classes of users with behaviors

ranging from answering randomly to oracles. We show that the

QAR framework’s performance heavily depends both on data

characteristics and user behavior. All users are able to achieve

relatively good results, with some reaching almost perfect repair

quality with respect to ground truth.

The remainder of the paper is structured as follows: Section 2

summarizes the related works on graph dependencies, repairs,

and humans-in-the-loop approaches, Section 3 introduces the

main objects and theoretical concepts used through the paper,

Section 4 provides the theoretical formulation of the interactive

graph repair problem, while Section 5 describes in details our

solution approach. Section 6 shows our experimental evaluation.

Finally, Section 7 concludes and discusses future work.

2 RELATEDWORK
Graphdependencies.As for relational databases, graph databases
need to express dependencies over their data to ensure the quality

of the data and to specify its desired structure. These dependen-

cies have progressively developed and generalized toGraph Entity
Dependencies (GEDs) [14]. These can express conditions on multi-

labeled edges and vertices of Property Graphs, by matching sub-

graph patterns. Some theoretical results on classical problems ex-

ist for GEDs, such as satisfiability, implication, and validation[14].

In addition, the Chase procedure [34] is adapted to GEDs and

known to be finite and respects the Church-Rosser property,

namely that all terminating Chase procedures have the same

result. A more complete overview of graph dependencies, before

GEDs can be found in [8]. In this work, we focus on a subclass of

GEDs called Neighborhood Constraints that can be expressed on

vertex-labeled graphs. Neighborhood Constraints express which

vertex labels are allowed to be connected. They are introduced

in [38] and some theoretical results have been shown. We make

use of the related results without studying them further.

Graph repairs. There are several methods to clean data which

does not respect integrity constraints: the deletion model [11]

consists in pruning the rotten data, while the update model [45]

applies transformations to repair the data to make it satisfy the

constraints. In this work, we work with a combination of both. Ex-

pressing constraints and repairing graph databases is studied over

different dependency classes [8, 14, 25]. In [38], repairing is done

with both deletion and update for the aforementioned Neigh-

borhood Constraints. The authors define conflicts and different

types of repairs, namely relabelling (update) and edge deletion.

The problem of minimally repairing the graph in this scenario

is shown to be NP-complete, but elaborate fixing strategies are

shown to achieve constant factor approximations in the case of

bounded maximum graph degree. Moreover, special tractable

cases are studied and experiments show the effectiveness and

application scenarios of the design. As in [38] we use Neighbor-

hood Constraints to express integrity constraints and use the

same repair model, namely vertex-relabeling and edge-deletion.

However, we improve on the use of heuristics by leveraging user

intelligence by developing a user-interaction model to involve

humans in graph repair.

Human-in-the loop methods. Human-in-the-loop methods

integrate human insight or judgments into machine-driven pro-

cesses. They are typically used when an algorithm alone can-

not achieve good results because specific domain knowledge is

needed [30, 37] or because the existing algorithms are not good

enough [6, 29].

Involving humans is generally very expensive in terms of

time and effort (and thus money). For this reason, in the last

decade, a lot of effort was dedicated to optimizing the use of

crowdsourcing [7, 22, 23] and developing sound methods to run

experiments [33], leading to its successful application in different
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domains, such as image classification [24], transcription [37, 42],

natural language processing [19], health [44] and many others.

In the data management community, crowdsourcing has been

used to answer queries that cannot be answered by comput-

ers alone, focusing on minimizing the cost of answering such

queries [13, 15, 28, 41]. Specifically in the graph domain, Cong

et al. [12] studied the Interactive Graph Search (IGS) problem -

i.e., finding a target node using human intelligence - developing

algorithms that minimize the number of questions asked to the

users.

Interactive data repairing has also been used in our previous

work [5], where we focused on knowledge bases that are evolving,

i.e. augmented with new facts using existential rules. Repairing

was studied in a setting in which denial constraints are applied to

evolving knowledge bases, and thus interacting with existential

rules. Knowledge bases are leveraging facts and flat relational

data and are quite different from graph-shaped data, as handled

in this paper. We focus on more expressive data models and mod-

els of user interaction using special constraints for graphs. The

constraints we consider (neighboring constraints) are topological

as they check the admitted adjacent labels on two edges in a path.

3 PRELIMINARIES
In this section, we introduce the basic ingredients of the inter-

active graph repair framework, namely the concepts of labeled

graphs, neighborhood constraints, violations, and repairs. In this

paper, we consider vertex-labeled undirected graphs. Note that

edge-labeled graphs (both directed and undirected) can be easily

converted into the above [17].

Definition 3.1 (Labelled graph). A labelled graph 𝐺 is a triple
𝐺 = (𝑉 , 𝐸, 𝜆), where 𝑉 is the set of vertices, 𝐸 ∈ 𝑉 2 is the set of
edges and 𝜆 : 𝑉 → 𝐿 be a labelling function assigning to a vertex
in 𝑉 a single label 𝑙 from finite set of labels in 𝐿.

For the sake of simplicity, from now on, we will refer to la-

beled graphs as graphs, unless stated otherwise. Graphs will

be used to represent data - called instance graph 𝐺 . To express

constraints over the graphs, we introduce the Neighborhood

Constraint Graph.

Definition 3.2 (Neighborhood Constraint Graph [38]). Let 𝐿 =

{𝑙1, ..., 𝑙 |𝐿 | } denote a set of labels. A neighborhood constraint graph
𝑆 = (𝐿, 𝑁, 𝜆) is an undirected graph, where 𝑁 is the set of pairs of
labels in 𝐿 allowed to be connected. Intuitively, it specifies whether
two labels are allowed to appear as neighbors.

Figure 1 shows example instance and constraint graphs. As

previously stated,𝐺 states that :ali is prescribed :aspirin, which is

dangerous. When the data does not satisfy the constraint graph,

it is called a violation.

Definition 3.3 (Violation). For a graph𝐺 and a constraint graph
𝑆 , an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 satisfies the set of constraints in 𝑆 iff for
𝑙1 = 𝜆(𝑢) and 𝑙2 = 𝜆(𝑣) there exists an edge in the constraint graph
𝑛 = (𝑙1, 𝑙2) ∈ 𝑁 . Otherwise, 𝑒 is a violation of the constraints 𝑆 .

By extension, 𝐺 violates 𝑆 if any of its edges violate 𝑆 . Other-

wise, 𝐺 satisfies 𝑆 . For instance, in Figure 1, the instance graph

𝐺 violates 𝑆 . The task of enumerating the violations of a graph

is solved by procedure Violations(G,S), which takes as input

an instance graph and a constraint graph and outputs the list of

all violations. This can be done by iterating over the edges. If the

list is empty, the constraints are satisfied.

Given a graph with violations, repairing the graph consists of

applying modifications to the instance graph to obtain a graph

that satisfies the constraints. Before introducing the concepts of

graph repair formally, we establish the allowed graph transfor-

mations. As in previous work [38], we consider relabeling and

edge deletion.

Definition 3.4 (Graph transformations). Let𝐺 = (𝑉 , 𝐸, 𝜆) be a la-
belled graph. A relabeling of a vertex 𝑣 ∈ 𝑉 to label 𝑙 ∈ 𝐿 returns the
transformed graph where 𝑣 has label 𝑙 . Formally, 𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝐺, 𝑣, 𝑙) =
𝐺 ′ = (𝑉 , 𝐸, 𝜆′) where 𝜆′ (𝑣) = 𝑙 and ∀𝑢 ∈ 𝑉 \ 𝑣 : 𝜆(𝑢) = 𝜆′ (𝑢)
An edge-deletion returns the graph without an edge 𝑒 ∈ 𝐸. Formally,
𝑒𝑑𝑔𝑒_𝑑𝑒𝑙𝑒𝑡𝑒 (𝐺, 𝑒) = 𝐺 ′ = (𝑉 , 𝐸 \ 𝑒, 𝜆)

With these two available transformations, the possible repairs

for a violation are the following:

Definition 3.5 (Repair). Given a graph 𝐺 , constraints 𝑆 and a
violation 𝑒 . A relabeling of 𝐺 yielding 𝐺 ′ in which 𝑒 respects 𝑆 is a
relabeling repair for 𝑒 . An edge-deletion of 𝑒 is a deletion repair for
𝑒 .

