
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Lucas Prado Melo

k-Level Stochastic Facility Location Problems

Problemas de Localização de Instalação Estocásticos

k-Níveis

CAMPINAS

2016

Lucas Prado Melo

k-Level Stochastic Facility Location Problems

Problemas de Localização de Instalação Estocásticos k-Níveis

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Lehilton Lelis Chaves Pedrosa
Co-supervisor/Coorientador: Prof. Dr. Flávio Miyazawa e Prof. Dr. Rafael
Schouery

Este exemplar corresponde à versão final da
Dissertação defendida por Lucas Prado Melo
e orientada pelo Prof. Lehilton Lelis Chaves
Pedrosa.

CAMPINAS

2016

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Lucas Prado Melo

k-Level Stochastic Facility Location Problems

Problemas de Localização de Instalação Estocásticos k-Níveis

Banca Examinadora:

• Prof. Dr. Lehilton Lelis Chaves Pedrosa
Universidade Estadual de Campinas

• Prof. Dr. Uéverton dos Santos Souza
Universidade Federal Fluminense

• Prof. Dr. Eduardo Candido Xavier
Universidade Estadual de Campinas

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 12 de agosto de 2016

Resumo

O problema de Localização de Instalações (FLP, do inglês Facility Location Problem) é
um problema de Otimização Combinatória no qual instalações precisam ser construídas
para satisfazer a demanda de um conjunto de clientes. Esse problema possui aplicação em
muitas áreas, como serviços de saúde, transporte, logística e produção. Nesta dissertação,
discutiremos algoritmos de aproximação para algumas generalizações do FLP: o k-LFLP
(FLP em k níveis), no qual instalações são organizadas hierarquicamente e clientes são
atendidos por cadeias de instalações de todos os níveis hierárquicos; o FLP Dinâmico e
Estocástico (respectivamente DFLP e SFLP), onde custos de abertura e a demanda de
clientes muda através do tempo; e variações do FLP Estocástico em k-Níveis (k-LSFLP)
que combinam elementos de ambos os problemas anteriores.

Inicialmente, revisamos resultados para o k-LFLP, DFLP e SFLP que utilizamos pos-
teriormente para obter algoritmos de aproximação para o k-LSFLP e sua variação de
“Restrição de Estágio” (k-LSSCFLP). Para o k-LSFLP, obtivemos uma (2k − 1 + o(1))-
aproximação cujo fator de aproximação é 3.495, 5.157 e 7.034 para, respectivamente,
k = 2, 3 e 4. E, para o k-LSSCFLP, obtivemos uma (4 − o(1))-aproximação que possui
fator de 2.56, 2.68 e 2.95 para k = 2, 3 e 4 respectivamente.

Abstract

The Facility Location Problem (FLP) is a Combinatorial Optimization problem in which
some facilities must be built to satisfy demands of a set of clients. It has applications in
many areas such as health services, transportation, logistics and production. In this thesis,
we will discuss approximation algorithms for some generalizations of the FLP: the k-Level
FLP (k-LFLP), where facilities are organized hierarchically and clients are satisfied by
chains of facilities spanning all levels; the Dynamic and Stochastic FLP (DFLP and SFLP,
respectively), where opening costs and client demands change over time; and variations of
the k-Level Stochastic FLP (k-LSFLP) that combines elements of both previous problems.

We first review results for the k-LFLP, DFLP and SFLP that we later utilize to pro-
vide approximation algorithms for the k-LSFLP and the “Stage Constrained” k-LSFLP
(k-LSSCFLP). For the k-LSFLP, we obtain a (2k − 1 + o(1))-approximation whose ap-
proximation factor is 3.495, 5.157 and 7.034 for, respectively, k = 2, 3 and 4. And, for the
k-LSSCFLP, we obtain a (4− o(1))-approximation that has approximation factor of 2.56,
2.68 and 2.95 for k = 2, 3 and 4 respectively.

Contents

1 Introduction 8
1.1 Preliminary definitions . 9
1.2 The Uncapacitated FLP . 12

2 The k-Level Facility Location Problem 16
2.1 Literature overview . 16
2.2 A (3− o(1))-approximation for the k-LFLP 18

2.2.1 ILP formulation . 18
2.2.2 Clustering . 21
2.2.3 Randomized Facility Opening . 21
2.2.4 Analysis . 25

3 The Dynamic Facility Location Problem 30
3.1 Reduction from the SFLP to the DFLP . 31
3.2 A 1.86-approximation for the DFLP . 33

3.2.1 Algorithm description . 33
3.2.2 Phase 1: obtaining a feasible dual solution 35
3.2.3 Phase 2: obtaining a feasible primal solution 35
3.2.4 Phase 3: greedy augmentation . 36
3.2.5 Analysis . 36

4 Approximation for the k-LSFLP 44
4.1 k-LSSCFLP . 45

4.1.1 LP Formulation . 46
4.1.2 Clustering and rounding . 47
4.1.3 Algorithm and analysis . 48

4.2 k-LSFLP . 50
4.2.1 Algorithm . 50
4.2.2 Analysis . 51

5 Concluding remarks 54

Bibliography 55

Chapter 1

Introduction

In the Facility Location Problem (FLP), we look to open facilities to serve clients in a way

that minimizes total cost, including costs for opening the facilities and costs associated

with the distance from clients to their closest open facilities. This problem along with

its variants compose an important class of network design problems with applicantion in

many areas, such as health services, transportation, logistics and production (see [16, 12,

35]).

