SOUTHERN BRAZILIAN, JOURNAL OF CHEMISTRY SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

SYNTHESIS AND ANTIMICROBIAL PROFILE OF SOME NEWER HETEROCYCLES BEARING THIAZOLE MOIETY

Rajul Gupta¹*, Neeraj Kumar Fuloria², Shivkanya Fuloria²

61

¹Department of Pharmacy, CMJ University Modrina Mansion, Laitumkhrah, Shillong Meghalaya-793 003, INDIA Email: rajulgupta01@yahoo.co.in ²Department of Pharmaceutical Chemistry Anuradha College of Pharmacy, Chikhli, Dist. Buldana, Maharashtra, INDIA.

Author's correspondence address:

Rajul Gupta, A-1/A-8, Shalimar Garden Extension-2, Ghaziabad-201005, U.P., India Phone No.: +91-9266132514 Email: rajulgupta01@yahoo.co.in, rajulgupta001@gmail.com

ABSTRACT

Various substituted acetophenones on treatment with iodine and thiourea yielded 2amino-4-(substituted-phenyl)-thiazole, which on further treatment with acetic anhydride generated N-(4-(substitutedphenyl)thiazol-2-yl)acetamide (1-5). All the synthesized compounds were characterized by their respective FTIR, ¹H NMR and mass data. Synthesized compounds (1, 2, 3, 4, 5) when subjected to investigation for their antimicrobial activities i.e. antibacterial and antifungal studies against *Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Asperigillus flavus and Asperigillus fumigatus* by disk diffusion method, revealed that compound 2 deemed to be most potent with largest zone of inhibition.

KEYWORDS: Thiazole, Acetophenones, Antimicrobial, Substituted Aldehydes.

RESUMO

Tratamento de acetofenonas substituídas com iodo e tiouréia levou a formação de vários 2-amino tiazóis -4- (fenilsubstituidos). O tratamento destes com anihidrido acético gerou N-(4-fenilsubstituido)tiazol-2-il) acetamidas (1-5). Todos os compostos sintetizados foram caracterizados com técnicas de infravermelho com transformadas de Fourier, RMN de ¹H e espectrometria de massa. As propriedades firmacêuticas dos compostos 1,2,3,4 e 5 foram avaliadas com *Staphylococcus aureus, Eschericia coli, Pseudomonas aeruginosa, Cândida albicans. Aspergillus flavus e Aspergillus fumigatus.* O composto 2 foi o mais potente.

PALAVRAS CHAVE: Tiazol, Acetofenonas, Aldeídos Substituídos, Atividade Antimicrobiana.

VISIT OUR SITE: http://www.sbjchem.he.com.br

SOUTHERN BRAZILIAN, JOURNAL OF CHEMISTRY SOUTH, BRAZ. J. CHEM., Vol. 20, No. 20, 2012

New Heterocycles Bearing Thiazole Moiety

62

INTRODUCTION

Thiazole derivatives have attracted a great deal of interest owing to their anticancer activity¹⁻³, antibacterial activity⁴, antifungal activity⁴, anti-inflammatory activity⁴, antitubercular activity⁵, cardiotonic activity⁶, antidegenerative activity on cartilage⁷ etc. Thiazoles are known to be allosteric enhancer of A₁ adenosine receptors⁸ whereas other analogs are known to be inhibitors of protein phosphatases⁹. Heterocycle-bearing substrates are particularly desirable structures for screening and are prevalent in drugs that have reached the market place.

The development of simple and general synthetic routes for widely used organic compounds from readily available reagents is one of the major challenges in organic chemistry. Therefore to meet the facile results of these tough challenges thiazole nucleus was being considered. Among the wide variety of heterocycles that have been explored for developing pharmaceutically molecules, thiazole derivatives have played a vital role in the medicinal chemistry. There are large numbers of synthetic compounds with thiazole nucleus used for anticancer activities when properly substituted at 2-position. In view of these observations and in continuation to develop better and potent anticancer agents, some newer thiazole derivatives were synthesized.

