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ABSTRACT
The establishment of the AGM bound on the size of interme-

diate results of natural join queries has led to the development
of several so-called worst-case join algorithms. These algorithms
provably produce intermediate results that are (asymptotically)
no larger than the final result of the join. The most notable ones
are the Recursive Join, its successor, the Generic Join and the
Leapfrog-Trie-Join. While algorithmically efficient, however, all
of these algorithms require the availability of index structures
that allow tuple lookups using the prefix of a key. Key-prefix-
lookups in relational database systems are commonly supported
by tree-based index structures since hash-based indices only sup-
port full-key lookups. In this paper, we study a wide variety of
main-memory-oriented index structures that support key-prefix-
lookups with a specific focus on supporting the Generic Join.
Based on that study, we develop a novel, best-of-breed index
structure called Sonic that combines the fast build and point
lookup properties of hashtables with the prefix-lookups capabili-
ties of trees and tries. To evaluate the performance of a variety of
indices for worst-case optimal joins in a modern code-generating
DBMS, we leveraged flexible, compile-time metaprogramming
features to build a framework that creates highly efficient code,
interweaving (at a microarchitectural level) a generic join imple-
mentation with any appropriate index structure. We demonstrate
experimentally that in that framework, Sonic outperforms the
fastest existing approaches by up to 2.5 times when supporting
the Generic Join algorithm.

1 INTRODUCTION
Joins are among the most expensive relational operators, both

in terms of CPU cost as well as memory consumption. In par-
ticular, the efficient processing of multi-way joins (i.e., joins of
multiple relations) is challenging because worst-case costs grow
exponentially with the number of relations [38].
Until recently, the state of the art for multi-way joins was to

treat them as a sequence of binary (i.e., two-way) joins. An im-
mense body of research [13, 17, 23, 24] covers algorithms, data
structures and optimization techniques for binary joins. Virtually
all of these algorithms follow the same pattern: in a preparatory
phase, some supporting index structure (usually a hash table,
sorted array or tree-index) is built on one or both of the tables. In
the process phase, the index structures are used to accelerate the
actual result calculation (e.g., hash-probing or merging of sorted
runs).
While these strategies have linear effort in the best case, in the

case of poor join order selection, the number of output tuples
can grow exponentially. While little can be done to avoid these
costs for worst-case queries (e.g., when a cartesian product is
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requested), the choice of a poor join order can cause even queries
with empty result sets to have exponential costs.

Figure 1: Binary Join vs Sonic Join vs Hash-Trie Join

However, it is
possible, to de-
sign multi-way
join algorithms
that are resilient
to poor join or-
ders: Atserias, Grohe
and Marx [11]
were the first
to theoretically
prove the ex-
istence of join
algorithms that
asymptotically per-
formwork in the order of the size of the final join result – a bound
we call the AGM-bound for the authors’ initials. Since the size
of the final result is independent of the chosen join order, such
algorithms are optimal in their worst-case behaviour. We refer
to such algorithms as worst-case optimal join algorithms. Ngo,
Porat, Re and Ruta proposed a join algorithm that is worst-case
optimal [38] followed by a more general worst-case optimal join
algorithm [39] (in this paper, we refer to the first algorithm as
Recursive Join while we call the second one the Generic Join
algorithm).
The index structures to support the Generic Join are signifi-

cantly more expensive to build than those supporting a binary
hash-join: to assess the magnitude of the performance difference,
we implemented the Generic Join algorithm using the BTree
implementation from Abseil library [7] as a supporting index
structure. As a baseline, we implemented a sequence of (fully
inlined) binary hash-joins (based on Abseil’s hash-set) and a
Hash-trie Join proposed by others [22]. We compare the three
implementations for a triangle counting query and vary the un-
derlying data distribution from uniform random to maximally
adversarial. Figure 1 shows the running time of each algorithm.
Overall, we find that the Generic Join outperforms the hash-join
and Hash-trie Join for the adversarial input because it is more
work-efficient. However, we find the opposite for the random
input: the binary join is faster than either of worst-case optimal
join algorithm as there are no exploding intermediate results and
it can take advantage of a fast-to-build (hash) index.
Similar to most binary join algorithms, the Generic Join algo-

rithm requires a supporting index structure, specifically, a multi-
level index on each table ordered by the same ‘global‘ attribute
order (called the total order in [39]). While the supporting index
structures can, in principle, be persisted and reused, worst-case
optimal join algorithms (like their binary counterparts) depend
on query-specific indices. This complicates index reuse as it leads
to the classic problems of secondary indexing: deciding which
ones to persist, maintaining them under update, selecting which
ones to use during query evaluation, etc. Consequently, the fast
building of supporting indices is crucial to join performance.
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We address this problem by developing an index structure that
is fast to construct while efficiently supporting the operations
necessary to support Worst-Case Optimal Join algorithms. Specif-
ically, our contributions are:

• Based on a careful analysis of the microarchitectural behavior
of the Generic Join Algorithm, we develop Sonic, a hardware-
conscious index structure designed to support algorithms that,
like most worst-case optimal join algorithms, rely on early
elimination of result candidates
• Having developed a highly efficient index structure, we de-
velop an equally efficient implementation of the Generic Join
algorithm. Contrary to existing work [4, 22], our approach
does not rely on just-in-time code generation. Instead, we de-
veloped a compile-time framework that takes advantage of the
metaprogramming features of C++. This approach exploits the
underlying c++-compiler to support any index structure that
exposes the required primitive operations. This approach is
highly efficient: it outperforms the well-known EmptyHeaded
system and Hash-Trie Join that rely on just-in time code gen-
eration.
• Using the join framework, we perform an extensive study of
state-of-the-art index structures with respect to their fitness
to support worst-case optimal join algorithms. We demon-
strate that Sonic outperforms all other indexing methods when
supporting the Generic Join, outperforming competitors by a
factor exceeding 2× in relational as well as graph-processing
benchmarks.

The remainder of this paper is organized as follows: In Section
2, we introduce the necessary background on worst-case optimal
joins. In Section 3, we develop the Sonic index structure, present
our implementation of the Generic Join in Section 4 and evaluate
both in Section 5. We discuss related work in Section 6 and ideas
for future work in Section 7. Finally, we conclude in Section 8.

2 BACKGROUND
In this section, we provide the necessary background on worst-

case optimal joins.

2.1 The AGM Bound
Atserias, Grohe and Marx [12] aimed to obtain the largest possi-

ble query result size through formal analysis of any query. They
construct a hypergraph 𝐻 (𝑉 , 𝐸) for a query, the set of vertices,
𝑉 , denoting the attributes in the query and the hyperedges 𝐸
denoting its relations. They proved that a tight bound on the
size of the result for any (natural) join query is tighter than the
(obvious) exponential bound. To illustrate that, consider a tri-
angle join query, 𝑄 (𝑎, 𝑏, 𝑐) = 𝑅(𝑎, 𝑏) Z 𝑆 (𝑏, 𝑐) Z 𝑇 (𝑐, 𝑎). The
hypergraph 𝐻 (𝑉 , 𝐸) for 𝑄 is constructed using 𝑉 = {𝑎, 𝑏, 𝑐} and
𝐸 = {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑎)}.
An edge cover for a hypergraph 𝐻 (𝑉 , 𝐸) is a subset 𝐶 ⊆ 𝐸 of

hyperedges such that for each vertex 𝑣 ∈ 𝑉 there is at least one
edge 𝑒 ∈ 𝐶 such that 𝑣 ∈ 𝑒 . By assigning a weight 𝑢𝑖 = 1 if 𝑒𝑖 ∈ 𝐸
and 𝑢𝑖 = 0 if 𝑒𝑖 ∉ 𝐸, and expressing the cover requirements
as inequalities, the edge cover can be formulated as an integer
programming problem:

𝑎 : 𝑢𝑅 + 𝑢𝑇 ≥ 1

𝑏 : 𝑢𝑅 + 𝑢𝑆 ≥ 1

𝑐 : 𝑢𝑆 + 𝑢𝑇 ≥ 1

By modifying the linear problem to allow edge weights to be
non-integer between 0 and 1, a fractional edge cover for the hy-
pergraph can be obtained. Grohe and Marx proved that using
the fractional edge cover, a tight upper bound for the size of
relational join queries can be achieved [12, 25].
For the example above, if |𝑅 | = |𝑆 | = |𝑇 | = 𝑛, a straightforward

bound is 𝑛3, i.e. the cartesian product of the three relations At-
serias, Grohe and Marx [12] showed that when Q is the set of
triples of constants (a,b,c), |𝑄 | ≤ |𝑅 |𝑢𝑅 × |𝑆 |𝑢𝑆 × |𝑇 |𝑢𝑇 and if we
set 𝑅 = 𝑆 = 𝑇 the AGM bound is minimized when 𝑢 = ( 12 ,

1
2 ,

1
2 ),

which provides |𝑄 | ≤ 𝑛
3
2 as the result [42].