Each variation of the FLP consider aspects of certain real-world applications. For

example, facilities might have a maximum capacity of clients it can serve, or an adversary

might destroy a number of facilities after they were built. In this thesis, we will be

concerned specifically with the k-level FLP (Chapter 2), the Dynamic and Stochastic

FLP (Chapter 3) and the k-Level Stochastic FLP (Chapter 4).

The k-level FLP assumes that facilities form a hierarchy and every client must be

served by a chain of facilities of all hierarchical levels. For instance, in a 3-level FLP, we

might interpret third-level facilities as factories, second-level facilities as warehouses and

first-level facilities as stores, thus modelling a simplistic version of a supply chain.

The Dynamic FLP considers change of facility costs and client demands over time.

There is a set of discrete time slots, each with its own client demands and facility opening

costs. During a time slot, clients might have their demand satisfied by facilities opened

at that time slot or earlier, but choosing facilities opened earlier might incur in additional

costs.

Stochastic variants of the FLP model uncertainty over final facility opening costs and

client demands. Decisions are taken in two time periods known as stages. In the first one,

some facilities might be open for a first-stage cost and, in the second stage, one scenario

is realized determining opening costs and the set of clients that need to be satisfied.

For more details about those problems, including a brief summary of previous works,

please refer to their specific chapters.

FLP is an NP-hard problem, even without the additional difficulties introduced by

its generalizations, therefore we cannot hope to find a polynomial-time algorithm that

solves it optimally if P 6= NP . We can, however, relax some of the constraints imposed

by the problem to come up with more practical solutions. In this thesis, we will describe

so-called approximation algorithms for some FLP variations, that is, instead of describing

algorithms that obtain optimal solutions, we will describe polynomial-time algorithms

8

CHAPTER 1. INTRODUCTION 9

that are guaranteed to obtain solutions that are close to optimal in a certain sense.

We combined techniques from approximation algorithms for the k-level FLP and

the Dynamic FLP to obtain approximations to two variations of the k-Level Stochas-

tic FLP (k-LSFLP). We obtained a (4− o(1))-approximation algorithm for the metric

stage-constrained k-LSFLP (k-LSSCFLP). For k = 2, 3, 4, the algorithm has factors

2.56, 2.78 and 2.95, respectively. These bounds improve on the best known factor of 4 by

Wang et al. [32] for the k-LSSCFLP, and of 3 + ǫ by Wu et al. [36] for the 2-LSSCFLP.

Also, we obtained a 3.495-approximation algorithm for the 2-LSFLP, that can be gen-

eralized to a (2k − 1 + o(1))-approximation algorithm for the k-LSFLP. This is the first

approximation algorithm for the k-LSFLP. For values of k = 3, 4, it has factors 5.157 and

7.0334, respectively.

We will provide some preliminary definitions in Section 1.1 and describe a simple

variation of the FLP and one approximation algorithm for it in Section 1.2. Chapters 2

and 3 review approximation algorithms for different variations of the FLP, introducing

techniques that are used by our algorithms to the k-LSFLP and k-LSSCFLP. Chapter 4

presents our results. Finally, we close the thesis in Chapter 5 with some concluding

remarks.

1.1 Preliminary definitions

An optimization problem P is a set of instances. Every instance I ∈ P is a tuple

(F, c, goal) where F is the set of feasible solutions, c : F → R+ is the objective function

and goal ∈ {minimize,maximize} establishes the type of solution sought in this instance.

In other words, if goal = minimize, then I asks for a feasible solution with minimum

objective value, that is, it looks for f ∈ F such that, for every x ∈ F , c(f) ≤ c(x).

Otherwise, in case goal = maximize, it looks for f ∈ F such that, for every x ∈ F ,

c(f) ≥ c(x).

Combinatorial optimization problems are optimization problems in which instances’

feasible solutions are finite or countably infinite. For example, in an instance of the Set

Cover problem, we have a set U , a finite family {Si}i∈I of subsets of U , and a cost

function w : I → R+ and we wish to choose a subset I ′ ⊆ I such that
⋃

i∈I′ Si = U

and
∑

i∈I′ wi is minimum. In this case, feasible solutions are all subsets I ′ ⊆ I such that
⋃

i∈I′ Si = U and the objective function is c(I ′) =
∑

i∈I′ wi. Since the size of the set of

feasible solutions is finite in every instance (it is at most 2|I|), the Set Cover problem is

a combinatorial optimization problem.

If we assume that P 6= NP , some combinatorial optimization problems (such as FLP

and Set Cover) cannot be solved by polynomial-time algorithms. However, some relaxed

versions of those problems have more practical solutions. We will be concerned with

polynomial-time algorithms that abandon the optimality requirement but provide certain

approximation guarantees. Namely, we will talk about α-approximations.