MATERIALS AND METHODS

Melting points were taken in open capillaries and are uncorrected. IR spectrum of compounds in KBr pellets were recorded on a FTIR-8400S spectrophotometer (SHIMADZU). ¹HNMR spectra of the compounds were recorded on Bruker DRX 300 NMR spectrophotometer in DMSO-d₆ using TMS as internal standard. Mass spectra of the compounds were recorded on MSN-9629 mass spectrometer. Elemental analysis was carried out on Elemental Vario EL III Carlo Erba 1108. The purity of compounds was monitored by thin layer chromatography. Thin layer chromatographic analysis of the compounds were performed on silica gel G coated glass plates using Chloroform: Methanol: Pet.Ether (9:1:0.5) as mobile phase. The spots were visualized by exposure to iodine vapours.

General method for the synthesis of 2-amino-4-(substituted-phenyl)-thiazole

Various substituted acetophenones (0.01mol) were refluxed with iodine (0.01mol) and thiourea (0.02mol) for 9 hrs to get 2-amino-4-(substituted-phenyl)thiazole. The solid obtained was washed with diethyl ether, after which it was washed with sodium thiosulfate. Finally, it was washed with water and the residue was filtered, dried and recrystallized from distilled water.

General method for the synthesis of (1-5)

Then, 2-amino-4-(substituted-phenyl)thiazole (0.01mol) was refluxed with acetic anhydride (0.01mol) for 2hrs. This led to the formation of N-(4-(substituted-phenyl)thiazol-2-yl)acetamide (1-5). The final products were purified by recrystallization from ethanol. Physical data of compounds synthesized are summarized in Table-1.

SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

R. Gupta, N. K. Fuloria and S. Fuloria

Compound	R	Molecular	Mol.	Yield	m.p. (°C)
		Formula	Wt.	(%)	
Į	H	C ₁₁ H ₁₀ N ₂ OS	218.27	61	98-99
2	<i>p</i> -chloro	C ₁₁ H ₉ ClN ₂ OS	252.72	69	209-210
3	<i>p</i> -bromo	C ₁₁ H ₉ BrN ₂ OS	297.17	65	202-203
4	<i>p</i> -hydroxy	$C_{11}H_{10}N_2O_2S$	234.27	65	141-142
5	o-hydroxy	C11H10N2O2S	234.27	70	115-116

Table-1. Physical data of compounds (1-5)

N-(4-phenylthiazol-2-yl)acetamide (1): UV λ_{max} (Methanol): 232 nm. FTIR (KBr): 3392.55 (N-H stretching), 2977.89 (aromatic C-H stretching), 2931.6 (C-H stretching of methyl), 1622.02 (C=O stretching), 1569.95 (C=N stretching), 1498.59 (aromatic C-C stretching), 690.47 cm⁻¹ (C-S stretching of thiazole). ¹HNMR (DMSO-d₆) δ: 2.142 (s, 3H, CH₃), 7.117 (s, 1H, =C-H of thiazole), 7.273-7.854 (m, 5H, Ar-H), 8.854 ppm (s, 1H, NH, D₂O exchangeable). ESI-MS: m/z (%) 219 (8) [M+1]⁺, 218 (43) [M]⁺, 203 (40), 175 (100), 134 (43), 133 (23). Elemental Analysis: Calcd for C₁₁H₁₀N₂OS : C, 60.53; H, 4.62; N, 12.83; S, 14.69. Found; C, 60.50; H, 4.63; N, 12.81; S, 14.68 %.