Note that in this scenario, a relabeling repair might solve the

violation 𝑒 whilst introducing others. The number of possible re-

pairs for a violation 𝑒 = (𝑢, 𝑣) is |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑆,𝑢)∪𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑆, 𝑣) |+
1 = 𝑂 (𝑑𝑆 ), with 𝑑𝑆 the maximum degree of 𝑆 .

By extension, we call 𝐺 ′ a repair for a graph 𝐺 and a set of

constraints 𝑆 if there exists a sequence of repairs 𝑅 = (𝑟1, ..., 𝑟𝑚)
that applied in sequence to𝐺 yield𝐺 ′ and𝐺 ′ respects 𝑆 . Note that
with edge-deletions allowed, there always exists such a sequence.

One can remove all the edges, in which case no constraint applies.

In Figure 1(b), the right repair is the result of deletion for the

conflict between :ali and :aspirin in 𝐺 . As there is no further

conflict in 𝐺 , it is a repair of 𝐺 . Similarly, the left repair is the

result of one of the possible relabeling of :aspirin, and does not

induce more violations. It is thus another repair of 𝐺 .

We are now ready to define the questions, which are the last

ingredients of our interactive graph repair framework.

Definition 3.6 (Question). Given a graph𝐺 , constraints 𝑆 , let 𝐼 be
the set of violations of the constraint graph 𝑆 in 𝐺 and 𝑅 the set of
graph transformations to repair the set of violations 𝐼 . Also, let 𝑖 ∈ 𝐼
be a violation and 𝑅′ ⊆ 𝑅 the set of possible graph transformations
applicable to a violation 𝑖 . A question 𝑞 asks which of the graph
transformations 𝑟 ∈ 𝑅′ is a fix for the violation 𝑖 .

Let’s consider the example reported in Figure 1. A possible

question asks to the user if the graph transformation relabel(:as-
pirin,:paracetamol), among all the others, fix the violation (:ali,:as-
pirin).

Notice that the above definition of a question is a general one,

but a question can also be boolean and ask whether a repair 𝑟 is a

fix for a given violation. Indeed, the above definition of question

can lead to an equivalent set of boolean questions, one question

for each 𝑟 ∈ 𝑅. For ease of exposition, in the next Section, we

mainly focus on boolean questions to introduce the problem

statement and its hardness.

4 THE INTERACTIVE GRAPH REPAIR
PROBLEM

In this section, we formalize the problem of interactive graph

repair, prove its NP-hardness and characterize its solution space.

4.1 Hardness analysis
One of the main issues related to interaction with users is the

cost, both in terms of time and money, of asking for human
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intervention from either domain experts or inexperienced users.

We formalize the problem statement as the following.

Definition 4.1 (Interactive Graph Repair Problem). Let 𝑆 be
the Neighborhood Constraint Graph and 𝐺 an instance graph that
violates some constraints in 𝑆 . An interaction is to ask a question
𝑞𝑖 and receive an answer 𝑎𝑖 . Assume w.l.o.g. that each interaction
applies a single graph transformation (either relabelling or deletion).

The Interactive Graph Repair (IGR) problem asks for a minimum
length sequence of questions 𝑄 = (𝑞1, ..., 𝑞𝑛) such that there exists
an associated sequence of answers 𝐴 = (𝑎1, ..., 𝑎𝑛) that repairs the
graph.

Note that in the definition we do not assume any property of

the answers nor any particular user behavior. To simplify, we use

a bounded version of the problem:

Definition 4.2 (𝐶-Bounded Interactive Graph Repair Problem).
Given the Neighborhood Constraint Graph 𝑆 and an instance graph
𝐺 , the 𝐶-bounded IGR problem asks for a sequence of questions of
length 𝑙 < 𝐶 that solves IGR.

We first show some results for a special case of constraint set

that will prove useful further.

Definition 4.3 (Centered Neighborhood Constraints). A centered
neighborhood constraints 𝑆 (𝐿, 𝑁 ) is a labeled graph such that for
the labels (𝑙1, ..., 𝑙𝑛) and a label 𝑙0, 𝑁 = {(𝑙0, 𝑙) : 𝑙 ∈ 𝐿 \ 𝑙0}
∪{(𝑙0, 𝑙0)}. Namely, all labels are connected to a center label - and
the center label with itself - but no other.

Lemma4.4 (Equal length deletion-free repair for CenteredNeigh-
borhood constraints). For some graph𝐺 and a centered constraint
set 𝑆 , let 𝑅 = (𝑟1, ..., 𝑟𝑘 ) be a repair for 𝐺 with at least a deletion
repair. There exists an equal length repair 𝑅′ for𝐺 without deletion
repairs. Given 𝑅, finding some 𝑅′ takes linear time.

Proof. 𝑅′ is constructed by replacing deletion repairs with

relabelling to the center label of the centered constraint set. Let

𝑟𝑖 ∈ 𝑅 be a deletion repair for a conflict (𝑢, 𝑣). Let 𝑅′ be 𝑅−𝑟𝑖 +𝑟 ′𝑖
where 𝑟 ′

𝑖
is a relabelling of 𝑢 with the center label. Because the

constraints have a center, 𝑟 ′
𝑖
must be a repair. Assume towards

contradiction that applying 𝑅′, resulting in 𝐺 ′, does not repair
𝐺 . There cannot be any violation including 𝑢 because it has the

center label. As 𝐺 ′ is not a repair of 𝐺 , there must exist some

𝑤 ∈ 𝑉 such that (𝑣,𝑤) is a conflict in𝐺 ′. But 𝑅 is a repair, so there

is some 𝑗 ≠ 𝑖 : 𝑟 𝑗 ∈ 𝑅′ that fixes (𝑣,𝑤), which is a contradiction.

If 𝑅′ still contains deletion repairs, repeat the process until 𝑅′

is without deletion repairs. This process takes linear time in the

length of 𝑅. □

Now we have all the elements to show that the problem is

NP-Complete.

Lemma 4.5. 𝐶-bounded IGR is in NP.

Proof. Given𝐺 , 𝑆 and a sequence of questions𝑄 = {𝑞1, ..., 𝑞𝑐 },
we need to verify in polynomial time that 𝑄 is a valid solu-

tion. This means verifying that there exists an answer sequence

𝐴 = {𝑎1, ..., 𝑎𝑐 } that yields some repaired 𝐺 ′. The encoding of

the input being a sequence of boolean questions is done by using

sequences of bits, each of which corresponds to a boolean ques-

tion (being true or false) on a graph transformation as a possible

repair to a violation. Therefore, since each question 𝑞 correspond

to a violation and a proposed graph transformation, it is fair to

assume that the size of the questions - and as consequence the

size of the answers - is linear w.r.t to the size of 𝐺 and 𝑆 . Next,

note that the full space of possible answers is smaller than the

set of allowed transformations, i.e. any relabelling or deletion,

which has size in 𝑂 ( |𝑉 | (1 + |𝐿 |)) = 𝑂 ( |𝑉 | |𝐿 |). Thus, the space
of possible sequence of answers to questions 𝑄 is in 𝑂 ( |𝑉 |𝑐 |𝐿 |𝑐 ),
and can be enumerated in polynomial time. To verify if an an-

swer sequence 𝐴 yields a repaired graph takes polynomial time:

applying a transformation is in linear time, and verifying the

constraints on the resulting graph is in polynomial time [38].