An α(n)-approximation, for a function α : N → [1,∞), is a polynomial-time algo-

rithm for a combinatorial optimization problem that, for each instance (F, c) of size∗ n,

obtains a feasible solution f ∈ F such that, if the optimal solution has cost OPT, then

CHAPTER 1. INTRODUCTION 10

c(f) ≤ α(n)OPT. We also define as α(n)-approximations polynomial-time randomized

algorithms that obtain solutions whose cost either in expectation, with high probabil-

ity, etc. is at most α(n) times the optimal. Alternatively, for maximization problems,

α : N → (0, 1] and the returned feasible solution f meets c(f) ≥ α(n)OPT instead of

c(f) ≤ α(n)OPT.

For a more comprehensive and detailed introduction to optimization and combinatorial

optimization, see, for example, the introductory chapters in [24] or [4]. To learn more

about approximation algorithms, see, for example, [34] or [29].

Linear programs (commonly abbreviated LP) are optimization problems that look for

a point x ∈ Rn meeting certain linear inequalities and/or linear equations and minimizing

(or, alternatively, maximizing) a linear expression given by a function f : Rn → R which

is its objective function. Recall that a linear function on a point x ∈ Rk is any func-

tion g : Rk → R in the form g(x1, x2, . . . , xk) = c0 + c1x1 + c2x2 + · · · + cnxn, where

c0, c1, . . . , ck ∈ R, and linear inequalities/equations are relations respectively in forms

g(x) ≤ h(x) and g(x) = h(x), where g and h are linear functions. Optimal solutions

to linear programs can be found in polynomial time as proven by Khachiyan [18].

Linear programming is a large and well studied field. Here, we only succintly discuss

results that are useful to us. To learn more, the interested reader may refer to textbooks

on the subject, for example, [28] and [11]

In standard form, linear programs can be succintly expressed as:

maximize c′x

subject to Ax ≤ b (1.1)

x ≥ 0

where A = (aij) ∈ Rm×n is a real matrix with the coefficients of the inequalities, c ∈ Rn

is the real vector with the coefficients of the objective function and b ∈ Rm is a vector.

Here, the unary operator “ ′” denote transposition, e.g. c′ is the c transposed. Notice that

any linear program can be transformed into the standard form by applying elementary

algebraic manipulations, adding new variables and/or linear constraints, and/or exchang-

ing the signal of the coefficients of the objective function (to transform a minimization

problem to a maximization one).

A point x ∈ Rn such that Ax ≤ b is called a feasible point or solution to the LP. The

set of feasible points is the feasible region or set of the LP. In some cases, the feasible

region for a linear program is empty because there is no point that satisfies all constraints

simultaneously, e.g. there cannot be any point in which inequalities x1+x2 ≤ 3, x2−x1 ≥ 1

and x1 ≥ 4 are met. If a linear program has an empty feasible region, it is called infeasible,

otherwise it is called feasible.

Feasible points x with maximum or minimum objective value for, respectively, a max-

imization or minimization problem are called optimal solutions. However, not all feasible

∗The size of an instance is a fundamental concept in Computational Complexity Theory that requires

many details to be defined precisely. For simplicity, we assume here that, for every optimization problem,

there is an stipulated way of representing each of its instances as a string of characters, and the size of

an instance is the length of the string representing it.

CHAPTER 1. INTRODUCTION 11

linear programs have optimal solutions. In some cases, given any feasible solution x, it is

always possible to find another feasible solution x̂ for which the objective value improves,

that is, the objective value of x̂ is strictly greater/smaller than the objective value of x

for the maximization/minimization linear program. If a feasible linear program does not

have an optimal solution, then it is called unbounded, otherwise it is called bounded.

Associated with any linear program, there is a dual program for which the original

problem is called the primal program. For a linear program in the standard form as

previously defined, its associated dual program is:

minimize b′y

subject to A′y ≥ c (1.2)

y ≥ 0

where y ∈ Rm is the vector of dual variables.

Program (1.2) can be written in standard form by multiplying matrix A and vectors

b and c by −1:

maximize −b′y

subject to −A′y ≤ −c

y ≥ 0

From the dual program in standard form, it is easy to show that the dual of (1.2)

is (1.1), that is, the dual program of a dual program is the primal program.

Theorem 1.1.1 (Weak Duality). For each pair of feasible solutions x and y of the primal

and dual linear programs (1.1) and (1.2), respectively, c′x ≤ b′y.

Proof. Multiply Ax ≤ b by y′ to obtain y′b ≥ y′Ax = (A′y)′x ≥ c′x.

In some cases, both primal and dual programs are infeasible and, thus, the Weak Du-

ality Theorem holds trivially. In fact, this theorem shows that, whenever either program

is unbounded, the other is necessarily infeasible. The next theorem gives a property of

the only other possibility, when both programs have optimal solutions:

Theorem 1.1.2 (Strong Duality). If a linear program has an optimal solution x ∈ Rn,

then the dual program has an optimal solution y ∈ Rm such that c′x = b′y.

For brevity, we omit the proof for the theorem above. The interested reader might see

it in textbooks on the subject, for example [24].