N-(4-(4-chlorophenyl)thiazol-2-yl)acetamide (2): UV λ_{max} (Methanol): 224 nm. FTIR (KBr): 3394.48 (N-H stretching), 2981.74 (aromatic C-H stretching), 2947.03 (C-H stretching of methyl), 1623.95 (C=O stretching), 1564.16 (C=N stretching), 1492.8 (aromatic C-C stretching), 746.4 (C-Cl stretching), 651.03 cm⁻¹ (C-S stretching of thiazole). ¹HNMR (DMSO-d₆) δ : 2.466 (s, 3H, CH₃), 6.545 (s, 1H, =C-H of thiazole), 7.116-7.625 (m, 4H, Ar-H), 9.154 ppm (s, 1H, NH, D₂O exchangeable). ESI-MS: m/z (%) 254 (17) [M+2]⁺, 253 (6) [M+1]⁺, 252 (46) [M]⁺, 237 (32), 209 (100), 168 (42), 167 (22). Elemental Analysis: Calcd for C₁₁H₉ClN₂OS : C, 52.28; H, 3.59; Cl, 14.03; N, 11.08; S, 12.69. Found: C, 52.27; H, 3.57; Cl, 14.02; N, 11.06; S, 12.71 %.

N-(4-(4-bromophenyl)thiazol-2-yl)acetamide (3): UV λ_{max} (Methanol): 225 nm. FTIR (KBr): 3417.63 (N-H stretching), 3029.33 (aromatic C-H stretching), 2993.32 (C-H stretching of methyl), 1672.17 (C=O stretching), 1598.88 (C=N stretching), 1488.94 (aromatic C-C stretching), 693.26 (C-S stretching of thiazole), 570.89 cm⁻¹ (C-Br stretching). ¹HNMR (DMSO-d₆) δ : 2.763 (s, 3H, CH₃), 6.967 (s, 1H, =C-H of thiazole), 7.317-7.825 (m, 4H, Ar-H), 8.778 ppm (s, 1H, NH, D₂O exchangeable). ESI-MS: m/z (%) 299 (43) [M+2]⁺, 298 (8) [M+1]⁺, 297 (42) [M]⁺, 282 (40), 254 (100), 213 (32), 212 (27). Elemental Analysis: Calcd for C₁₁H₉BrN₂OS : C, 44.46; H, 3.05; Br, 26.89; N, 9.43; S, 10.79. Found: C, 44.45; H, 3.01; Br, 26.87; N, 9.46; S, 10.80 %.

N-(4-(4-hydroxyphenyl)thiazol-2-yl)acetamide (4): UV λ_{max} (Methanol): 242 nm. FTIR (KBr): 3558.42 (O-H stretching), 3406.05 (N-H stretching), 3048.29 (aromatic C-H stretching), 2923.88 (C-H stretching of methyl), 1631.67 (C=O stretching), 1554.52 (C=N

SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

New Heterocycles Bearing Thiazole Moiety

64

stretching), 1526.93 (aromatic C-C stretching), 675.04 cm⁻¹ (C-S stretching of thiazole). ¹HNMR (DMSO-d₆) δ : 2.228 (s, 3H, CH₃), 4.955 (s, 1H, OH, D₂O exchangeable), 6.369 (s, 1H, =C-H of thiazole), 7.296-7.658 (m, 4H, Ar-H), 8.564 ppm (s, 1H, NH, D₂O exchangeable). ESI-MS: m/z (%) 235 (6) [M+1]⁺, 234 (28) [M]⁺, 219 (22), 191 (100), 150 (20), 149 (14). Elemental Analysis: Calcd for C₁₁H₁₀N₂O₂S : C, 56.39; H, 4.30; N, 11.96; S, 13.69. Found: C, 56.40; H, 4.33; N, 11.98; S, 13.65 %.

N-(4-(2-hydroxyphenyl)thiazol-2-yl)acetamide (5): UV λ_{max} (Methanol): 267 nm. FTIR (KBr): 3555.6 (O-H stretching), 3408.42 (N-H stretching), 3046.05 (aromatic C-H stretching), 2926.05 (C-H stretching of methyl), 1633.88 (C=O stretching), 1554.07 (C=N stretching), 1523.96 (aromatic C-C stretching), 1291.67 (C-O stretching), 673.68 cm⁻¹ (C-S stretching of thiazole). ¹HNMR (DMSO-d₆) δ : 2.156 (s, 3H, CH₃), 4.702 (s, 1H, OH, D₂O exchangeable), 6.911 (s, 1H, =C-H of thiazole), 7.316-7.625 (m, 4H, Ar-H), 8.778 ppm (s, 1H, NH, D₂O exchangeable). ESI-MS: m/z (%) 235 (6) [M+1]⁺, 234 (28) [M]⁺, 219 (22), 191 (100), 150 (20), 149 (14). Calcd for C₁₁H₁₀N₂O₂S : C, 56.39; H, 4.30; N, 11.96; S, 13.69. Found: C, 56.37; H, 4.33; N, 11.98; S, 13.67 %.