2.2 Worst-case Optimality
A join algorithm is called worst-case optimal if its running time

over a database instance I is bounded by the query’s worst-case
output size (AGM bound). Formally, where 𝑢 𝑗 is the weight of
hyperedge 𝑒 𝑗 in the fractional edge cover, 𝑁 𝑗 is the size of the
relation 𝑅 𝑗 , and 𝑄 =Z𝑗∈{1,..,𝑙 } 𝑅 𝑗 . To achieve the worst-case
output size, the tightest AGM bound for the hypergraph should
be determined byminimizing the right-hand side of the inequality
above. Consequently, the following linear optimization problem
needs be solved:

𝑚𝑖𝑛

𝑙∑︁
𝑗=1

log(𝑁 𝑗 ) × 𝑢 𝑗 |
∑︁
𝑗 :𝑣∈ 𝑗

𝑢 𝑗 ≥ 1 ∀𝑣 ∈ 𝑉

𝑢 𝑗 ≥ 0 ∀𝑗 ∈ 𝐸

Where V and 𝑣 𝑗 are the set of attributes in the query𝑄 and the
set of attributes in the relation 𝑅 𝑗 , respectively.
The cost of an optimal join algorithm would be

𝑂 (𝑓 ( |𝑉 |, |𝐸 |)×(∏
𝑗∈𝐸

𝑁 𝑗
𝑢 𝑗 + ∑

𝑗∈𝐸
𝑁 𝑗 )) where 𝑓 ( |𝑉 |, |𝐸 |) is the prepa-

ration cost (extracting the order of attributes), the term
∑
𝑗∈𝐸

𝑁 𝑗

reflects the cost of reading the inputs and the term
∏
𝑗∈𝐸

𝑁 𝑗
𝑢 𝑗

reflects the query size bound. Any algorithm (asymptotically) sat-
isfying this bound in its complexity is called worst-case optimal.
Having established the bounds of the join query, let us discuss
the join algorithm.

2.3 The Generic Join Algorithm
The Generic Join algorithm as proposed by Ngo et al. can be

distinguished in a preparation phase and a join phase that we
will explain in this section.

E

D D

{a,b,c,d,e,f,g,h,i}

{c,e,f,h}{a,b,d,g,i}

C C

{g,i} {a,b,d}

B

{a,b,d}
C C

{c,e,f} {h}

B B

{c}{e,f}

A

{e}

A A

{b} {a,d}

Figure 2: Query Plan Tree

2.3.1 Preparation. Most
worst-case optimal join al-
gorithms rely on a spe-
cific order of attributes
which can be achieved
by different approaches
[3, 4, 22, 39]. In the con-
text of the Generic Join
algorithm, to support the
prefix-lookup operation,
the attribute order in ev-
ery index must follow the
total order: an ordering
of the queried relation’s
attributes that makes the
execution time of of the
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lookup queries become linear. Formally, for a given query
𝑄 =Z𝑒∈𝐸 𝑅𝑒 and the total order 𝛾 = 𝐴1, 𝐴2, ..., 𝐴𝑛 , the order
of attributes in a relation 𝑅𝑒 (𝐴1𝑒 , 𝐴2𝑒 , ..., 𝐴𝑘

𝑒 ), should be aligned
with 𝛾 such that for any 𝑖 ≤ 𝑗 the attribute 𝐴𝑖

𝑒 precedes 𝐴 𝑗
𝑒 . So,

given a tuple 𝑢𝐴1,...,𝐴𝑖
, a prefix-lookup on 𝑅𝑒 can enumerate all

the tuples 𝜋𝐴𝑖+1,...,𝐴 𝑗
(𝑅𝑒 [𝑢𝐴1,...,𝐴𝑖

]) in the relation 𝑅𝑒 .
Ngo et al.[39] proposed to construct a so-called "Query Plan

Tree (QP-Tree)" and derive the order of attributes in the following
manner: nodes in the QP-tree represent the hyperedges of join
query graph with each node representing a subset of query at-
tributes, called the node’s universe. The universe of the QP-tree’s
root is the set of all query attributes and the attributes of the root
are the same attributes as the corresponding hyperedge/relation.
The universe for the right child of the root contains the intersec-
tion of the root’s universe and its attributes. The universe of the
left child of the root contains the difference of the root’s universe
and its attributes. Both the left child and the right child of the
root are labeled by the next hyperedge given an arbitrary order.
Figure 2 illustrates an example of a query plan tree for 𝑄 =

𝑅𝐴 (𝑎, 𝑏, 𝑑, 𝑒) Z 𝑅𝐵 (𝑎, 𝑑, 𝑓 , 𝑐) Z 𝑅𝐶 (𝑔, 𝑐, ℎ, 𝑖) Z 𝑅𝐷 (𝑎, 𝑏, 𝑑, ℎ) Z
𝑅𝐸 (𝑓 , 𝑐, 𝑒, ℎ). In this example 𝑉 =<𝑎, 𝑏, 𝑑, 𝑓 , 𝑒, 𝑔, 𝑐, ℎ, 𝑖> and the
universe (𝑢) of the right child and left child of the root are
𝑢𝑟𝑐 =<𝑐, 𝑒, 𝑓 , ℎ> and 𝑢𝑙𝑐 =<𝑎, 𝑏, 𝑑, 𝑔, 𝑖>, respectively. The total
order extracted for the query is 𝛾 = <𝑔, 𝑖, 𝑏, 𝑎, 𝑑, 𝑒, 𝑓 , 𝑐, ℎ>, but as
there is no suffix 𝑓 = 𝐴𝑘+1, ..., 𝐴𝑛 such that for some 0 ≤ 𝑘 < 𝑛, 𝑓
exists in 𝛾 , this order is not compatible with the query. By permu-
tating the attributes of the relations they can be queried according
to the total order. In practice, this means that the optimal order
is query specific and indices cannot be pre-built. Consequently,
build-time is a crucial performance factor.

2.3.2 Generic Join. Having discussed the preparation, let us
explain the procedure of computing the results for a given query
of a representative worst-case optimal join algorithm.
The algorithm proposed by Ngo et al. (shown in Alg. 1) scans

the smallest relation which contains the first attribute in the total
order. It executes a prefix-lookup operation on the other relations
to find all tuples that have a common prefix for the attributes
and produces a candidate sub-tuple of the final result (line 3). By
comparing the size of the scanned relation with the AGM bound
of its right sub-problem, the smallest relation is selected to join
with the sub-tuple (line 9). Note that the order of the attributes in
the index is aligned with their order in the total order (see Section
2.3.1), looking for a sub-tuple in other relations is a prefix-lookup
on the join condition(s) (line 12).
The Generic Join algorithm adheres to the AGM bound as its

execution time is |𝐸 | |𝑉 |∏𝑗∈𝐸 𝑁 𝑗
𝑢 𝑗 . The build time for the index

structure is |𝑉 |2∑𝑗∈𝐸 𝑁 𝑗 and satisfies the following conditions:

• Lookup time for 𝑢𝐴1,...,𝐴𝑖
∈ 𝜋𝐴1,...,𝐴𝑖

(𝑅𝑒 ) is 𝑂 (𝑖)
• Time to count for |𝜋𝐴𝑖+1,...,𝐴 𝑗

(𝑅𝑒 [𝑢𝐴1,...,𝐴𝑖
]) | is 𝑂 (𝑖)

• When the output is non-empty, returns all the tuples in
the set 𝜋𝐴𝑖+1,...,𝐴 𝑗

(𝑅𝑒 [𝑢𝐴1,...,𝐴𝑖
]) in linear time.