The relationship y′b ≥ y′Ax ≥ c′x seen in the proof of Theorem 1.1.1 can be applied

to Theorem 1.1.2 to help characterize optimal solutions:

Theorem 1.1.3 (Complementary slackness conditions). A pair of feasible solutions x

and y for, respectively, the primal and dual linear programs (1.1) and (1.2), is optimal if

and only if:

∀i ∈ {1, 2, . . . ,m}, yi

(

bi −
n
∑

j=1

aijxj

)

= 0

CHAPTER 1. INTRODUCTION 12

and

∀j ∈ {1, 2, . . . , n}, xj

(

cj −
m
∑

i=1

aijyi

)

= 0

Proof. Assuming that x and y are optimal, we conclude from the expression y′b ≥

y′(Ax) = (A′y)′x ≥ c′x that both y′(b− Ax) = 0 and x′(c− A′y) = 0.

Conversely, assuming y′(c − Ax) = 0 and x′(b − A′y) = 0, we reach the conclusion

that y′c = b′x which can only occur if both solutions are also optimal due to weak duality

(see Theorem 1.1.1).

An alternative way of stating the complementary slackness conditions that will become

useful for us is the following: a pair of feasible solutions x and y for, respectively, the

primal and dual linear programs (1.1) and (1.2), is optimal if and only if:

∀i ∈ {1, 2, . . . ,m}, yi > 0 implies bi =
n
∑

j=1

aijxj

and

∀j ∈ {1, 2, . . . , n}, xj > 0 implies cj =
m
∑

i=1

aijyi

that is, whenever a variable of either the primal or dual program is different than zero,

its associated inequality in the other program is met with equality.

1.2 The Uncapacitated FLP

Now, we will review an algorithm by Jain and Vazirani [17] for the Uncapacitated FLP to

illustrate how Linear Programming can be used to obtain approximation algorithms and

to set the tone for the rest of this thesis.

The Uncapacitated FLP is a (minimization) Combinatorial Optimization Problem in

which every instance I has a set of clients C, a set of facilities F , opening costs {fi}i∈F
and a metric function c : (F∪C)2 → Q+. A function c : U2 → Q is said to be metric if and

only if it is symmetric and it satisfies the triangle inequality, that is, ∀i, j ∈ U : cij = cji
(symmetry) and ∀i, j, k ∈ U : cij ≤ cik + ckj (triangle inequality). A feasible solution of I

is a non-empty subset O ⊆ F of facilities to be opened whose objective value is:

∑

i∈O

fi +
∑

j∈C

min
i∈O

cij

In [17], the above problem is formulated as an Integer Linear Program (ILP), i.e. a

CHAPTER 1. INTRODUCTION 13

Linear Program in which variables can only assume integer values:

min
∑

i∈F

fiyi +
∑

i∈F ,j∈C

cijxij (1.3)

s.t.
∑

i∈F

xij = 1 ∀j ∈ C (1.4)

xij ≤ yi ∀i ∈ F , j ∈ C (1.5)

xij, yi ∈ {0, 1} ∀i ∈ F , j ∈ C (1.6)

where, for each i ∈ F and j ∈ C, yi indicates whether facility i is open and xij indicates

whether client j is connected to facility i. Expression (1.3) is the objective function,

inequalities (1.4) assert that every client must have exactly one connection, inequali-

ties (1.5) assert, that if a client is connected to a facility, that facility must be open, and

propositions (1.6) determine that the variables can only assume values in the set {0, 1}.

We can relax propositions (1.6) replacing them by xij, yi ≥ 0, ∀i ∈ F , j ∈ C to obtain

an LP. Define OPTILP and OPTLP to be the objective value of an optimal solution for,

respectively, the original ILP and the relaxed LP. Note that, since the feasible set for the

ILP is contained in the feasible set for the LP, OPTLP ≤ OPTILP .

The following is the dual program for the relaxed LP:

max
∑

j∈C

vj (1.7)

s.t.
∑

j∈C

wij ≤ fi ∀i ∈ F (1.8)

vj − wij ≤ cij ∀i ∈ F , j ∈ C (1.9)

wij, vj ≥ 0 ∀i ∈ F , j ∈ C

In [17], the authors suggested the following interpretation for the dual variables: for

each j ∈ C, if j is connected to a facility i, vj is the budget assigned to client j, wij is the

part of its budget that client j uses to open facility i and the rest of the budget is used to

pay the connection cost. It is also required that each open facility i is entirely payed by

the clients assigned to it, that is
∑

j∈D(i) wij = fi where D(i) ⊆ C is the set of all clients

assigned to facility i.

If we assume that there is an optimal solution (x, y) to the LP that is also integral,

the interpretation is consistent: if client j is connected to facility i, i.e. xij = 1, then

we have yi = 1 due to (1.5) and, through complementary slackness,
∑

j′∈C wij′ = fi and

vi = cij + wij. Also, if wij > 0 for facility i and client j, then xij = yi implying that, if

facility i is open, then client j must be connected to it. Thus, we conclude that, for each

open facility i,
∑

j∈D(i) wij = fi in this case.