Applying a polynomial-time procedure to a polynomial amount

of elements takes polynomial time. Then, given a sequence of

questions 𝑄 , one can generate and verify all possible answer

sequences. If at least one of the yielded graphs respects 𝑆 , then

𝑄 is a correct certificate to the 𝐶-bounded IGR problem. The

verification is done in polynomial time, the problem is in NP. □

Lemma 4.6. 𝐶-bounded IGR is NP-hard.

Proof. We reduce the vertex cover problem to𝐶-bounded IGR.

Given an unlabeled graph𝐺 = (𝑉 , 𝐸), the vertex cover problem
asks for a set 𝐵 of at most 𝐶 vertices such that they cover all

edges, i.e. for all 𝑒 = (𝑢, 𝑣) ∈ 𝐸, at least one of 𝑢 or 𝑣 is in 𝐵. This

problem is known to be NP-hard.

The reduction is as follows: Let 𝐺 ′ = (𝑉 , 𝐸, 𝜆) be a labeled

graph with vertices uniquely labeled from 1 to |𝑉 |. Let 𝑆 (𝐿, 𝑁 )
be a centered neighborhood constraints with 𝐿 = {0, 1, ..., |𝑉 |}
with 𝑁 = {(0, 𝑖) : 𝑖 ∈ 1, ..., |𝑉 |}. That is, vertices are only allowed

to be connected to label 0 or themselves. This takes polynomial

time. We show that 𝐺 has a vertex cover 𝐵 of size 𝑐 ≤ 𝐶 if and

only if𝐺 ′ has a question sequence𝑄 with size 𝑐′ ≤ 𝐶 that solves

𝐶-bounded IGR

We first show that a sequence of questions that solves the

𝐶-bounded IGS problem implies a solution for the vertex cover

problem. Let 𝑄 be a set of questions that solves the 𝐶-bounded

IGR for 𝐺 ′ and 𝑆 , with some associated deletion-free repair 𝑅.

Given 𝑄 , such 𝑅 can be found in polynomial time by seeking an

answer sequence that repairs the graph and obtaining a deletion-

free version (lemma 4.4 and 4.5). Let 𝐵 be the set of vertices

relabeled by 𝑅. We argue that 𝐵 is a vertex cover of 𝐺 , showing

that all edges have a vertex in 𝐵. Assume towards contradiction

that there is some (𝑢, 𝑣) ∈ 𝐸 such that 𝑢, 𝑣 ∉ 𝐵. By construction,

𝜆(𝑢) ≠ 𝜆(𝑣) in 𝐺 ′. After the application of the repairs in 𝑅, this

constraint is still violated because none of 𝑢 or 𝑣 show in 𝐵. This

is a contradiction with the fact that 𝑅 yields a repaired graph.

Second, if there exists a vertex cover 𝐵 of size less than 𝐶

in 𝐺 , we show there exists a question sequence 𝑄 that solves

𝐶-bounded IGR. Note that relabelling all vertices of 𝐵 as 0 yields

a repaired graph. For some ordering of 𝐵, let 𝑞𝑖 be any question

such that relabeling 𝑏𝑖 is an answer. If the vertex cover is not

minimal, such conflict may not exist. This is a better solution to

the problem. This yields 𝑄 of length less than 𝐶 for which the

sequence of answers 𝜆(𝑏𝑖 ) = 0 is a repair.

This is a polynomial time reduction from the vertex cover

problem to the 𝐶-bounded IGR problem. The 𝐶-bounded IGR

must be NP-Hard. □

We can then prove the NP-completeness of the Bounded IGR

problem in the following.

Theorem 4.7. 𝐶-Bounded IGR is NP-Complete.

Proof. Lemma 4.5 shows that the problem is in NP. Lemma

4.6 shows that the problem is NP-hard. □
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4.2 The solution space
The problem’s hardness implies that finding the optimal solution

is intractable. In the following sections, we will introduce, inves-

tigate and compare solutions that use heuristics towards solving

the IGR problem. Here, we characterize them with a common

abstraction.

To formulate solutions to the interactive graph repair problem,

we introduce the following user interaction model composed of

three phases (QAR - Question, Answer, Repair). First, given the

instance graph 𝐺 and the set of neighborhood constraints 𝑆 , we

need to generate the question 𝑞 (phase Q). Second, we need to ask

question 𝑞 to the user and define the acceptable answers (phase

A). Finally, we need to apply the user’s answer 𝑎 to the graph

𝐺 to repair the conflict (phase R). These three phases (QAR) are

repeated until the graph is repaired, i.e. 𝐺 does not violate any

constraints in 𝑆 .

This leaves us with the following design dimensions:

• the definition of the question space Q : 𝐺, 𝑆 → 𝑄 . It

defines the elements that will form the question posed to

the user. For example, the question space 𝑄 could be the

set of conflicts in 𝐺 w.r.t to 𝑆 asking the user to provide

the desired repair; or it could allow the user to choose the

repair from a panoply of possible graph transformations.

• the answer space definition A : 𝐺, 𝑆,𝑄 → 𝐴. Given a

question 𝑞, the function A(𝐺, 𝑆, 𝑞) returns the allowed

answers that a user might provide. Examples of possible

answers are: all possible graph transformations (delete +

relabeling) for a conflict 𝑐 , or only the vertex relabeling

edits.

• the question selection procedure, SelectQuestion. This
function takes in input the graph 𝐺 , the constraint graph

𝑆 and the question space 𝑄 to select the next question

to be asked to the users. Notice that this function can be

arbitrarily complex and take into account various infor-

mation, such as the topology of the input graph. However,

in this work, we exemplify it as a greedy function (defined

in Algorithm 1) that selects at each step the question that

would fix the majority of the violations.

• the procedure to apply the answer to 𝐺 , Apply. This func-
tion takes the answer and applies the fix to the graph 𝐺 .

Since in our work, we assume a question is answered by a

single user, this function will simply apply the fix to the

graph 𝐺 .

We call QAR framework a quadruple of the aforementioned

elements:

F = (Q,A, SelectQuestion, Apply)

The above abstraction defines the space of possible solutions to

the IGR problem. Framework instantiations will precisely charac-

terize a potential solution in the space. For instance, a framework

could select a question randomly or select one that fixes most

violations, it could ask boolean questions (e.g., "Is this a cor-

rect fix for this violation?"), or ask the users to propose a fix by

themselves.

Figure 2 illustrates a possible interaction. Given the constraint

graph 𝑆 and the instance graph 𝐺 with a violation (e.g., :ali –
:aspirin), a framework instantiation will select a question 𝑞, gen-

erate the possible answersA(𝑞) and ask the question to the user.

Then, the provided answer (e.g., the relabeling of :aspirin into

:paracetamol) is applied to the graph 𝐺 , fixing the violation.

The next section will construct, study and compare some QAR

framework instantiations and their properties.

5 INTERACTION DESIGN
The definition of the question and answer spaces can completely

change how the interactions pan out. They can be very restricted

to ensure users do not go off trail, or very open to allow more

expert users to progress freely. A framework can ask the users

for a simple yes/no answer, or a complete description of a bigger

solution. We first investigate desirable properties and explore

how different designs impact them. In particular, we study (i) the

quality of the repair and (ii) the efficiency of a framework and

(iii) the user perceived difficulty.

5.1 Properties
We consider the repaired graph 𝐺∗ and the sequence of repairs

𝑅∗ needed to achieve it to be optimal if 𝐺∗ corresponds to the

ground truth - independently of the number of repairs needed to

achieve it.

It is desirable for a framework to allow a user to reach the

desired 𝐺∗. We formalize this notion as the oracle optimality
property, closely following [5]:

Definition 5.1 (Oracle). For a graph 𝐺 and a set of constraints 𝑆 ,
a user who knows the repaired graph𝐺∗ and associated repairs 𝑅∗

is an oracle.