Having established the background for worst-case optimal join,
we present a novel index structure to support the Generic Join in
the following section.

3 SONIC INDEX
In this section, we present the design of the Sonic index struc-

ture. We start by discussing the requirements and options to
support the Generic Join. Based on those, we describe the struc-
ture of the Sonic index followed by a description of the supported

Algorithm 1: Generic Join Algorithm
Input: Hypergraph𝐻 = (𝑉 , 𝐸 )
Input: Relations 𝑅𝑒 , 𝑒 ∈ 𝐸
Input: Fractional cover x = (𝑥𝑒 ), 𝑒 ∈ 𝐸

1 Function RecursiveJoin(𝐻,𝑅𝑒 , 𝑥𝑒 ):
2 if |𝑉 | = 1 or𝑉 ⊆ 𝑒𝑖 , ∀𝑒𝑖 ∈ 𝐸 then
3 return ∩𝑒∈𝐸 𝑅𝑒

4 𝑄 ← ∅ // Q is the set of tuples to be returned

5 Pick 𝑓 ∈ 𝐸 such that f is a suffix of 𝛾
6 𝑓 ′ ← 𝑉 \ 𝑓
7 𝐸1 ← 𝑒 ∈ 𝐸 |𝑒 ∩ 𝑓 ′ ≠ ∅
8 𝐸2 ← 𝑒 ∈ 𝐸 |𝑒 ∩ 𝑓 ≠ ∅
9 for every 𝑡 ∈ RecursiveJoin(𝐻1 = (𝑓 ′, 𝐸1 \ 𝑓 ), (𝑅𝑒 )𝑒∈𝐸1 , (𝑥𝑒 )𝑒∈𝐸1 ) do

10 if 𝑥𝑓 < 1 and |𝑅𝑓 | ≥
∏

𝑒∈𝐸2\𝑓 |𝑅𝑒 [𝑡 ] |
𝑥𝑓
1−𝑥𝑒 then

11 for each 𝑡 ′ ∈ RecursiveJoin(𝐻2 =

(𝑓 , (𝐸2 \ 𝑓 ), (𝑅𝑒 )𝑒∈𝐸2\𝑓 , (
𝑥𝑒

1−𝑥𝑒 )𝑒∈𝐸2\𝑓 ) do
12 𝑄 ← 𝑄∪ prefixLookup (𝑅𝑓 [𝑡 ], 𝑡 ′ )

13 else
14 for every 𝑡 ′ ∈ 𝑅𝑓 do
15 if prefixCount(𝑅𝑒 [𝑡 ], 𝑡 ′𝑓 ) for every 𝑒 ∈ 𝐸2 then
16 𝑄 ← 𝑄 ∪ {𝑡 ∪ 𝑡 ′ }

17 return𝑄

operations. Before concluding this section, we briefly discuss tun-
ing parameters and memory requirements.

3.1 Requirements for the Generic Join
The Generic Join algorithm requires an index that supports

insert, point lookup, prefix lookup, and count prefix. While tree-
based indices support the required operations, they involve more
computational effort and pointer chasing to insert the key than
hash tables. Hash-based indices are cheaper to build but do not
support the prefix-lookup operation.
A straightforward way to extend the principle of hash tables to

support these operations is to build a hash table of hash tables
as proposed in [19]. In such a hierarchical hash table, each row
in the first hash table stores a pointer to another hash table in
the next level and so forth so on. This approach has multiple
drawbacks. First, by increasing the level of indirections the point-
lookup costs increase. Second, as each key in level k has a pointer
to one hash table in level k+1, the total number of hash tables
grows exponentially with the number of levels which leads to
memory fragmentation. Third, each hash table requires a non-
trivial amount of memory. If memory is not large enough to fit
all the hash tables, a hash table of hash tables does not scale.
Fourth, if a hash table overflows it would require expensive re-
hashing/re-building, potentially at multiple levels.
A structure that hierarchically stores each data tuple at each

level, could avoid such extra costs. Such a structure could support
prefix-lookup queries by returning all the tuples in the levels
after the prefix match. We developed just such an index structure:
Sonic. Sonic does not suffer from indirection overhead, memory
fragmentation, memory overhead, or expensive re-hashing.

3.2 The Sonic Data-Structure
As discussed in Section 1, the objective of the Sonic index is to

strike a balance between fast building and fast prefix lookup. To
that end, Sonic merges design elements from hash tables, trees,
and tries and augments them with supplemental components
to achieve high performance. Figure 3 illustrates the general
structure of Sonic for a table with four columns. For each column
except the last, Sonic contains a substructure, called Level, that
forms a hierarchy (laid out from left to right in the figure). Levels
in the Sonic index follow the general structure of a hash table
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Figure 3: Sonic Hash Table (Bucket Size = 2)

in that they contain keys (in green), and payloads (in yellow). In
addition, they contain the number of tuples that have a common
prefix, called prefix counter (in blue). The payload can be either a
pointer (more specifically an offset) to a bucket in the next level,
where the next attribute is stored; or a tuple. In the last level of
the index, the tuple (purple section) is stored alongside the key to
avoid adding an extra layer (for the last attribute) in the structure.
Middle levels, i.e., any level except the first and the last, store
patch bit per bucket (the red circle) and a patch key per slot (the
blue box) to eliminate false positives.

3.3 Patching to reduce false positives
Sonic is designed to support worst-case optimal join algorithms

at the performance required for in-memory data processing. This
requires avoiding performance hazards such as memory frag-
mentation, pointer chasing, and complex branching. While Sonic
can serve as an index structure to support the Generic Join, it
may produce false positives as entries at inner levels (i.e. levels
between the first and last) cannot be distinguished by their prefix.
While this does not affect correctness (false results are filtered
out), it requires a (potentially costly) traversal of all levels of the
index, when false positives occur at an inner level.
All inner levels have two auxiliary fields that allow the elimina-

tion of these positives: first, one bit per bucket which we call the
patch bit. The patch bit is set to 1 if the bucket contains attributes
of tuples with different keys at the immediately preceding level
(we refer to the bucket as ‘patched‘ ). Patch bits of one level are
only stored in that level, i.e., not propagated to the next one. If
the patch bit is set, the key in the preceding level is replicated in
the second auxiliary field: the patch key column. While replicat-
ing only the immediately preceding key does not guarantee to
eliminate false positives (they could occur in a level before the
preceding), it makes them unlikely (in our experiments we found
that only 10% of the buckets in the second-level are patched).
As the size of tuples increases, the probability of a false positive
being propagated to the last level decreases further (we have
not observed this case in the workloads). The remaining false

Algorithm 2: insert
Input: Tuple t = < 𝑎1, 𝑎1, ..., 𝑎𝑘 >

1 Function insert(𝑡 ):
/* acquire lock if parallel */

2 if 𝑡 [𝑙𝑒𝑣𝑒𝑙 ] not in 𝑘𝑒𝑦𝑠 then
3 𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ← 𝑔𝑒𝑡_𝑛𝑒𝑥𝑡_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑠𝑙𝑜𝑡 ( )
4 𝑘𝑒𝑦𝑠 [𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ] ← 𝑡 [𝑙𝑒𝑣𝑒𝑙 ]
5 𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑐𝑜𝑢𝑛𝑡 [𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ] ← 1
6 if 𝑙𝑒𝑣𝑒𝑙 ≠ 𝑙𝑎𝑠𝑡_𝑙𝑒𝑣𝑒𝑙 then
7 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑏𝑢𝑐𝑘𝑒𝑡 [𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ] ←

𝑔𝑒𝑡_𝑏𝑢𝑐𝑘𝑒𝑡_𝑛𝑢𝑚𝑏𝑒𝑟 (𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑖𝑛𝑠𝑒𝑟𝑡 (𝑡 ) )