The algorithm builds a feasible solution to the dual LP, employing a dual-ascent strat-

egy: in a simulated timeline, all dual variables start at 0, and, for each client j ∈ C,

variable vj is increased uniformly until it becomes frozen. The timeline stops when all

variables {vj} are frozen. Each facility is unopened at the start and can become tenta-

CHAPTER 1. INTRODUCTION 14

tively open during the algorithm. The idea is to obtain a feasible dual solution whose

value is a lower bound to the optimal integral solution. To guarantee feasibility, we must

handle the following events:

1. If, for some client j and unopened facility i, vj = cij, vj cannot increase anymore

without violating (1.9). For that reason, we start also increasing wij uniformily;

2. If, for some unopened facility i,
∑

j∈C wij = fi, we cannot increase variables {wij}j∈C
without violating (1.8). Thus, for each client j such that wij is increasing uniformily,

we freeze vj, stop increasing variables {wi′j}i′∈F and label facility i as tentatively

open;

3. If, for some client j and a tentatively open facility i, vj = cij, we cannot increase vj
or start increasing wij, so we freeze j and stop increasing variables {wi′j}i′∈F .

We cannot simply open all tentatively open facilities since it could be the case that,

for some facilities i and i′ and a client j, wij, wi′j > 0, implying that the same client

would have to pay for both facilities, while j should only pay for the facility to which it

is connected. Therefore, we will find and open a maximal independent set of tentatively

opened facilities instead of simply opening all of them.

An independent set on a graph G(V,E) is a set of vertices I ⊆ V such that there are

no vertices u, v ∈ I that are adjacent. An independent set I is a maximal independent set

if and only if there is no vertex v ∈ V \ I such that I ∪ {v} is independent.

First, we define a graph G whose vertex set is the set of tentatively open facilities and

connect facilities i and i′ if and only if there is a client j with wij, wi′j > 0. Next, create

a set I, initially empty, by iterating over all vertices, and adding a vertex v to I only if

there is no vertex u already in I such that v and u are connected.

Since no client contributes to two facilities of I, we can safely open all facilities in I.

For each j such that there is i ∈ I with wij > 0, we connect j to i. Also, for each

unconnected client j such that there is i ∈ I with vj = cij, we choose one such facility i

and connect j to i. If a client j was connected to some facility i at this point, we say that

j is directly connected to i. Note that this implies vj − wij = cij. Next, we connect all

remaining clients to their closest facilities.

For all directly connected clients, we can express their distance to the facilities con-

nected to them as a function of dual variables. The following lemma establishes a similar

relationship for indirectly connected clients.

Lemma 1.2.1. If client j is indirectly connected to facility i, then cij ≤ 3vj.

Proof. Select the tentatively open facility i′ that caused vj to become frozen. If j was not

directly connected, this implies that i′ 6∈ I, implying that there is a facility i ∈ I such

that i′ and i have an edge in G or, equivalently, there is client j′ with wij′ , wi′j′ > 0.

Let t be the time when i′ became tentatively open. Either vj became frozen at that

time, when vj = t, or vj became frozen later because vj reached ci′j, thus vj ≥ t. In the

case of client j′, if vj′ did not become frozen earlier than t, then vj′ would have become

frozen at t as i′ became tentatively open since wi′j′ > 0, thus vj′ ≤ t ≤ vj.

Chapter 2

The k-Level Facility Location Problem

The metric k-Level Facility Location Problem (k-LFLP) is composed by a set of clients C,

a set of facilities F =
⋃k

i=1Fi, where Fi is the set of facilities in the i-th level, a metric

function d : (C ∪ F)2 → Q, and facility opening costs {fi}i∈F . The problem consists

in selecting a set S =
⋃k

l=1 Sl of facilities to open, where Sl ⊆ Fl, and defining a map

φ : C → S1 × S2 × · · · × Sk that associates every client j to a path p = (i1, i2, . . . , ik) ∈

S1 × S2 × · · · × Sk, such that the cost, given by the following expression, is minimized:

∑

i∈S

fi +
∑

j∈C

d(j, φ(j)),

where, for all clients j ∈ C and paths p = (i1, i2, . . . , ik), d(j, p) = d(j, i1)+
∑k

l=2 d(il−1, il).

In this chapter, we will briefly review the history of approximation algorithms for the

k-LFLP in Section 2.1, and describe, in Section 2.2, the (3− o(1))-approximation for the

k-LFLP by Byrka and Rybicki [9] that we will later adapt for an stochastic variation of

the k-LFLP in Chapter 4.

2.1 Literature overview

For the UFLP and, as a consequence, for the k-LFLP, Guha and Khuller [14] demon-

strated that there is no algorithm with approximation ratio smaller than 1.463 if NP 6⊆

DTIME(nO(log logn)),∗ which Sviridenko (see the notes by Vygen [30]) strengthened by re-

placing the assumption by P 6= NP. Additionally, Krishnaswamy and Sviridenko [19]

proved that there is no algorithm for the k-LFLP with approximation ratio better than

1.61 for arbitrary k and 1.539 for k = 2 unless NP ⊆ DTIME(nO(log logn)).