Definition 5.2 (Oracle Optimality). A QAR framework F has
the Oracle Optimality property iff a user with an optimal repair𝐺∗

with associated repairs 𝑅∗ in mind can answer all questions within
𝑅∗ such that 𝐺∗ is returned. That is, for any selected question q,
𝑅∗ ∧𝐴𝑞 ≠ ∅.

A framework might not be oracle optimal, in which case the

oracle either cannot reach the optimal repair because it obtains

another repair first and the algorithm terminates or because they

need to answer outside 𝑅∗ (i.e. making detours) - because the

specific QAR framework forces it.

To reach the optimal solution, more repairs may be necessary

than simply fixing the inconsistency. For instance, in Figure 3, the

optimal repair involves two transformations (e.g., relabeling :fever
to :caugh and :tea to :syrup). However, deleting the edge between
:fever and :tea would resolve the inconsistencies with just one

transformation. Moreover, in this case, if a framework restricts

the answer space to the transformations that are repairs it would
be impossible to reach𝐺∗, as none of 𝑟𝑒𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔(𝐺,𝑏, : 𝑐𝑎𝑢𝑔ℎ) or
𝑟𝑒𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔(𝐺, 𝑐, : 𝑠𝑦𝑟𝑢𝑝) are repairs for the current violation.

This Oracle Optimality property expresses the framework’s

ability to obtain high quality repairs, as it states if a framework

allows it to reach an oracle’s solution.

As expressed in the IGR problem, to characterize the efficiency

of a solution, we consider the number of questions asked to the

user to repair the graph. For a lower bound on the number of

questions, we show that for any 𝑘 violations there exists a graph

that can be repaired with one transformation, and thus a single

question.

Proposition 5.3. For any number of initial violations 𝑘 , there
exists a graph 𝐺 and constraints 𝑆 that can be repaired with one
transformation.

Proof. It is sufficient to construct an example. Let𝐺 be a star

graph with 𝑘 nodes - with 𝑘 > 2 - , two labels, and where all edges

are violations. Specifically,𝐺 has a center node 𝑣0, and all 𝑣1, ...,𝑣𝑘
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Figure 2: Possible iteration of a user repair. In this case, 𝑄 is the list o violations and possible_answers comprehends
relabeling and deletions.
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Figure 3: An instance graph G and its associated optimal
repair G∗ (i.e., equal to the ground-truth) on the left. The
corresponding constraint graph S is on the right.

have an edge to 𝑣0. Let 𝜆(𝑣0) = 𝑙 and ∀0 < 𝑖 ≤ 𝑘 : 𝜆(𝑣𝑖 ) = 𝑙 ′, and
let neighboring 𝑙 and 𝑙 ′ be a violation of the constraints. There

are 𝑘 violations, and the unique transformation 𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝐺, 𝑣0, 𝑙 ′)
will result in a valid graph with respect to 𝑆 . □

This shows that there is nominimum number of repairs related

to the number of violations in the instance graph. On the other

hand, there exists infinite repair sequences even for small graphs.

Example 5.4. For instance, take𝐺 as in Figure 3. Assume some

framework that allows relabeling a vertexmultiple times. One can

infinitely relabel vertex 𝑐 , alternating between :tea and :aspirin,
to which :ali is allergic, thus never reaching a repaired graph.

This leads to the definition of the Termination property:

Definition 5.5 (Termination). A QAR framework F has the Ter-
mination property iff for any𝐺 of finite size, there exists no infinite
questions and answers sequence that does not reach a repair of 𝐺 .

Note that the Termination property does not consider the

possibility that a user may receive a question and never answer.

The ability of a user to answer a question varies a lot, and

it depends on their knowledge, skills on the task’s topic, and

difficulty.

Based on the literature on crowdsourcing task difficulty [46],

we model the question difficulty in relation to the intrinsic com-

plexity of the task, that, in our case, corresponds to the number

of question items (vertices) and the number of possible answers.

With this, we define our difficulty measure for a question. Further

modeling of user knowledge and behavior [16, 21], and investi-

gation of the effect of the user interface [32] on the perceived

difficulty of a graph repair task is out of the scope of this work

and should be addressed in future works.

Definition 5.6 (Question difficulty). Let 𝑞 be a question selected
by F and 𝐴𝑞 be the associated possible answers. Further, let |𝑞 |
return the number of vertices needed to represent question 𝑞. Then,
the difficulty of question 𝑞 is defined as follows:

𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (𝑞) = 𝛼 |𝑞 | + 𝛽 |𝐴𝑞 |
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Figure 4: Question difficulty for F𝑔𝑟𝑒𝑒𝑑𝑦
with 0 ≤ 𝛼, 𝛽 .

Where 𝛼 and 𝛽 are parameters that regulate the importance

of the number of vertices and possible answers, respectively.

Example 5.7. Figure 4 shows how to question difficulty works

with an example QAR framework using our running scenario. In

the figure, the answer space is composed of the correct repairs.

Thus

𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 ("repair d-f") = 2𝛼 + (3 + 2 + 1)𝛽
This is because the question needs 2 vertices to represent the

violation, there are three possible relabeling for the node 𝑓 , two

possible relabeling for 𝑑 , plus the deletion.

To characterize difficulty at the framework level, we are inter-

ested in the maximum question cost, as a function of the instance

graph and constraints.

Definition 5.8 (Framework Difficulty). For a QAR framework
F = (Q,A, SelectQuestion, Apply), Framework Difficulty is
the maximum difficulty of a question 𝑞 in Q, as a function of 𝐺
and 𝑆 :

max

𝑞∈Q(𝐺,𝑆 )
𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (𝑞)

Example 5.9. For instance, let’s consider the situation from

Figure 4 where the question asks to solve a violation by providing

a repair. First, for any question, |𝑞 | = 2. Then, the maximum set of

answers contains all possible relabeling for each node (𝑢, 𝑣), plus
one for the deletion. In the worst case, node 𝑢 can be relabeled

by all the neighboring labels of 𝜆(𝑣) in 𝑆 . There are at most 𝑑𝑆
of them, the maximum degree of 𝑆 . This results in a framework

difficulty of 2𝛼 + (2𝑑𝑆 + 1)𝛽 .
We are interested in how the difficulty grows with input 𝐺

and 𝑆 . In this case:

𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (q) = 𝑂 (𝑑𝑆 )

5.2 Proposed Frameworks
In this part, we progressively introduce novel QAR frameworks

and study their properties in terms of oracle optimality, termina-

tion, and framework difficulty.

The first framework leverages a greedy heuristic for question

selection, as done in the non-interactive repair [38], and allows
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F Question Answers Oracle Optimality Termination Framework Difficulty

F𝑔𝑟𝑒𝑒𝑑𝑦 violation repairs No No 𝑂 (𝑑𝑆 )
F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 violation any transformation Yes No 𝑂 ( |𝐿 | )
F𝑡𝑒𝑟𝑚 violation decreasing repairs No Yes 𝑂 (𝑑𝑆 )
F𝑏𝑜𝑜𝑙 violation + repair boolean No No 𝑂 (1)
F𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝐺 + 𝑆 𝐺 ′ Yes Yes 𝑂 ( |𝐺 × 𝐿 | )

Table 1: Summary of defined QAR frameworks and their properties,with 𝑑𝐺 and 𝑑𝑆 the respective maximum degrees for
𝐺 and 𝑆 . All the QAR frameworks use the SelectQGreedy function to select the question, except for F𝑏𝑜𝑜𝑙 that selects the
questions randomly, and F𝑝𝑟𝑜𝑏𝑙𝑒𝑚 that retrieves all the graph.

answers that correspond to repairs for the selected violation.