8 else
9 𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ← 𝑖𝑛𝑑𝑒𝑥 𝑜 𝑓 𝑡 [𝑙𝑒𝑣𝑒𝑙 ]

10 if 𝑙𝑒𝑣𝑒𝑙 ≠ 𝑙𝑎𝑠𝑡_𝑙𝑒𝑣𝑒𝑙 then
11 𝑝𝑟𝑒 𝑓 𝑖𝑥_𝑐𝑜𝑢𝑛𝑡 [𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ]+ = 1
12 𝑛𝑒𝑥𝑡_𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑏𝑢𝑐𝑘𝑒𝑡 [𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ]

𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑒𝑛𝑡𝑟𝑦 ← 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑡, 𝑛𝑒𝑥𝑡_𝑏𝑢𝑐𝑘𝑒𝑡 )
13 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑏𝑢𝑐𝑘𝑒𝑡 [𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ] ←

𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑒𝑛𝑡𝑟𝑦.𝑏𝑢𝑐𝑘𝑒𝑡_𝑛𝑢𝑚𝑏𝑒𝑟

14 if 𝑖𝑠_𝑝𝑎𝑡𝑐ℎ_𝑏𝑢𝑐𝑘𝑒𝑡 then
15 𝑝𝑎𝑡𝑐ℎ_𝑘𝑒𝑦 [𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ] ← 𝑡 [𝑙𝑒𝑣𝑒𝑙 − 1]

/* release lock if parallel */

16 return 𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡

positives are eliminated in the last level using the stored payload
to verify the results.
To avoid non-aligned memory access, patch bits and keys are

stored in memory regions separate from the key-value pairs (indi-
cated by the rectangular boxes in Figure 3). The patch-bit vector
is designed for a minimal footprint to keep it cache-resident. The
patch keys are rarely accessed in inner levels (only if a bucket is
patched) and are, thus, negligible in terms of memory traffic.
Sonic achieves the required performance for worst-case opti-

mal join algorithms by combining a highly predictable, single-
allocation, approximate data structure (the unpatched levels) with
a ‘disambiguating‘ mechanism (the patch structure) to guarantee
correctness. Such a data structure is unprecedented and highly
novel. The design is based on the insight that disambiguating
can be expensive if it is rare.

3.4 Sonic Operations
The build of the Sonic index is comprised of a scan of the input

and the insertion of every tuple (one at a time). The probe phase
of the join consists of a series of lookup queries. In this section, we
describe the operations supported by Sonic to meet the Generic
Join requirements.

3.4.1 Insert. A new tuple 𝑡 (𝑎1, ..., 𝑎𝑘 ) is inserted into a Sonic
index by hierarchically storing one attribute per level. Similar to
a hash-trie, values are hashed to determine their position in the
level. However, instead of hashes the values are stored to allow
the index to match the exact prefix at each level without requiring
further traverse of the table. Based on the initial hash, Sonic
performs linear probing to find a slot. Additionally, a counter for
the key is set which holds the number of tuples that match the
prefix.
At the first level, inserting 𝑡 is virtually identical to insertion in

a hash-table with the key 𝑎1: If the key is already present at that
level, the insert immediately progresses to the next level after
incrementing the prefix counter (Alg. 2: 11-12). If the key is not
yet present, the prefix counter is set to 1 and a new, empty bucket
is allocated at the second level, and a pointer to it is stored as
the Next Bucket (Alg. 2: 3-5). To accelerate the reservation of new
buckets sonic keeps a pointer to the next empty bucket during
the build phase.
At the second level, 𝑎2 constitutes the key. Its position is deter-

mined by summing up the Next Bucket value with a hash of 𝑎2
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Algorithm 3: prefixLookup
Input: Tuple t = < 𝑎1, 𝑎1, ..., 𝑎𝑙 >
Input: integer bucket_number = k

1 Function prefixLookup(𝑡, 𝑘):
2 if 𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑎𝑠𝑡_𝑙𝑒𝑣𝑒𝑙 then
3 for 𝑒𝑣𝑒𝑟𝑦 𝑇𝑢𝑝𝑙𝑒 𝑡 ∈ 𝐵𝑢𝑐𝑘𝑒𝑡 𝑘 do
4 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

⋃{𝑡 }
5 return 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

6 if 𝑙𝑒𝑛𝑔𝑡ℎ (𝑡 ) > 𝑙𝑒𝑣𝑒𝑙 then
7 𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ← 𝑖𝑛𝑑𝑒𝑥 𝑜 𝑓 𝑡 [𝑙𝑒𝑣𝑒𝑙 ]
8 𝑛𝑒𝑥𝑡_𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑏𝑢𝑐𝑘𝑒𝑡 [𝑒𝑛𝑡𝑟𝑦_𝑠𝑙𝑜𝑡 ] )
9 return 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 .𝑝𝑟𝑒 𝑓 𝑖𝑥𝐿𝑜𝑜𝑘𝑢𝑝 (𝑡, 𝑛𝑒𝑥𝑡_𝑏𝑢𝑐𝑘𝑒𝑡 )

10 else
11 𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝑏𝑢𝑐𝑘𝑒𝑡 𝑜 𝑓 𝑡 [𝑙𝑒𝑣𝑒𝑙 ]
12 if 𝑝𝑎𝑡𝑐ℎ_𝑏𝑖𝑡 [𝑏𝑢𝑐𝑘𝑒𝑡 ] == 1 then
13 for 𝑒𝑣𝑒𝑟𝑦 𝑘𝑒𝑦 ∈ 𝑏𝑢𝑐𝑘𝑒𝑡 do
14 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 𝑜 𝑓 𝑘𝑒𝑦

15 if 𝑝𝑎𝑡𝑐ℎ_𝑘𝑒𝑦 [𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥 ] == 𝑡 [𝑔𝑒𝑡 < 𝑙𝑒𝑣𝑒𝑙 − 1 >] then
16 𝑛𝑒𝑥𝑡_𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑏𝑢𝑐𝑘𝑒𝑡 [𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥 ] )
17 𝑝𝑟𝑒 𝑓 𝑖𝑥 ← {𝑡, 𝑘𝑒𝑦}
18 𝑛𝑒𝑥𝑡_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ←

𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 .𝑝𝑟𝑒 𝑓 𝑖𝑥𝐿𝑜𝑜𝑘𝑢𝑝 (𝑝𝑟𝑒 𝑓 𝑖𝑥, 𝑛𝑒𝑥𝑡_𝑏𝑢𝑐𝑘𝑒𝑡 )
19 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

⋃
𝑛𝑒𝑥𝑡_𝑟𝑒𝑠𝑢𝑙𝑡𝑠

20 else
21 for 𝑒𝑣𝑒𝑟𝑦 𝑘𝑒𝑦 ∈ 𝑏𝑢𝑐𝑘𝑒𝑡 do
22 𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥 ← 𝑖𝑛𝑑𝑒𝑥 𝑜 𝑓 𝑘𝑒𝑦

23 𝑛𝑒𝑥𝑡_𝑏𝑢𝑐𝑘𝑒𝑡 ← 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙_𝑏𝑢𝑐𝑘𝑒𝑡 [𝑘𝑒𝑦_𝑖𝑛𝑑𝑒𝑥 ] )
24 𝑝𝑟𝑒 𝑓 𝑖𝑥 ← {𝑡, 𝑘𝑒𝑦}
25 𝑛𝑒𝑥𝑡_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ←

𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 .𝑝𝑟𝑒 𝑓 𝑖𝑥𝐿𝑜𝑜𝑘𝑢𝑝 (𝑝𝑟𝑒 𝑓 𝑖𝑥, 𝑛𝑒𝑥𝑡_𝑏𝑢𝑐𝑘𝑒𝑡 )
26 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

⋃
𝑛𝑒𝑥𝑡_𝑟𝑒𝑠𝑢𝑙𝑡𝑠

modulo the size of the bucket (different combination schemes are
possible). If the slot is empty, 𝑎2 is inserted and the prefix counter
set to 1. The next bucket value set to the first empty bucket in the
third level.
In the example shown in Figure 3, <12,9,56,27> is inserted by

hashing 12 into the first level and the prefix counter set to 1. As the
level 2 is empty, 9 is placed in the second slot of the first bucket of
the second level with the prefix counter set to 1. Finally, the tuple
is stored in the third level and no prefix counter is required at
this level. When inserting <87,1,84,13>, the 87 is already present
in the first column, so the prefix counter is incremented by 1 and
1 is inserted in bucket 2 in the next level.
If all the bucket slots are full, the probing continues until a

free slot is found – 𝑎2 has ‘spilled into‘ a different bucket. In
this case, to disambiguate the values, the bucket is marked as
patched and 𝑎1 stored as the patch key and the values that are
already present in the bucket are patched (Alg. 2: 15). In Figure 3,
inserting <87,44,50,12> illustrates the overflowing and patching
logic: since 87 exists in the first level the process updates the
prefix counter to 3 and follows the bucket index to the next level.
When probing bucket 2 of level 2, it is found to be full. Hence the
next bucket is probed and an empty slot is found. This means
that bucket 3 at level 2 now contains keys with prefixes 68 and
87. Thus, it needs patching: the patch bit for bucket 3 is set and
the patch key for the newly inserted key and 73 is set to 87 and
0, respectively.