Shmoys, Tardos and Aardal [27] created the first approximation algorithm for the

2-LFLP which uses a randomized filtering strategy based on results of Lin and Vitter [20,

21], obtaining an approximation ratio of 3.16. First, they introduced an algorithm that,

given a parameter α ∈ (0, 1) obtains a solution of cost at most max
{

1
α
, 3
1−α

}

times

the optimal value. This algorithm filters an optimal fractional solution of the instance,

∗Given a function f(n), DTIME(f(n)) roughly represent the set of decision problems for which there is

an algorithm that takes at most O(f(n)) steps for any instance of size n. Decision problems are problems

that ask a yes-or-no question.

16

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 17

by removing, for every client j, all fractional connections to paths ikj (i ∈ F2, k ∈

F1) whose length is larger than a value cj that depends on parameter α, and scaling

variables to ensure feasibility. The filtered fractional solution is later rounded in a way

that total opening cost is at most the opening cost of the fractional solution and, as a

result of triangle inequality, total connection cost is at most three times the fractional

connection cost. The resulting solution has opening cost at most 1
α
F and connection

cost at most 3
1−α

C, where F and C are the opening and connection costs of the optimal

fractional solution, respectively. This is later improved by randomizing parameter α,

selecting it uniformly from the interval (β, 1), where β ∈ (0, 1) is a parameter of this

randomization. Their analysis reveals that such procedure obtains an approximation

factor of max
{

ln(1/β)
1−β

, 3
1−β

}

, which is less than 3.16 for β = 1/e3.

Aardal, Chudak and Shmoys [1] gave the first approximation algorithm for general k,

achieving an approximation factor of 3 and improving on the result of [27] for the 2-LFLP.

Their algorithm rounds an LP relaxation by clustering clients and opening one random

path of bounded length for all clients in the same cluster.

There are also algorithms for the k-LFLP that do not require solving linear programs,

which is a very time-consuming process in practice especially for large k. Meyerson,

Mungala, and Plotkin [23] gave the first of these algorithms, obtaining an approxima-

tion factor of O(log |C|) based on their approximation algorithm to the Cost-distance

problem. Then, Guha, Meyerson, and Mungala [15] obtained the first combinatorial

approximation algorithm with a constant approximation factor, namely 9.2, followed

by Bumb and Kern’s [5] dual-ascent algorithm which was a 6-approximation (the dual-

ascent technique will be further discussed in Section 3.2). Ageev [3] observed that any

ρ-approximation for the UFLP can be used to produce a 3ρ-approximation for the k-

LFLP by a simple reduction which, in combination with Mahdian, Ye, and Zhang [22]

1.517-approximation for the UFLP, yields a 4.56-approximation for the k-LFLP. Finally,

Ye and Zhang [2] obtained a parametrizable reduction from the k-LFLP to the UFLP

reminiscent of Ageev’s reduction that, combined with the algorithm from [22], obtains

a 3.27-approximation. They were also able to achieve better approximation factors for

small k by combining their original algorithm with a recursive algorithm, obtaining, for

example, factors 2.422, 2.845, and 3.057 for k = 2, k = 3, and k = 4. Note that, for k = 2

and k = 3, their algorithm was an improvement over the 3-approximation by Aardal,

Chudak and Shmoys.

Later, Zhang [39] improved the results for k ≤ 4. First, he obtained a 1.77-

approximation for the two-level version of the problem adapted from the dual-ascent

method of [22]. In this algorithm, as clients’ “budgets” are increased, part of them are

“offered” to open second-level facilities. Those offers take into account the cost of opening

first-level facilities needed to connect each client to the second-level facility being con-

sidered, and are realized as soon as the amount offered to a facility is enough to cover

its opening cost, opening all first-level facilities involved in the transaction as well as the

second-level facility. However, while in the UFLP version of this algorithm of [22], the

amount destined to open a facility is known exactly, in this adaptation for the 2-LFLP,

one can only efficiently obtain an estimate. This lack of information reflects on the ap-

proximation factor that goes from 1.51 for the UFLP to 1.77 in the 2-LFLP. Also, the

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 18

estimation mechanism requires rounding an LP relaxation, making the dual-ascent al-

gorithm not fully combinatorial as in the UFLP case. Zhang shows that this improved

approximation for the 2-LFLP can be directly combined with results from [2] to yield a

2.51-approximation for the 3-LFLP. Zhang also combines the results from [2] with his ideas

to obtain a 2.81-approximation for the 4-LFLP. Later results by Byrka and Aardal [6] for

the UFLP in combination with Zhang’s algorithm allowed a small decrease in the approx-

imation factor for the 3-LFLP, resulting in a 2.492-approximation.

Byrka and Rybicki [9] obtained an algorithm based on a new ILP formulation. The

algorithm scales fractional opening by a parameter γ ≥ 1, and employs a clever LP

rounding technique in trees, adapted from the results by Garg, Konjevod and Ravi [13]

for the Group Steiner Tree Problem. They improve the approximation factors for all

k > 2, which became 2.02 for k = 3, 2.14, for k = 4 and 2.24 for k = 5, and converges to

3 as k goes to infinity. This algorithm is covered in detail in Section 2.2.