F𝑔𝑟𝑒𝑒𝑑𝑦 = (Q𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 ,A𝑟𝑒𝑝𝑎𝑖𝑟 , SelectQGreedy, Apply)
Where Q𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 is the set of conflicts in 𝐺 and 𝐴𝑞 be the set

of possible repairs for 𝑞.

Q𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 = {𝑒 = (𝑢, 𝑣) : (𝜆(𝑢), 𝜆(𝑣)) ∉ 𝑁, 𝑒 ∈ 𝐸}

A𝑟𝑒𝑝𝑎𝑖𝑟 (𝑢, 𝑣) =


𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝐺,𝑢, 𝑙) : (𝜆(𝑣), 𝑙) ∈ 𝑁,

𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝐺, 𝑣, 𝑙) : (𝜆(𝑢), 𝑙) ∈ 𝑁,

delete (𝑢, 𝑣)


SelectQGreedy can be defined as the function that returns the

question that contains the vertex 𝑢 that acts in the most conflicts

(𝑢, 𝑣). Pseudocode for SelectQGreedy is in Algorithm 1. Then,

the proposed fix is applied directly to the graph.

Note that with this framework, the user may choose a transfor-

mation that solves a violation but create a new one. For instance,

in Figure 3 the answer could have been to relabel :tea to :aspirin,
but :ali cannot be treated with :aspirin, and the repair would need
another iteration. This is because this framework’s specific de-

sign does not restrict the answer space, while another can forbid

answers that would introduce new conflicts.

Algorithm 1 SelectQGreedy

Input: graph G=(V, E), constraints S, possible questions Q

Output: a question q

for v ∈ V do
conflicts[v]← 0

end for
for q=(u,v) ∈ Q do

conflicts[u]← conflicts[u] + 1

conflicts[v]← conflicts[v] + 1

end for
u← argmax(conflicts[i], i ∈ V)
v← argmax(conflicts[v], v ∈ V and q=(u,v) ∈ 𝑄)

return q=(u,v)

To summarize, the rationale of this QAR framework is to greed-

ily select questions with the most impact potential, and allow

only repairs as answers. But we have seen this can have draw-

backs. Firstly, this QAR framework is not Oracle Optimal, and,

while it force repairs it does not take into account the side-effects,

and might thus never terminate.

Proposition 5.10. F𝑔𝑟𝑒𝑒𝑑𝑦 has the following properties:
(a) F𝑔𝑟𝑒𝑒𝑑𝑦 is not Oracle Optimal
(b) F𝑔𝑟𝑒𝑒𝑑𝑦 may never terminate
(c) 𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (F𝑔𝑟𝑒𝑒𝑑𝑦) = 𝑂 (𝑑𝑆 )

Proof. (a) It suffices to provide a counterexample in which

an oracle cannot answer from 𝑅∗. Take 𝐺 and 𝐺∗ as shown in

Figure 3, such that 𝑅∗ = (𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝐺,𝑏, : 𝑐𝑜𝑢𝑔ℎ), 𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝐺, 𝑐, :
𝑠𝑦𝑟𝑢𝑝)). The greedily selected question Ask((b,c)) yields the
set of allowed answers 𝐴𝑟𝑒𝑝𝑎𝑖𝑟 (𝑏,𝑐 ) . But 𝐴𝑟𝑒𝑝𝑎𝑖𝑟 (𝑏,𝑐 ) ∩ 𝑅∗ = ∅.

(b) It suffices to find a graph with an infinite and deterministic

question-answer sequence that never reaches a repair. Example

5.4 applies to F𝑔𝑟𝑒𝑒𝑑𝑦 and does so.

(c) Example 5.9 applies. □

To address the lack of Oracle Optimality, we extend F𝑔𝑟𝑒𝑒𝑑𝑦
by broadening the answer space to any transformation of the

violation - i.e., relabeling and deletion:

A𝑡𝑟𝑎𝑛𝑠 (𝑢, 𝑣) =


𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝐺,𝑢, 𝑙) : 𝑙 ∈ 𝐿,
𝑟𝑒𝑙𝑎𝑏𝑒𝑙 (𝐺, 𝑣, 𝑙) : 𝑙 ∈ 𝐿,
delete (𝑢, 𝑣)


Resulting in the following QAR framework:

F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 = (Q𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 , A𝑡𝑟𝑎𝑛𝑠 , SelectQGreedy, Apply).
Note that A𝑡𝑟𝑎𝑛𝑠 allows relabeling into any label from the

label set 𝐿, even if it might not solve the selected violation. The

idea is to allow the users to plan the repair, as while a graph

transformation may not fix a violation right away, it can lead to a

correct solution later on. For instance, in Figure 3, relabeling :tea
to :syrup will not solve the violation as it does not treat fever, but

further relabeling :fever to :cough achieves the optimal repair.

Proposition 5.11. F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 has the following properties:
(a) F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 is Oracle Optimal
(b) F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 may never terminate
(c) 𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 ) = 𝑂 ( |𝐿 |)

Proof. (a) Assume towards contradiction that there is a con-

flict 𝑒 = (𝑢, 𝑣) such that 𝐴𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚 (𝑒 ) ∩ 𝑅∗ = ∅. Then, for 𝐺
and 𝐺∗, 𝜆(𝑢) = 𝜆∗ (𝑢) and 𝜆(𝑣) = 𝜆∗ (𝑣) and 𝑒 ∈ 𝐸∗ by definition

of 𝑅∗. This implies that 𝐺∗ does not respect the constraint set,
which is a contradiction.

(b) For any conflict 𝑒 = (𝑢, 𝑣), a user can answer to relabel

𝑢 into 𝜆(𝑢), without changing anything, an infinite amount of

times.

(c) The set of answers has the same size for all questions,

namely 2𝛼 + (2|𝐿 | + 1)𝛽 = 𝑂 ( |𝐿 |). □

This framework no longer forces progress, i.e. a user interac-

tion can result in no change. In terms of question difficulty, this

framework asks the same question as F𝑔𝑟𝑒𝑒𝑑𝑦 , but the answer

space is larger as it grows with the label set 𝐿, which may be

much larger than the maximum degree of 𝑆 . Giving more free-

dom to users results in Oracle Optimality, at the cost of increased

difficulty.

On the other hand, a framework can restrict the possible an-

swers to ensure the repair terminates. The framework F𝑡𝑒𝑟𝑚
allows only transformations that strictly decrease the number of

violations. This is always possible by proposing a deletion. Lim-

iting the answer space like this requires investigating potential

fixes and counting the new violations before applying them.

Let A𝑑𝑒𝑐𝑟 be the function that given a violation (𝑢, 𝑣) returns
the aforementioned space of transformations that both (i) repair

the violation and (ii) decrease the overall number of violations.

This includes the deletion repair and any relabeling 𝑟 of 𝑢 or 𝑣

such that |𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝐺, 𝑆) | > |𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (Apply(𝐺, (𝑢, 𝑣), 𝑟 ), 𝑆) |.

Proposition 5.12. F𝑡𝑒𝑟𝑚 has the following properties:
(a) F𝑡𝑒𝑟𝑚 is not Oracle Optimal
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(b) F𝑡𝑒𝑟𝑚 terminates
(c) 𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (F𝑡𝑒𝑟𝑚) ≤ 𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (F𝑔𝑟𝑒𝑒𝑑𝑦 )

Proof. (a) Same as Proposition 5.10.(a)

(b) Let 𝑆 be the constraint graph and 𝐺0 be the original graph.

Let 𝐺 𝑗 be the state of the graph after 𝑗 user interactions. By

construction ofA𝑑𝑒𝑐𝑟 , the number of violations strictly decreases

as 𝑗 increases. For some 𝑗 ≤ |𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝐺0, 𝑆) |, the number of

violations of 𝐺 𝑗 is 0. This is a repaired graph and the algorithm

terminates.