3.4.2 Parallel insert. Sonic uses locks to ensure the integrity
of the hash table (multiple identical keys only occur once in
every level). To reduce the locking overhead we implemented
key-range locking per level and found empirically that locking
at a granularity of 8192 provides robust and close-to-optimal
performance (never more than 30% worse than optimal).

3.4.3 Prefix lookup. If the query tuple is a prefix, the result
is either the number of data tuples or the actual data tuples that
match the hierarchical lookups. Assume, e.g., the query tuple

t’(𝑎1,𝑎2,...𝑎𝑙 ) where 𝑙 < 𝑘 and k is the length of data tuples in the
index. The search traverses the first l-1 levels, looking up for 𝑎1 to
𝑎𝑙−1. At level 𝑙 , if the search is successful, count prefix operations
are answered immediately using the prefix count value.
The next bucket field leads us to the next level where we can

find all data tuples that match the prefix (Alg. 3: 7-9). For each
entry in the bucket at level 𝑙 + 1 the search moves to the next
level and continues the process at level 𝑙 + 2. The same steps are
taken for all match elements from level 𝑙 + 2 towards the last
level 𝑘 − 1 (Alg. 3: 11-26) and all data tuples are retrieved from
the leaf nodes (Alg. 3: 5). Point lookup is a special case of prefix
lookup that the prefix has the same length as the data tuples.
Likewise, the count prefix returns only the number of the tuples
with a common prefix. In Figure 3 to lookup <68, 73, 15, 8>, the
hash of 68 is computed to determine its position in the first level.
As the key is found, the next bucket number, i.e. 3, is used to
lookup 73 in the second level of the index. This bucket is patched;
therefore, the patch key should be checked and in case of success,
the search process is continued in bucket 4 in the last level. Then,
the remaining elements of the tuple are compared with the tuple
stored in the last level the operation returns a successful result.

3.5 Space Overhead
Before concluding this section, let us briefly discuss Sonic’s

memory overhead. For a tuple t(𝑎1,...,𝑎𝑘 ) in which element at
position i, 𝑒𝑖 , has size 𝐷𝑇𝑆𝑖 and an overallocation factor 𝑂𝐹 ,
Sonic allocates:
𝑂𝐹 ×

(∑𝑖=𝑘−1
𝑖=1 𝐷𝑇𝑆𝑖 + ((𝑘 − 2) × 8𝐵) +

∑𝑖=𝑘−2
𝑖=2 𝐷𝑇𝑆𝑖 +

∑𝑖=𝑘
𝑖=1 𝐷𝑇𝑆𝑖 + 1𝑏

)
At each level, the element, 𝑒𝑖 i = 1, ... k-2 is stored as key. For

the first and inner levels, the prefix counter and the next bucket
pointer are stored alongside the patch structure and the tuples
are stored in the last level. For 1000 tuples, 4 integers each, the
Sonic index requires at least 24KB of memory.

4 SONIC JOIN
Naturally, a high-performance index structure is only one part

of building a high-performance join implementation. A second,
equally important, component is a highly efficient implemen-
tation of the algorithm itself. The current trend towards code-
generating/just-in-time compiling database engines [35, 43] demon-
strates that index structures need to be tightly interwoven with
the processing engine. EmptyHeaded [4], e.g., follows that ap-
proach: it generates code for a custom index structure. However,
such an integrated design makes it virtually impossible to eval-
uate different index structures on a ‘level playing field‘, i.e., all
other factors being equal. It also limits applicability as, for ex-
ample, large value domains do not dictionary encode well. To
address this problem, we followed a different approach: imple-
menting the critical section of the algorithm exclusively using
C++ templates and allowing the compiler to specialize the code.
In this section, we provide details to illustrate how performance
is achieved by a hardware-conscious implementation.

4.1 Worst-case Optimal Joins in C++ templates
To facilitate the evaluation of different index structures un-

der the assumption that their code would be JIT-generated by
a modern database engine, we developed an implementation of
the Generic Join algorithm that can emulate the behavior of JIT-
compiling DBMSs. Our implementation uses C++ templates to
generate, inline and optimize code as well as data structures at
compile time using the compiler’s own optimizer. The objective
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Listing 1: Sonic Join API

1 con s t e xp r Capac i t y 1024
2 con s t e xp r Buck e t S i z e 8
3
4 us ing TableSchema = tup l e < in t , i n t > ;
5 us ing T a b l eA t t r i b u t e ID s = A t t r i b u t e I n d e x <0 , 1 > ;
6 us ing Tota lOrderSchema = tup l e < in t , i n t > ;
7 us ing A t t r i b u t e I n d e x i n gO r d e r = A t t r i b u t e I n d e x <0 , 1 > ;
8
9 us ing Index = Sonic <Capac i ty , Bucke tS i z e , i n t , i n t > ;
10 us ing IndexAdapte r = Son i c IndexAdap te r <TableSchema ,

Tota lOrderSchema > ;
11
12 auto t ab l eA =
13 Re l a t i on < IndexAdapter , TableSchema , T a b l eA t t r i b u t e ID s ,

A t t r i b u t e I n d e x i ngOrd e r >( inpu tDa ta ) ;
14 auto t a b l eB =
15 Re l a t i on < IndexAdapter , TableSchema , T a b l eA t t r i b u t e ID s ,

A t t r i b u t e I n d e x i ngOrd e r >( inpu tDa ta ) ;
16
17 j o i n ( tab leA , t a b l eB ) ;

of designing such a framework is to assess the performance of
a code-generating DBMS that is achieved without the prohibi-
tive effort of implementing the various data structures in such
a DBMS. Briefly, this framework allows ‘plugging in‘ any C++
index as long as it provides the required operations and generates
highly optimized code (inlined, vectorized, etc.). To the best of
our knowledge, there is no similar framework available for public
use and our contribution in building such a framework that could
be useful for other researchers.
In our implementation, the entire query plan is expressed as

a C++ template expression and instantiated by the template
pre-processor. Through the use of modern C++ template meta-
programming features such as parameter packs, non-type tem-
plate parameters and SFINAE, even recursive data structures
(such as Sonic) and recursive algorithms (like the Generic Join)
can be expressed in a concise manner.
To gain an impression of the API, consider Listings 1 and 2:

listing 1 shows an interface of a self-join in our engine. Lines
1 and 2 define the capacity and the bucket size in Sonic. The
schemas for the input table and the final tuple, (contains the
values of the total order), are represented in lines 4 and 6 (in this
case, all tables have the same schema). In line 5 an integer id is
assigned to each column using a non-type template parameter,
which is used in the join operation to join tuples based on the
common column ids. Line 7 represents the index of each column
in the total order. These two non-type template parameters avoid
run-time iterations for constructing the final tuples (see List. 2).
An index structure is defined in line 9 with the defined capac-

ity and size of buckets – while we use Sonic here, any index is
possible as long as an adapter is defined to support the lookup
operations. Types of the tuple elements, i.e. types of keys in the
index, are provided in a pack of template parameters. To instanti-
ate the index structure, these parameters (known at compile time)
will be unpacked and used at the associated level of the index.
To construct the index, a tuple has to be decomposed and each
element needs to be inserted into the appropriate level. Using
the SFINAE feature of C++, the compiler can instantiate the right
data structure for each level based on the type of the element.
The following line (10) defines the index adapter that extracts an

index-compatible prefix (using the non-type template parameters
(9 and 10)) from a final tuple schema, which has the total order
schema. After performing the prefix operation by the index, the
result is placed in the final tuple and the result of the join is
computed. This mapping process is done at compile-time and
does not impose any run-time costs on the system. In Listing
1, lines 13 and 15 construct two indices and the order of the
attributes is determined by their position in the final tuple. In