Finally, Byrka, Li and Rybicki [8] adapted the algorithm from [9] to a generalization of

the k-LFLP known as the Prize Collecting k-LFLP where, instead of necessarily connect-

ing every client to a path, every unconnected client in a solution adds a penalty cost. An

instance of the k-LFLP can be represented as an instance of that generalization by simply

setting penalties to prohibitively high values. By running the algorithm for certain scaling

parameters and taking the best solution, they obtained better approximation ratios for

all k > 2. For example, for k = 3, k = 4 and k = 5, the ratios were 1.97, 2.09 and 2.19

respectively.

2.2 A (3− o(1))-approximation for the k-LFLP

In this section, we review the (3 − o(1))-approximation for the k-LFLP by Byrka and

Rybicki [9] for constant k. Their algorithm uses an ILP formulation that “creates” many

copies of the facilities and organizes them in a forest structure, allowing an adaptation of

a procedure described in [13] to be later utilized for rounding the LP relaxation. Although

the authors also presented a way to use cost scaling to improve the approximation factor,

we will not discuss it here.

2.2.1 ILP formulation

The basic idea of the ILP formulation is to create a forest R whose nodes represent paths

starting at a l-th level facility, ending in a k-th level facility and passing through facilities

of all levels in-between in ascending order. Symbolically, let Pl represent such paths

starting at a l-th level facility, that is Pl = Fl × Fl+1 × · · · × Fk, also let PF =
⋃k

l=1 Pl

represent all possible paths/nodes.

All paths p = (il, il+1, . . . , ik) ∈ PF are also interpreted as copies of facility il with the

additional constraint, in the case l < k, that all clients served by this copy must also be

served by the copy of facility il+1 associated with the path p′ = (il+1, il+2, . . . , ik). As a

consequence, there is the natural notion of node p′ being considered the parent of node p.

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 20

assigned to at least one path (in optimal solutions, clients are assigned to exactly one

path). Inequalities (2.3) state that, if the path q ∈ PF is a suffix of an open path p ∈ PC

starting at a client j ∈ C, then q must also be opened. Finally, Inequalities (2.4) state

that, if a non-root node is opened, then its parent must also be opened. In the relaxed

LP, integrality constraints (2.5) are replaced by xp ≥ 0, for all p ∈ P .

This linear program has O(mnk) inequalities, where n is the number of facilities per

level, m is the number of clients and k is a fixed constant. Therefore solving the LP takes

polynomial time.

The dual program of the relaxed LP is:

max
∑

j∈C

vj

s.t. vj −
∑

q∈PF :q⊐p

wj,q ≤ cp ∀p = (j, . . .) ∈ PC (2.6)

−yp +
∑

j∈C

wj,p ≤ cp ∀p ∈ P1

−yp +
∑

q∈Pl−1:p⊐q

yq +
∑

j∈C

wj,p ≤ cp ∀l ∈ {2, . . . , k − 1}, p ∈ Pl

∑

q∈Pk−1:p⊐q

yq +
∑

j∈C

wj,p ≤ cp ∀p ∈ Pk

vj, wj,p, yp ≥ 0 ∀p, j

The Strong Duality Theorem (see Theorem 1.1.2) states that the value of an optimal

solution to a primal program (in this case, the relaxed LP) is equal to the value of

an optimal solution to the corresponding dual program. Thus, we can utilize optimal

solutions to both primal and dual programs to bound the cost of the solution obtained by

the algorithm. This algorithm does not compute the dual solution directly, it only rounds

a primal (fractional) solution. However, the following lemma provides a link to the dual

program that will be later utilized in the analysis:

Lemma 2.2.1. Let x be an optimal solution to the relaxed LP and (v,w,y) an optimal

solution to the dual program. For every path p = (j, i1, i2, . . . , ik) ∈ PC such that xp > 0,

the length of p is at most vj.

Proof. By optimality of both solutions and complementary slackness (see Theorem 1.1.3),

we know that, whenever xp > 0, Inequality (2.6) is met with equality. Symbolically, xp > 0

implies in cp − vj +
∑

q∈PF :q⊐p wj,q = 0.

Thus, cp = vj −
∑

q∈PF :q⊐p wj,q, where cp is the length of the path p as previously

defined. The result follows directly from the fact that, for all j ∈ C and q ∈ PF , wj,q is

non-negative.

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 21

2.2.2 Clustering

The algorithm executes a randomized procedure that rounds the fractional solution to

the relaxed LP, selecting facilities to open in the final integral solution. However, before

rounding the LP, it executes an auxiliary clustering procedure that partitions clients in

clusters. Later, each cluster receives from the randomized opening procedure a backup

path of bounded length (in expectation) that serves as an worst-case path to clients that

were “unlucky,” that is, clients whose fractionally connected sets were not opened by the

algorithm.