(c) For any question 𝑞, |A𝑑𝑒𝑐𝑟 (𝑞) | ≤ |A𝑟𝑒𝑝𝑎𝑖𝑟 (𝑞) |. □

Like F𝑔𝑟𝑒𝑒𝑑𝑦 , this framework is not Oracle Optimal, but it

does terminate. In terms of question difficulty, this framework

improves because, while the question part does not change, the

answer space is at most as big as in F𝑔𝑟𝑒𝑒𝑑𝑦 .

Note that with this, we have a framework that takes at most 𝑘

interactions to terminate, with 𝑘 the number of violations in the

original graph, for any graph and constraint set.

We can also investigate other frameworks at the extreme of

the framework difficulty, both easy and hard. At the hard extreme,

we can give the whole problem to the user in a single interac-

tion. F𝑝𝑟𝑜𝑏𝑙𝑒𝑚 asks the users to repair the graph completely. The

question space is thus the input graph as a whole, and the an-

swer space is any repair of the graph. This framework is Oracle

Optimal and will terminate in one step. However, the question

difficulty is very high, as this framework asks an NP-complete

task to the user [38].

On the other side of the spectrum, we may benefit from ask-

ing very easy questions to the user. This might require many

more interactions than with other frameworks, but the tradeoff

with some types of users may still be worthwhile in some cases.

F𝑏𝑜𝑜𝑙 asks a yes/no question, in which users agree to a repair or

not. The questions thus incorporate both the violation and the

proposed repair, but the answer space is boolean. For F𝑏𝑜𝑜𝑙 , the
SelectQuestion procedure randomly selects a possible repair of

some violation in the graph, and the Apply procedure applies the
repair if the user’s answer is "yes", or does nothing. Regarding the

difficulty, assume input as in Figure 4, and a question 𝑞 = "repair

d-f with relabel(G,f,:tea)". The question is harder to understand as

it needs to represent both the violation and the proposed repair,

4 vertices in this case. But answering the question is much easier

as there are only two possibilities to consider (e.g., yes or no):

𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (𝑞) = 4𝛼 + 2𝛽

Proposition 5.13. F𝑏𝑜𝑜𝑙 has the following properties:
(a) F𝑏𝑜𝑜𝑙 is not Oracle Optimal
(b) F𝑏𝑜𝑜𝑙 may never terminate
(c) 𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (F𝑏𝑜𝑜𝑙 ) = 𝑂 (1)

Proof. (a) Any question that does not allow the Oracle to

make progress will break Oracle Optimality. This includes any

repair that does not go towards the oracle’s 𝐺∗, and in this case

the questions are selected randomly.

(b) The framework may ask the same question infinitely if the

answer is always "no".

(c) If the question includes a relabeling, then 𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙𝑡𝑦 (𝑞) =
4𝛼+2𝛽 . Otherwise, the question includes a deletion and𝑑𝑖 𝑓 𝑓 𝑖𝑐𝑢𝑙−
𝑡𝑦 (𝑞) = 4𝛼 + 2𝛽 . Both cases are 𝑂 (1). □

Although this QAR framework loses Oracle Optimality and

Termination properties, it greatly improves on difficulty, as the

framework complexity does not grow with the size of the input

graph.

Table 1 summarizes the QAR frameworks designed up to this

point. The oracle optimality correlated with expressiveness of the

questions and the user’s freedom of choice. However, as expected,

this is at the cost of having more difficult questions.

Finally, notice that our theoretical model is general and can

be used to create many other framework designs with expressive

powers ranging between and beyond these extremes. Their study

and comparison are left as future work.

6 EXPERIMENTS
In this section, we present an extensive experimental study de-

voted to gauging the effectiveness of our approach. The datasets

we used are comprised of the ground truth𝐺∗, the instance graph
𝐺 , and the constraint graph 𝑆 . For each dataset, the result of the

repair produces a repair graph 𝐺 ′. The different datasets are pre-
sented in Section 6.1 and Table 2 summarizes their characteristics.

We analyze our interactive approach under the different QAR

frameworks in terms of the quality of the repair, the efficiency of

the repair, and question difficulty (more details on the metrics

are in Section 6.3).

All the material necessary to reproduce the results is available

on our online repository [2]. The experiments were run on a

desktop machine with 16GB of main memory and an Intel i7

processor in a Jupyter environment using Python 3. For each

experiment parameter combination, 20 independent experiments

were run to deal with randomness.

6.1 Datasets and Ground Truth
We evaluate our approach on four different datasets, one syn-

thetic and three real-world ones. In the following, we explain

how they were generated or adapted to our experiment, how

we obtained the ground-truth, the instance, and the constraint

graphs. Table 2 summarizes each dataset’s properties. Our choice

of the datasets and their sizes are motivated by the fact that users

can provide interactions on datasets of small or medium sizes.

6.1.1 Synthetic Dataset. To run extensive experiments in a

controlled environment, we generated several ground truths hav-

ing different sizes and densities, for both the instance and con-

straint graphs. We generate ground truth 𝐺∗ = (𝑉 , 𝐸, 𝜆) and
𝑆 = (𝐿, 𝑁 ) using the following hyperparameter combinations:

• size |𝑉 | ∈ (20, 100, 500)
• 𝐺 density

|𝐸 |
|𝑉 | ∈ (1, 2, 4)

• label-to-vertex ratio
|𝐿 |
|𝑉 | ∈ (0.2, 0.5, 1)

• density of the constraint graph
|𝑁 |
|𝐿 | ∈ (1, 2, 3)

For each combination, 20 graphs were randomly generated.

Size influences the amount of repairing work to be done and

hence tests the scalability of our approach. The density of the

graph 𝐺 influences the interplay of constraints and relabeling. A

high-density graph will incur more constraints on a given vertex.

The label-to-vertex ratio influences how many labels exist and

the chance of a vertex being assigned a label. Finally, the con-

straint density influences how strict the constraints are: a small

density value makes strict constraints, as there is a little number

of allowed labels for a given node. On the other hand, a complete

constraint graph doesn’t result in any constraint. Because the

constraints include self-edges by definition, the density of the

constraint graph must be greater than or equal to 1.
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Notice that the sizes of synthetic graphs are relatively small

as user interactions are assumed to occur sequentially on each

question-answer pair. The issue of parallelizing user interactions

and dealing with larger datasets is orthogonal to our work and

interesting for future investigation.

For the analysis, we aggregate the results by the size of 𝐺 .

Since all parameters are proportional to |𝑉 |, these groups are

diverse but comparable, since only the graph scale varies.

6.1.2 Patient trajectory process mining (sepsis). Process min-

ing is the task of extracting a process based on event data. In [27],

the authors analyzed the trajectories of patients in a Dutch hos-

pital from their registration in the emergency room until their

discharge. From event logs, i.e. a list of chronologically ordered

events, they extracted a process diagram: a directed graph of the

allowed sequence of events. The process diagram can thus be

used as constraints for the patients’ trajectories. The result of

process mining is inherently noisy, as the process (constraints)

is defined downstream to sampling. To run our experiments, we

use the process diagram reported in [27] as our 𝑆 . As ground

truth 𝐺∗, we extract the patient paths that satisfy 𝑆 . Because the
instance graph is composed of paths, the density of the instance

graph is very low. More details on how we processed the data

can be found in our Git repository [2].

6.1.3 Restaurants similarity network (restaurants). We use a

database of restaurant records [40], which contains duplicates

and inconsistencies. Using the same methodology as [38], we

translate a Differential Dependency (DD) on the relational data

to Neighborhood Constraints on graph data. We consider a DD

(𝐴𝑑𝑑𝑟𝑒𝑠𝑠,𝐶𝑖𝑡𝑦 → 𝐴𝑟𝑒𝑎𝐶𝑜𝑑𝑒, [0, 6], [0, 0], [0, 0])
which states that two restaurants with similar addresses (within

an edit distance of 6), and the same city, should have the same

area code. A distance of 6 is selected as a middle ground between

constraint strictness and graph sparseness. Analogously, we con-

struct a similarity network based on (Address, City) similarity,

yielding an edge between similar - in terms of Address and City
- restaurants. The label of a node 𝑣 is the area code for restau-
rant 𝑣 . The neighborhood constraints express the need for area
code equality, such that if two restaurants are connected in the

instance graph, but do not have the same Area Code, it is a vi-
olation. We build 𝑆 as the set of area code as isolated vertices

with self edges,𝐺∗ contains restaurants as vertices and the edges
connect restaurants that are similar and satisfy the constraints.