Listing 2: Index Join Adapter

1 t emp l a t e < s i z e _ t . . . O f f s e t s >
2 auto l o okupByP r e f i xWi t h I nd i c e s (
3 Tota lOrderSchema cons t& t ,
4 make_index_sequence < P r e f i xLeng th >> con s t ) {
5 index . p r e f i xLookup
6 ( ( get <get < P r e f i x I n d i c e s > ( O f f s e t s . . . ) >( t ) ) . . . ) ;
7 }
8
9 t emp l a t e < s i z e _ t . . . V i a b l e P r e f i x >
10 auto l o okupByP r e f i xAndS c a t t e r I n t oTup l e (
11 Tota lOrderSchema cons t& t ,
12 s i z e _ t c on s t p r e f i xLeng th ,
13 index_sequence < V i a b l e P r e f i x . . . > con s t &) {
14 ( ( r e s u l t = ( ( V i a b l e P r e f i x +1 == p r e f i x L eng t h ) ?
15 lookupByPre f ixWi thLength < V i a b l e P r e f i x +1 >( t )
16 : r e s u l t ) ) , . . . ) ;
17 }

case the schema of the input table is not consistent with the total
order schema, the attributes are reordered by the index adapter.
Listing 2 illustrates the details of the prefix extraction and the

replacement of the results from index prefix lookup. For the
prefix-lookup function (13) on a given final tuple, the prefix
is extracted. To do so, a pack of non-type parameters for the
given prefix length is generated by the compiler from a recursive
function (line 13). By unpacking these parameters (line 6), the
column ids of the prefix attributes are calculated. Subsequently,
the prefix lookup is performed (4) and the preliminary results are
used for the next steps to join with the other tables. The same
process is repeated to extract the prefix from the new tuples
and perform the prefix lookup on the next relations. Since this
process is implemented using template meta-programming, the
compiler generates the code for extracting the prefixes at compile
time thus there is no performance drop caused by the adapter.
Once the indices are created the join function is called, the last

line in Listing 1 causes the instantiation of the actual join. Similar
to the datalog notation, the query is ‘implicitly‘ defined through
the tables AttributeID parameter (attributes with the same ID are
joined). Afterwards, the compiler’s low-level optimizer generates
the data structure, eliminates constants and common subexpres-
sions and inlines function calls. The result is an implementation
that, while time-consuming to compile, allows easy experimen-
tation with different queries, index structures and tuple types.
This framework can be used to perform a variety of experiments

to select the best index with the highest performance without
implementing all the alternatives in a DBMS. All that is needed
is to define the schema of the tables and the schema of final
tuples, then call the join function. Since the join operation is fully
templated, the compiler generates the most optimized code and
reduces time and human effort.

4.2 Parameters
Like most index structures, to accommodate different work-

loads tuning parameters of Sonic need to be set to achieve the
best performance. Like classic hash tables, Sonic relies on over-
allocation to avoid long probe chains, which are particularly
harmful as they lead to overhead for checking patches. We found
that overallocation by higher factors improves performance at
the cost of a higher memory footprint. To support parameter
exploration and facilitate experimentation, Sonic is implemented
in highly templatized C++ and accepts parameters, i.e. Key type,
hash function, bucket size, and capacity, at compile-time.

4.3 Determining the total attribute order
The last component of a worst-case optimal join implementa-

tion is the determination of total attribute order. While we believe
that determining the total order in a C++ template program at
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compile time would be possible but the cumbersome effort does
not worth the time. Because this order is required only once at
the beginning of the program to instantiate the index and all
the calculations, e.g. building the QP-tree, traversing the nodes,
and extracting the order, should be done using sophisticated
metaprogramming. Consequently, we implemented the total or-
der algorithm in a Python script that faithfully implements the
total order calculation algorithm proposed by Ngo et al. [39]
and emits a file containing the total order as a C++ template
instantiation per table (basically line 2 in Listing 1). While we
are aware that alternative total order calculation algorithms have
been proposed [34], we consider the discussion and evaluation
of these outside the scope of this paper.

5 EVALUATION
We are interested in Sonic’s performance compared to competi-

tors with similar feature sets: we compare point-lookup runtime
to established hash-maps and prefix-lookup time versus trees
and tries. A purpose of this study is to evaluate the worst-case
optimal join algorithm; we analyze the performance of the im-
plemented Generic Join algorithm in different ways, i.e. using
different indices, varying key sizes and different types of queries.
We compare the achieved results with binary join and an exist-
ing JIT-code generation system, Umbra [22]. In this section, we
provide the results of experiments for both the Sonic index and
the Generic Join algorithm.

5.1 Experimental Setup
All experiments were conducted on a system with two Intel-

Xeon Silver 4114 CPU (10 cores running at 2.2 GHz 32 KB L1,
256 KB L2 and 25600 KB L3 cache). This system has 32GB DDR4
RAM all experiments have been made on a single thread. We
used Google Benchmark v1.5.0 as a microbenchmark library to
measure the performance of each index as an isolated component.
Also, it is used for macro benchmarking and evaluating the per-
formance of the join algorithms. We used clang++ 11 compiler
and all the experiments have been executed on Linux Ubuntu
18.04 OS.

5.2 Data
For the microbenchmarks, the input is a sequence of uniform

random numbers generated by Zipfian distribution. Unless oth-
erwise stated, the size of each input table is 256M tuples with the
number of columns varying from 2 to 8.Consequently, the size of
the input data ranges from 4 GB to 16 GB and it is assured that it
does not fit into the cache.

5.3 Workload
We compared the execution time for index operations in Sonic

with different members from each group. For point or prefix-
lookup experiments, half of the query tuples are selected from
tuples which have not been inserted into the index. This allows a
good estimate of index performance in the real world and makes
sure that all levels of the index are traversed during the search. For
prefix lookups, the prefix size is considered half the size of keys in
table. We evaluated the join algorithm for real-world graph-like
data using Wikipedia vote network, the Epinions trusts network,
Facebook and Twitter social networks [32] as well as Join Order
Benchmark [30] queries to evaluate the algorithm on Internet
Movie Database (IMDB) dataset.

5.4 Baselines
To establish baselines, we evaluated Sonic against indices that

are highly tuned and fast in comparison to other competitors:
Abseil Hash Set [7], Adaptive Radix Tree (ART) [31], TLX-BTree
[15], Hierarchical Abseil Hash Map [7], HAT-Trie (HTrie) [1],
Hash-Trie [22], Tessil Robin Hood Fast Hash Map [45], SuRF
[48] for build and point lookup. We use the same hash function
(Murmur[2]) for all hash-based indices to provide an accurate
comparison.
Since not all indices support prefix-lookup, we compared Sonic’s

with TLX-BTree, ART, Hierarchical Abseil Hash Map (a hier-
archical hash table which is a hash table of Abseil Hash Map
tables), and Tessil HAT-Trie for prefix-lookup and count-prefix
operations. Unfortunately, the current implementation of SuRF
does not support prefix lookup and it only provides approximate
count-prefix. So we exclude it from these operations experiments.