Antimicrobial activity

The synthesized compounds 1-5 were screened for antibacterial (*S. aureus, E. coli, P. aeruginosa*) and antifungal (*C. albicans, A. flavus, A. fumigatus*) activities by disk diffusion method at a concentration of 2 mg/mL using DMF as a solvent. The results were recorded in duplicate using Ciprofloxacin and Fluconazole as standards and are given in Table 2 & 3.

1 om pounda	Zone of Inhibition (mm)				
Compounds	S. aureus	E. coli	P. aeruginosa		
1.	15.5 ± 0.00	17 ± 0.33	16 ± 0.00		
2.	21.5 ± 0.33	20.5 ± 0.00	19.3 ± 0.00		
3.	19.7 ± 0.67	20.3 ± 0.33	20,3 ± 0.33		
Ą,	16.4 ± 0.00	15 ± 0.00	15.5 ± 0.00		
5.	17.3 ± 0.00	17 ± 0.33	17 ± 0.67		
Ciproflexacin	27 ± 0.00	28 ± 0.00	27 ± 0.00		
DMF	10	500 EU			

Table-2: Antibacterial Activity of compounds (1-5)

SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

R. Gupta, N. K. Fuloria and S. Fuloria

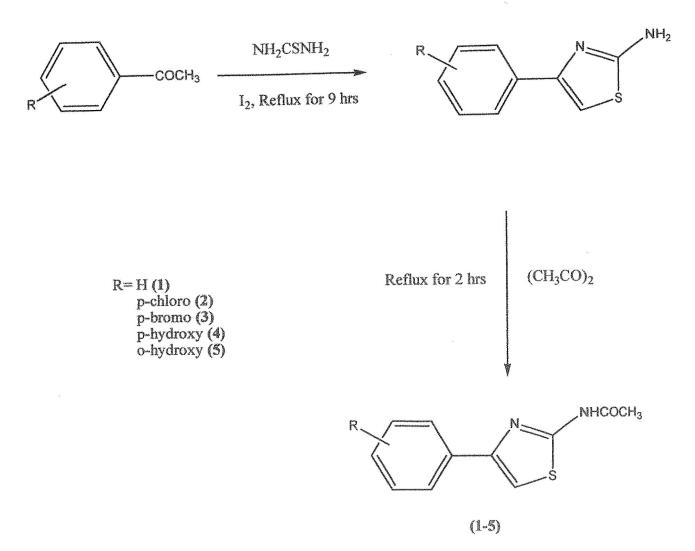
Commona	Zone of Inhibition (mm)				
Compounds	C. albicans	A. flavus	A. fumigatus		
and a state	5.4 ± 0.00	5.0 ± 0.00	6.5 ± 0.00		
2.	11.3 ± 0.33	12.5 ± 0.00	11 ± 0.00		
3.	10.7 ± 0.67	9.3 ± 0.33	8.3 ± 0.33		
4.	8.2 ± 0.00	7.4 ± 0.00	8.0 ± 0.00		
5.	8.3 ± 0.00	7.8 ± 0.00	8.7 ± 0.67		
Fluconazole	17 ± 0.00	16 ± 0.00	17 ± 0.00		
DMF	**************************************		900 		

Table 3. Antifungal Activity of Compounds (1-5)