6.1.4 Coauthor network (coauthors). The co-author network
example is inspired by an entity resolution task presented in [18].

The procedure to apply neighborhood constraints is inspired by

[38]. The co-author network is a network where each publica-

tion is represented by a fully-connected component of authors.

Vertices are labeled with authors’ names and surnames. Name

overlaps result in ambiguous labels that can be considered noise.

The entity resolution task is to disambiguate these overlapping

names. In our case, publications on CiteSeer [1] have ambiguous

author labels whereas publications on DBLP [3]
1
also use affilia-

tion. Hence, we can use DBLP as the neighborhood constraint

graph 𝑆 with disambiguated labels only, and "repair" the CiteSeer

with the disambiguated labels to achieve entity resolution. For

a more concrete example, let Lei Chen be an ambiguous label.

The task is, from the coauthor network from CiteSeer, to relabel

Lei Chen vertices with their corresponding affiliations from the

1
This dataset is courtesy of the authors of [38]

constraints-the DBLP coauthor network-, e.g. Lei Chen (HKUST).
In our experiments, we constructed co-author networks from

dumps of both websites with publications corresponding to Lei
Chen, which is distinguished into five entities on DBLP. To obtain

the ground truth 𝐺∗, we prune the instance graph of intractable

publications for which there is no corresponding label in the

constraint graph.

𝐺∗ = (V, E, 𝜆) S = (L, N)

Dataset |V| |E|/|V| |L| |N|/|L|

synthetic [20,100,500] [1, 2, 4] |V|×[0.2, 0.5, 1] [1, 2, 3]

sepsis 7382 0.86 14 3.57

restaurants 846 6.19 11 1.0

coauthors 54 1.02 688 3.33

Table 2: Datasets characteristics
6.1.5 Noise Injection. To obtain a noisy instance graph 𝐺

from 𝐺∗, we must inject noise. Since the datasets have different

sizes, the share of the noise needs to be relative to the graph size,

in terms of labels and number of vertices, to yield meaningful

comparisons. We define noise ratio as #𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠/|𝐸 |.
We introduce noise by randomly relabel vertices into an invalid

label. Note that this only injects noise that is detected by the

neighborhood constraints. Moreover, note that relabeling a vertex

may introduce more than one violation. To cope with this, noise

injection works on noise intervals. For example, in a graph with

30 vertices and 100 edges, a noise ratio of (0.27, 0.33) implies

that among the 100 edges, between 27 and 33 are violations.

This number alone gives little information on the number of

vertices that were relabeled to achieve this noise ratio, however,

the transformations can still be recovered by comparing𝐺 to𝐺∗.
We injected noise in the (0.27,0.33) noise ratio interval, selected

as a middle ground between a reasonable amount of repairing to

do and repairable data.

6.2 User simulation
We decided to model the behavior of the users by considering the

two extremes of a user modeling spectrum and a user model in the

middle. The objective is to evaluate how the different frameworks

perform at the best and worst cases, and with a knowledgeable

user in themiddle. In our experiments, we simulate three different

user behaviors that are representative of the entire spectrum.

Random: This user chooses an answer randomly with uniform

probability. We opted for a random strategy in the selection of the

answer as this is quite a common baseline with real users. Indeed,

statistical data has indicated that when involving humans, up to

50% of users may provide random answers for various reasons,

such as lack of comprehension or intentionally providing random

responses to expedite task completion [31, 43].

MaxFix: This user exhaustively tries all possible answers, and

selects the best in terms of resulting violations. This user un-

derstood how the constraints work and how to remove them

efficiently, but without proper domain expertise or context com-

prehension - as it does not know the ground truth.

Oracle: This user has knowledge of the ground truth and

knows the sequence of answers needed to reach it. He might

choose answers that do not fix the graph right away, but work

towards reaching the most correct result.

6.3 Metrics
We evaluate our approach in terms of efficiency, i.e. number of

interaction, result quality, with 𝑓 1-score, and question difficulty.

Mean Resolution Ratio The resolution ratio measures how effi-

cient an answer is in repairing the graph. It consists of the number
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of violations fixed per question: 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 = 𝑘/|𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 |
with 𝑘 the number of violations in 𝐺 . The higher the resolution,

the more efficiently the graph was repaired. We consider 1 as the

baseline value, as it means that on average each interaction fixes

1 violation. Its value can be below 1 if some relabeling adds viola-

tions. In addition, notice that the maximum value achievable by

a framework depends on the structure of the underlying graph.

Mean Question difficulty: we compute the average question dif-

ficulty of a framework as defined in Def. 5.6. For the experiments,

we use 𝛼 = 𝛽 = 0.5 in all cases to have meaningful comparisons.

𝑓 1-measure: we compute the f1-score as defined in [38] with

respect to ground truth. Namely, true positives (tp) are vertices

correctly relabeled, false positives (fp) are both vertices relabeled

in an incorrect label and relabeled vertices that were not meant

to. Lastly, false negatives (fn) are injected noise that was not

relabeled.

Note that runtimes are not reported, as the overall time to

achieve a repair is largely dominated by the time a real user will

take to answer any given question (at least seconds). Indeed, even

for big graphs, the time to produce a new question (apply the

previous answer, select a new question, and ask it) takes micro-

seconds, for all the frameworks we evaluate, which is negligible.

6.4 Results and Analysis
In the following set of plots in Figure 5 and 6, we present the

results for 𝑓 1-score and resolution ratio, grouped by the frame-

work (column) and user (row). A row-by-row comparison shows

how a given framework performs with different users. A column-

by-column comparison shows how frameworks compare given

a fixed user. While Figure 5 showcases results for the variety

of real-life datasets described above, Figure 6 benefits from the

controlled environment with synthetic datasets to investigate

the relation between the quality of the results and scalability.

First, we compare the results based on real-world datasets.

When the bars are missing, it means that this particular exper-

imental setup is non terminating: in a majority of cases, no re-

paired graph was produced. In practice, since we cannot know in

advance if the experiment will terminate or not, we halt the exper-

iment after a time-out given by 2× |𝑉 | interactions, which should

leave plenty of iterations for a functioning setup to terminate.

For instance, the case of having users Random repairing a big
graphwith frameworks that do not have the Termination property
may never finish (cf. Section 5). On the other hand, the framework

designed for this case, F𝑡𝑒𝑟𝑚 , terminates in all cases, even with

bigger graphs. Interestingly, in this case also the Oracle user

fails to terminate with the F𝑏𝑜𝑜𝑙 framework and the restaurant

dataset. This is because this framework, by proposing random

violation and repair pairs, has a low chance to show the oracle

repair, resulting in the user rejecting all the options and getting

stuck.

Further, note that even when the bars are present, some ex-

perimental setups might have failed. In these cases, the minority

of failures are ignored (with failure rates ranging between 0.2

and 0.4 in precise cases, cf [2] for details). The presented results

are thus subject to a survivor bias [20]: experiments terminated

early are not accounted for in the presented averages.