5.5 Build
The first step in any indexed join algorithm is building the

index. Naturally, the objective is minimal build time. We evalu-
ated the performance of building an index for 256M randomly
generated tuples while varying the number of columns from 2
to 8. Figure 4 illustrates that for a two-column table, Sonic has
the lowest build time as avoids any extra traversing of the levels
but its performance drops by increasing the number of columns
because of traversing more middle layers. Generally, trees and
tries are expensive indices to build; expectedly, HAT-Trie and
BTree have high build times. Hierarchical Hash Map build time
grows dramatically when the number of columns increases and
it needs to be expanded exponentially to allocate a separate hash
table for a different prefix. Abseil Hash Set, Fast Map, and SuRF
are very robust against an increased number of columns and
have a minimum rise among the indices. Hash-Trie postpones
building the intermediate tables for single or unaccessed tuples.
So, the initial build time is robust in this experiment for a differ-
ent number of columns. However, in practice the build time is
higher than other competitors due to extra access to the tuples
and redistributing them into the middle layers.

5.6 Point lookup
Figure 5 illustrates the point-lookup performance of different

indices for ten thousand random lookups in a table. Expectedly,
hash-based indices are fast for point lookup: Tessil Hash Map and
Abseil Hash set perform better than others. Sonic performs well
for the two-column table lookup but takesmore time to find larger
tuples as it needs to traverse more layers. Similarly, Hierarchical
Hash Map is fast for two-column table (because it does a single
lookup in a hash table) but its performance drops when the tuple
size increases. BTree and Tessil HAT-Trie have high point-lookup
time due to pointer chasing and their hierarchical structure. In
HAT-Trie, the large number of key comparisons is responsible
for the low performance. SuRF has robust point-lookup time
but it is not faster than hash indices. Hash-Trie performs well
in comparison to tree-based indices but as it needs to build the
intermediate tables once the tuple is accessed, its lookup time is
lower than other hash based indices such as Sonic.

5.7 Prefix Lookup and Count Prefix
Prefix lookup and count prefix are essential to determine the

list/number of all match tuples with the given prefix in linear
time. Consequently, we compared the indices that support these
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Figure 4: Build Performance Figure 5: Point Lookup Performance Figure 6: Prefix Lookup Performance

Figure 7: Count Prefix Performance Figure 8: Performance for different Length of Prefix Figure 9: Prefix LookupPerformance for different alpha value
(Zipfian distribution)

operation The results of performing ten thousand prefix-lookups
in Figure 6 demonstrate that Sonic is the fastest among all com-
petitors. The performance of the Hierarchical Hash Map drops
as the size of the tuple increases and the chains of hash tables
that need to be searched become longer. ART and BTree have a
similar performance and both are faster than HAT-Trie, because
of they require fewer key comparisons and they have lower cache
miss rate.
Figure 7 demonstrates the results of ten thousand prefix-count

queries in which Sonic is the fastest among all competitors. Hi-
erarchical Hash Map is faster than BTree and HAT-Trie in the
two-column table, as it does not need to traverse any long chains
of hash tables, but as the tuple size increases its performance
drops. Similar to the prefix lookup, ART and BTree have a close
performance, although ART becomes slower when the tuple size
increases.

5.8 Length of the prefix
In prefix-lookup operation, a longer prefix leads to fewer results.

Figure 8 illustrates the performance of different indices for dif-
ferent prefix lengths. The Sonic index performs better when the
length of the prefix is longer, as the hash lookup is faster when
the key is determined. The performance of the tree and trie-based
indices are largely unaffected by the length of the prefix. Since
the data is almost uniformly distributed, the performance of all
indices do not change significantly by increasing the length of
the prefix. However, changing the data distribution could impact
the lookup time.

5.9 Skew
Figure 9 shows the performance of different indices for skewed

data in ten thousand prefix-lookup operations on an eight-column

table. The prefix length is set to four and the alpha parameter
in the Zipfian distribution has been increased from 0 to 1. The
performance of the Sonic index and HAT-Trie drop for highly
skewed data due to long chains of key comparisons in the leaves.
Sonic with a larger bucket size performs better in prefix-lookup
operation but it may impact the build time. Figure 18 illustrates
the memory usage by index and as mentioned before (see Section
3.5), Sonic memory footprint is a constant factor of the data size.

5.10 Sonic Bucket Size
The size of the buckets in Sonic can be tuned for the memory

allocation and performance trade-off. Large bucket size leads to
a higher overallocation factor but reduces the operation time.
Figure 17 shows the operation time (build, point-lookup, and
prefix-lookup) on uniformly distributed data for different bucket
sizes. By increasing the bucket size, build time grows but the
point-lookup time and prefix-lookup time decrease due to a lower
bucket overflow rate.

5.11 Sonic Parallel Build
Sonic performs concurrent inserts by acquiring locks at the

granularity of multiple buckets which affects index performance.
Figure 16 illustrates the build time for a varying number of
threads and the lack of NUMA optimization is apparent. An
interesting future work could be extending the current Sonic
implementation to a NUMA-optimized version.

5.12 Variable-length keys
Sonic supports variable-length keys but the key comparisons

reduce its performance (dictionary encoding techniques could
solve this problem). Figure 13 illustrates the performance of Sonic,
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Figure 10: Lookup time for different No. patch buckets Figure 11: Lookup time for different index size Figure 12: Insert time for different No. patch buckets

which has the worst performance compare to other indices. How-
ever, in practice most systems implement joins on strings using
dictionary-encoded strings, in which case Sonic would perform
as it does on an integer key.

5.13 Cache Footprint
In order to verify that the Sonic index and specifically the patch

structure is cache efficient, we measured the lookup time of one
million random point-lookup operations in a table that contains
16M tuples for three different situations: only checking the hash
key in the column, checking the hash key plus checking patch
bit, and checking the hash key, patch bit and patch key. In the
first two experiments, since no extra operation is required even
if the bucket is patched, the lookup time is constant. While in
the third case, we artificially set the patch bits of the buckets to
1 for an increasing number of buckets, which means the index
needs to perform extra comparisons for the patch keys; thus, the
lookup time increases (Figure 10).
In Figure 11 we vary the size of the index and measure the

point-lookup time for random tuples in the same setup. As can
be seen, as long as the index fits in the L1 cache the lookup time
per tuple remains constant. When the size of the index increases,
the number of cache misses increases and the lookup time per
tuple rises. Since the patch structure requires more memory
space, the green line (lookup time for a hash key, patch bit, and
patch key) increasing point is lower than the other two cases.
To conclude, these two figures demonstrate that the Sonic index
patch structure is cache efficient when the index fits into the
cache and when the size of the index is larger than the L3 cache,
which supports the hardware-conscious design of the Sonic index.
Based on the results represented in Figure 12, the computational
cost of the patch structure is negligible and the disambiguating
mechanism does not impose significant overhead.

5.14 Join Performance
One of our key objectives is to evaluate the performance of the

established Generic Join algorithm when supported by different
index structures. To this end, we evaluate the performance of
the Generic Join in cycle counting problems and in join queries
against EmptyHeaded [4] and Hash-Trie worst-case optimal join
[22] as references. As an additional baseline, we implemented
each join as a sequence of fully pipelined binary joins (we do not
evaluate materializing join algorithms, e.g. radix-joins, due to
their poor cache locality). The Generic Join has found applica-
tion in graph processing frameworks such as EmptyHeaded or
a relational DBMS such as Umbra. Consequently, we evaluated

the performance of Generic Join using different indices for cycle
counting in a graph. Figure 14 illustrates the performance of
Generic Join with different indices for cycles in 3, 4, and 5 tables
corresponding to finding triangles, rectangles, and pentagons in
a graph. Each table in this experiment has 16M rows and two
columns. Sonic has been configured for the best performance
and it is the fastest index in all three experiments. Hash-Trie
Join’s performance is very close to the Sonic index but due to
extra access to tuples for build and not being able to eliminate
singleton tuples without accessing the actual tuple it is slightly
slower. BTree and HAT-Trie have very close performances. Hier-
archical hash map, in this specific problem, performs well as the
chain of hash maps is as short. EmptyHeaded runs out of mem-
ory in joining 5 tables and did not finish the experiment. This
is surprising insofar as graph processing was the key workload
for which EmptyHeaded was designed. However, it validates the
performance of our implementation of the Generic Join using
C++ templates (as well as the optimization capabilities of modern
compilers). Additionally, we compared its results with a snap-
shot of Umbra (9be9093cc) and observed only a slight difference,
which supports our purpose for the framework.