RESULTS AND DISCUSSION

Various substituted acetophenones reacted with iodine and thiourea to get 2-Amino-4-(substituted-phenyl)-thiazole¹⁰. Nextly, the 2-amino group of 2-Amino-4-(substituted-phenyl)-thiazole was acetylated with acetic anhydride, which led to the formation of *N*-(4-(substitutedphenyl)thiazol-2-yl)acetamide (1-5) in moderate to good yields (Scheme-1). The FTIR spectra of compounds 1-5 exhibited bands in the region of 3344.12-3417.23 cm⁻¹ due to N-H stretching and in the region 1622.02-1672.46 cm⁻¹ due to C=O stretching of amide. In ¹H NMR spectra of compounds 1-5, one proton singlet appeared between δ 8.85-9.15 ppm was assigned to N-H proton which disappeared on D₂O exchange.

The structures of the synthesized compounds were assigned on the basis of elemental analysis, ¹H NMR, FTIR and mass spectral data and physical data. The synthesized compounds 1-5 were screened for antibacterial (*S. aureus, E. coli, P. aeruginosa*) and antifungal (*C. albicans, A. flavus, A. fumigatus*) activities by disk diffusion method at a concentration of 2 mg/mL using DMF as a solvent. This revealed that compound 2 deemed to be most potent with the largest zone of inhibition for both i.e. antibacterial activity and antifungal Activity.


VISIT OUR SITE: http://www.sbjchem.he.com.br

SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

New Heterocycles Bearing Thiazole Moiety

66

SCHEME 1:

Where R = H, p-chloro, p-bromo, p-hydroxy and o-hydroxy- group

SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY SOUTH. BRAZ. J. CHEM., Vol. 20, No. 20, 2012

R. Gupta, N. K. Fuloria and S. Fuloria

Acknowledgement

The authors are thankful to IIT, Delhi and CDRI, Lucknow for providing facilities.

REFERENCES

- 1. L. B. Townsend, Y. Kumar, R. Green and S. Dean, J. Med. Chem., 36 (1993), 3849.
- K. Tomita, Y. Tsuzuki, K. Shibamori and M. Tashima, J. Med. Chem., 45 (2002), 5564.
- M. J. Gorczynski, R. M. Leal, S. L. Mooberry and J. H. Bushweller, *Bioorg. Med. Chem.*, 12 (2004), 1029.
- 4. A. V. Adhikari, T. Karabasanagouda, R. Dhanwad and G. Parameshwarappa, *Indian J. Chem.*, **47B** (2008), 144.
- S. R. Pattan, A. A. Bukitagar, B. P. Kapadnis and S. G. Jadhav, Indian J. Chem., 48B (2009), 1033.
- 6. T. Giridhar and R.B. Reddy, Indian J. Chem., 40 B (2001), 1279.
- A. M. Panico, A. Geronikaki, R. Mgonzo and I. Doytchinova, *Bioorg. Med. Chem.*, 11 (2003), 2983.
- A. Goblyos, S.N. Santiago, D. Pietra, T.M. Krieger, J.V.F.D. Kunzel, J. Brussee and A.P. Ijzerman, *Bioorg. Med. Chem.*, 13 (2005), 2079.
- P. Wipf, D.C. Aslan, E.C. Southwick and J.S. Lazo, *Bioorg. Med. Chem. Lett.*, 11 (2001), 313.
- B. Sutariya, S. K. Raziya, S. Mohan and S. V. Sambasiva Rao, Indian J. Chem., 46B (2007), 884.
- 11. S. Philip, S. Ritsa, S. Dominic and R. B. Michale, J. National cancer Inst., 82 (1990), 1107.

VISIT OUR SITE: http://www.sbjchem.he.com.br

The SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY (ISSN: 2674-6891; 0104-5431) is an open-access journal since 1993. Journal DOI: 10.48141/SBJCHEM. http://www.sbjchem.com.

[©] The Author(s)

OPEN ACCESS. This article is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) International License , which permits use, sharing , adaptation , distribution , and reproduction in any medium or format , as long as you give appropriate credit to the original author (s) and the source , provide a link to the Creative Commons license , and indicate if changes were made. The images or other third-party material in this article are included in the article's Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license unless indicated by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.