For a given user, our experiments show repair quality depends

not only on the framework but also on the dataset character-

istics. In particular, it seems the restaurants dataset is easier to
repair well. This might be explained by the high density of 𝐺

and the very low density of 𝑆 for this dataset: there are not

many possibilities for each relabeling, so getting the right one

is easier. Except for F𝑏𝑜𝑜𝑙 , repair quality is almost perfect with

Oracle users (averaged over dataset, 𝑓 1-measure with standard

deviation: F𝑏𝑜𝑜𝑙 0.722±0.244, F𝑔𝑟𝑒𝑒𝑑𝑦 0.988±0.009, F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒

0.995±0.006, F𝑡𝑒𝑟𝑚 0.964±0.042 ). Notably, this is also the case

with frameworks that are not Oracle Optimal (such as F𝑔𝑟𝑒𝑒𝑑𝑦
). This suggests that although it is not true in general, most

contexts do not require oracle optimality to reach good repair

quality. Also, both the users MaxFix and Random approach the

Oracle’s behavior with F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 and 𝐹𝑡𝑒𝑟𝑚 on some datasets

(see the restaurants dataset in Figure 5). This demonstrate that

our method is applicable in real world cases. In fact, even users

not as knowledgeable as an oracle, that in real-world does not

exist or are costly to engage, achieve good repair quality.

For resolution ratio, the dataset dependency is striking, in

particular for the restaurant dataset again. Intuition is that along

with the framework, graph shape have a stron influence on res-

olution ratio. Notice that F𝑏𝑜𝑜𝑙 ’s resolution ratio is very low -

even sometimes below 1 - compared to other frameworks. This

is because this QAR framework may propose any possible graph

transformation for a given violation. With many of them being

wrong and thus refused by the users, it results in no change.

Interesting to notice that with F𝑡𝑒𝑟𝑚 , the Random user not only
achieves the repair but also reaches a resolution ratio of at least

1 for all datasets. For MaxFix and Oracle, the resolution ratio is

always above 1.

Next, Figure 6 shows the obtained results with our synthetic

data depending on the input size |𝑉 |. The figure follows the same

configuration. Recall that (i) both graph densities and the size of

𝑆 also grow with |𝑉 | and (ii) for each graph size, the experiments

are run on a variety of input configurations.

Mostly of the previous comments apply to this scenario as

well. Namely, user Random has a hard time terminating, except

with F𝑡𝑒𝑟𝑚 . Important to notice is that the 𝑓 1-score does not

decrease with the number of vertex, but, on the other hand, it

seems to increase. We believe the rationale for this phenomenon

is that it is easier to reach an incorrect repair on small graphs.

Like other datasets, user Oracle achieves an extremely high

f1-score, stable across input sizes. In the case of the resolution

ratio, it similarly does not decrease but increases with graph size.

This can be because, by increasing the number of violations, it’s

more probable that a transformation fix many of them. The fact

our performances do not degrade by increasing the graph size

demonstrates that our approach promises to be applicable with

bigger graphs.

As shown in Figure 7, question difficulty is very dependent

on the dataset characteristics: the y-axis ranges differ by orders

of magnitude. This does not hold for F𝑏𝑜𝑜𝑙 though, as expected
from Proposition 5.13, since its question difficulty is constant.

The results show that F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 is exploding the question com-

plexity, and F𝑡𝑒𝑟𝑚 always improving on F𝑔𝑟𝑒𝑒𝑑𝑦 : the more a

framework allows for user decisions, the more difficult it is for

them.

6.5 Lessons Learned
To confront QAR frameworks and different users in a simple

metric, we use Pareto Efficiency [10] as a multi-criteria analysis

tool. Specifically, for a fixed user and dataset, a QAR framework

is Pareto Efficient if no others improve on all the metrics, i.e.

𝑓 1-score, resolution ratio, and mean question difficulty.

Table 3 reports the results of Pareto Efficiency analysis for the

mean result of each framework for all (user, dataset) pairs. A T
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Figure 5: Experiment result for 𝑓 1-score (left, full) and resolution ratio (right, dashed) on the different datasets. The
table showcases behavior by user (row) and by framework (column), aggregated by dataset (x-axis). Absent bars signify
non-termination of the experiment.

Figure 6: Experiment result for 𝑓 1-score (left, full) and resolution ratio (right, empty) on the synthetic data. The table
showcases behavior by user (row), by framework (column), and𝐺 size (x-axis). Absent bars signify non-termination of the
experiment.

Figure 7: Mean Question Difficulty for different datasets
and QAR frameworks. Note that y-axes have different
scales.
in a cell means that for that specific user and dataset, the corre-

sponding framework is Pareto efficient. For instance, considering

MaxFix users and the dataset coauthor, the framework F𝑏𝑜𝑜𝑙 is
Pareto efficient, meaning that it is not dominated by any other

frameworks on all the criteria - most probably because F𝑏𝑜𝑜𝑙 has
the lowest mean question difficulty. On the other hand, in the

same case, F𝑔𝑟𝑒𝑒𝑑𝑦 is not Pareto efficient, meaning that there is

at least another framework that improves on all the criteria.

User Dataset F𝑏𝑜𝑜𝑙 F𝑔𝑟𝑒𝑒𝑑𝑦 F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 F𝑡𝑒𝑟𝑚
MaxFix coauthor T F T T

synthetic T T T T

restaurants F T T T

sepsis T T F T

Oracle coauthor T T T T

synthetic T T T T

restaurants F T T T

sepsis T T T T

Random coauthor T F NA T

synthetic F F F T

restaurants F F NA T

sepsis T F F T

Table 3: Truth value for Pareto Efficiency of mean perfor-
mance for each QAR framework and (user,dataset) pair.
N/A means the experiments did not terminate.

We can draw several conclusions from this table. First, con-

sidering the number of Pareto Efficient options, what is most

evident is which options to not take - i.e., when a framework is

not Pareto Efficient or worse when it never finishes. For example,

using F𝑔𝑟𝑒𝑒𝑑𝑦 or F𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑣𝑒 with Random users or F𝑏𝑜𝑜𝑙 with
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the restaurant datasets, and probably with datasets that share the

same characteristic.

Further, F𝑡𝑒𝑟𝑚 is always Pareto Efficient. Indeed, from previ-

ous analysis as well, this QAR framework is hitting an efficient

middle ground by always terminating and having low question

difficulty, while maintaining a good resolution ratio and 𝑓 1-score

when users are good. In particular, the F𝑡𝑒𝑟𝑚 QAR framework

achieves satisfactory results with Random user both in terms of

𝑓 1-score and resolution ratio, in both the synthetic and real-world

datasets, making it the perfect choice when the users have no

knowledge of the domain nor of how graphs work.

Interestingly, F𝑏𝑜𝑜𝑙 is often Pareto Efficient due to its very low

question difficulty. In practice, this means that in a context where

it’s crucial to minimize difficulty for the users, F𝑏𝑜𝑜𝑙 remains a

good choice. However, consider also that our experiments show

that F𝑏𝑜𝑜𝑙 does not allow the Oracle user to achieve good results.
The overall conclusion is that, while none of the QAR frame-

works may be optimal, it is important to design and choose the

proper framework according to the dataset and user needs.

7 CONCLUSION
In this paper, we introduced and formalized the problem of inter-

active graph repair under neighborhood constraints and studied

its complexity. We defined a theoretical interaction model (QAR -

Question, Answer, Repair) and explored different instantiations

and their properties. We treated users as more than oracles by

considering question difficulty and simulating various behaviors.

To validate our approach, we evaluated the QAR frameworks on

synthetic and real-world datasets with simulated users, demon-

strating its effectiveness. Furthermore, we provided recommen-

dations for selecting the best framework in different situations.

Future research should focus on involving multiple real users

to enable the repair of large graphs. This includes investigating

methods to integrate different answers for the same violation,

handling multiple fixes for a graph, and ensuring ease of use

for general users [16, 21, 32]. Additionally, future work could

automate the exploration of the solution space by developing

optimization/heuristic or machine learning-based methods for

selecting the most suitable framework given a dataset and set of

constraints [9].
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