5.15 Generic Join vs Hash-Trie Join (Umbra)
As mentioned in Section 1, Hash-Trie Join, as implemented in

Umbra [22], can be improved and there are circumstances that
assumptions in the Hash-Trie Join approach do not lead to the
optimal performance. Hash-Trie join is a specialized version of
the worst-case optimal join algorithm that evaluates the query
by assuming that each weight in the fractional edge cover equals
1. Under that assumption, the size of the anchor relation (i.e. the
relation which is scanned to filter out the values without a match
in other relations) is smaller than the size of the join of all other
relations avoids the cost of the computations to estimate the size
of that sub-problem in the Generic Join. Umbra’s Hash-Trie index
implements singleton pruning and lazy expansion to improve
the build time. However, in cases, such as when tables are sorted
differently, the removedHash-Trie layers in the singleton pruning
phase can be useful in the join processing to avoid redundant
iterations. As the data becomes more skewed, Hash-Trie Join
performance decreases because it requires building middle layers
at run-time and traversing the Hash-Trie twice, and re-distribute
the tuples. Figure 15 illustrates such a case for joining relations
𝑅1(𝑎, 𝑏, 𝑑, 𝑒), 𝑅2(𝑎, 𝑐, 𝑑, 𝑓 ), 𝑅3(𝑎, 𝑏, 𝑐), 𝑅4(𝑏, 𝑑, 𝑓 ), and 𝑅5(𝑐, 𝑒, 𝑓 )
and data distribution is such that cover the above description.
In this case, both Sonic and Hash-Trie (Umbra) are performing
better than the binary join but Sonic outperforms Hash-Trie by
a factor of 2 because Umbra is not in fact worst-case optimal.
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Figure 13: Build Performance for Variable-length Keys
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Figure 16: Sonic Parallel Build Performance
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In the case of WCOJ algorithms, the index is built ad-hoc for a
single query and the build cost needs to be amortized over that
query. As the breakdown shows, the total time for the WCOJ
approaches is dominated by the build time while the Binary Join
spends most of the time in the lookup operation.

5.16 Real Data Evaluation
To further evaluate the Generic Join, we used a real dataset,

Wikipedia vote network, Epinions trusts network, Facebook and
Twitter social networks data to compare the performance of the
Generic Join with different indices. Table 1 illustrates triangle
counting results using Generic Join (GJ) with different indices
(BTree, HAT-Trie, Sonic, and Hierarchical Map) comparing to
Binary Join (BJ), Hash-Trie Join (HTJ), and EmptyHeaded (EH)
and the results show that Generic Join with Sonic is the fastest
in most of the experiments.
We used Join Order Benchmark Light (JOB-Light) [47] data to

evaluate the join algorithm for different indices. In this experi-
ment, only joined attributes are being indexed and all combina-
tions of tables are covered in the join queries. Table 1 demon-
strates that the binary join outperforms the WCOJ algorithms,
because this is not a worst-case situation.

6 RELATEDWORK
Ngo et al. [38] proposed a novel algorithm to process natural

join queries for worst-case complexity. Their algorithm, known
as NPRR, is based on the work of Atserias, Grohe, and Marx [11]
and the defined optimal bound, called AGM bound, of the size of
conjunctive queries. The NPRR algorithm relies on prefix match-
ing of tuples and requires an index that supports the lookup
operations efficiently for the algorithm’s running time to satisfy
the AGM bound. Despite theoretical proof of the NPRR algorithm,
which has been used in other inequalities[16, 21, 33], no practical

Table 1: Cycle Counting Performance for real data (s)

Join Facebook Wikipedia Epinions Twitter JOB

BJ 1.997 4.404 25.685 61.228 8.57
𝐺𝐽 𝐵𝑇𝑟𝑒𝑒 0.06 0.288 0.547 4.839 18.86
𝐺𝐽𝐻𝑇𝑟𝑖𝑒 0.995 1.513 8.631 20.027 21.46
𝐺𝐽 𝑆𝑜𝑛𝑖𝑐 0.029 0.042 0.256 2.275 14.25
𝐺𝐽𝐻𝑀𝑎𝑝 0.045 0.118 0.386 3.06 18.31

HTJ 0.037 0.509 0.874 2.945 13.25
EH 10.61 12.43 17.7 33.73 NA

Umbra 0.025 0.071 0.343 2.05 9.453

implementation for the algorithm was provided. Ngo et al., by
delivering the NPRR algorithm and their extensive theoretical
work, provided a foundation for subsequent work on worst-case
optimal join (WCOJ) algorithms such as "beyond worst-case al-
gorithms" [6, 8, 14, 29, 37] and operators beyond joins [4, 26–28].
Veldhuizen [46], claimed that the NPRR algorithm presented by

Ngo et al. in [38] is not, in fact, worst-case optimal and proposed
a new approach, called Leapfrog Triejoin. Later, Ngo et al. [39]
proved both algorithms are special cases of a general algorithm
which had been proposed in a study by Ngo et al. [40]. Nguyen et
al. [41] examined both Leapfrog Triejoin and the join algorithm
presented in [38] on graph datasets, and both methods have
similar performance.
Various implementations for the WCOJ algorithm have been

proposed for different hardware and applications but their limita-
tions, such as being query-specific or expensive precomputation
for persistent indexes, prevent their exploitation [3–5, 20]. Re-
cently, Freitag et al. [22] proposed a new hash-trie-based WCOJ
algorithm and employed it within the Umbra DBMS [36] for both
graph processing applications and general-purpose join queries.
Furthermore, they developed a hybrid query optimizer to com-
bine the classic binary and the newWCOJ within the same query
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plan. However, their approach is a specialization of the Generic
Join [39] algorithm and does not take into consideration the AGM
bound for the sub-problems.
Despite always being worst-case optimal, WCOJ algorithms

are highly dependent on the order of join attributes. The NPRR
[38] algorithm employs a heuristic approach while others take
different approaches such as cost-based heuristic models [9, 46],
or relying on built-in optimization models within the DBMS [22].
With respect to indexing our work is related to hash tables that

provide fast point lookup, but do not support prefix or range
queries, as opposed to trees or tries. Intending to improve the
classical simple probing methods and reduce the number of col-
lisions, Robin Hood hashing [18] has been proposed. Facebook
F-14 table [44] is a 14-way probing hash table which is memory
and CPU efficient. Tries offer a trade-off that uses more memory
for the sake of faster lookups than trees. Askitis et al. [10] pro-
posed a cache-conscious trie structure for variable-length string
management. Recently, Zhang et al. [48] designed a new data
structure, Fast Succinct Trie, and developed a Succinct Range Fil-
ter that supports both point lookups and range lookups. Freitag et
al.[22] used a built-in hash-trie data structure in Umbra forWCOJ
algorithm. Although the index is not customized for WCOJ algo-
rithms and some of the optimization techniques impose negative
effects on the join performance.

7 FUTUREWORK
Improving multi-threaded version and optimizing the number

of locks based on the workload is very beneficial. Additionally,
balancing the workload among the threads using methods such
as work-stealing would be interesting.
A second line of work would be to broaden the usefulness of

the Sonic index by auto-configuring for optimal performance
with respect to the query and data type. Furthermore, it can be
used for different applications. Specifically, the Leapfrog Trie
Join algorithm requires a trie-like interface to an index structure.
Such an interface could be provided in a straight-forward manner
by sorting the input before building Sonic.

8 CONCLUSION
While worst-case optimal join algorithms live up to their name

in terms of robustness, their performance is significantly worse
than that of classic join algorithms. One of the key components
to making them performance-competitive is an index structure
that performs all the operations fast. To contribute such an index,
we developed Sonicthat combines a fast build phase with best-of-
breed lookup performance. Supported by Sonic-indices, theworst-
case optimal Generic Join algorithm performs up to 2.5 times
better than using Sonic’s fastest competitor. This performance
gain transforms the Generic Join algorithm from an approach that
is "academically interesting" to one that is "practically useful".
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