Now, we define more precisely the clustering procedure. Let x be the obtained optimal

solution to the relaxed LP and let N(j) , {p ∈ PF : ∃q ∈ P1, xjq > 0 and q ⊒ p} be the

neighborhood of a client j ∈ C, where “a ⊒ b” means that either a ⊐ b or a = b. We will

refer to nodes of certain level in the neighborhood by Nℓ(j) , N(j)∩Pℓ. Define†dav(j) ,
∑

p∈P1
xjpcjp =

∑

p∈N1(j)
xjpcjp and dmax(j) , max{cjp : p ∈ N1(j)}. The clustering

procedure works in the following way:

1 procedure Clustering():

2 C ′ ← C

3 while C ′ 6= ∅ do

4 j ← argminj′∈C′ dmax(j′) + dav(j′)

5 C ← {j′ ∈ C ′ : N(j′) ∩N(j) 6= ∅}

6 Add cluster C and make j its center

7 C ′ ← C ′ \ C

8 end

After the clustering procedure, each cluster randomly selects exactly one root in the

neighborhood of its center and places one token in it. That token will be later utilized

by the randomized facility opening procedure (see Section 2.2.3) to ensure that a backup

path of bounded length is opened for each cluster. Tokens are distributed in the following

way: for each cluster C with center j, randomly select one node in Nk(j), assigning to

each node r ∈ Nk(j) probability
∑

p∈P1:p⊒r xjp, and place a token in the selected node.

Notice that, for every pair of cluster centers j and j′, Nk(j) ∩ Nk(j
′) = ∅ and, for that

reason, it is impossible for a root to receive tokens from two different cluster centers.

2.2.3 Randomized Facility Opening

Now, we describe the randomized facility opening procedure.

Notice that each node v ∈ PF belongs to the neighborhood of at most one cluster

center. For every node v ∈ PF , let variable xv represent the fractional opening given by

the LP solution, and yv represent “how much” the cluster center associated with v “uses”

v, that is:

yv =

{

∑

p∈PC :j∈p,p⊐v xjp if v is in the neighborhood of some cluster center j

0 otherwise

†Here we denote (j, p) as jp for simplicity.

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 22

Round() is a recursive random procedure that reads the rational vector (x,y) and sets

a binary vector (x̂, ŷ) such that, for every node v ∈ PF , x̂v = 1 if and only if facility v is

opened and ŷv = 1 if and only if facility v belongs to the backup path of its associated

cluster center.

Initially, (x̂, ŷ) = 0 and Round() is executed on every root of forest R. An execution

on a node v ∈ PF may recursively call Round() on every child of v, where u is a child of

v if and only if v is the parent of u.

Let C(v) , {u ∈ PF : π(u) = v} be the set of children of node v. The pseudocode for

the procedure is presented below:

1 procedure Round(v):

2 if v has a token then

3 x̂v ← 1, ŷv ← 1

4 if v is not a leaf then

5 randomly select one node u ∈ C(v), assigning to each i ∈ C(v)

probability yi
yv

of being chosen

6 give token to node u

7 for i ∈ C(v) do

8 Round(i)

9 end

10 end

11 else

12 if v is a root node then

13 xpred ← 1

14 else

15 xpred ← xπ(v)

16 end

17 rnd← random number uniformly distributed in [0, 1]

18 if rnd ≤
xv − yv

xpred − yv
then

19 x̂v ← 1

20 if v is not a leaf then

21 for i ∈ C(v) do

22 Round(i)

23 end

24 end

25 end

26 end

Some observations are in order to ensure that the numerical expressions do not lead

to failures in lines 5 and 18.

First, consider the expression in line 5. For each i ∈ C(v), yi ≥ 0 and
∑

i∈C(v) yi = yv,

thus assigning probability yi/yv to each i ∈ C(v) defines a proper probability distribution,

except, possibly, if yv = 0. However yv cannot be 0: if v were a root node, its probability

of receiving a token would have been yv = 0; similarly, if v were not a root, the probability

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 23

of receiving a token given that its parent had received it (which is the only possibility)

would have been yv/yπ(v) = 0 if yπ(v) 6= 0. If yπ(v) were 0, the argument can be made

inductively to show that neither π(v) nor v would have received a token.

Now, consider the expression in line 18. Inequality (2.4) guarantees that xv ≤ xπ(v) =

xpred, when v is not a root, and, whenever v is a root, we may assume that xv ≤ 1 = xpred

due to the optimality of x. Consequently, we use this fact together with Inequality (2.3),

which, in turn, assures that yv ≤ xv, to conclude that 0 ≤ xv−yv
xpred−yv

≤ 1 whenever xpred 6=

yv. We can also show that xpred must be different from yv and, thus, 0 ≤ xv−yv
xpred−yv

≤ 1

holds unconditionally. Assume that xpred = yv. Either v is a root with yv = 1, and thus

should have had received a token, or yv = xπ(v). In the latter case, Inequalities (2.3)

and (2.4) imply that yv = yπ(v) = xπ(v) and that the probability of receiving a token is

yv/yπ(v) = 1. Both cases lead to a contradiction since line 18 cannot be executed when v

receives a token and, thus, the assumption that xpred = yv is always false.

Now, we turn to the probabilistic properties of the generated integral solution (x̂, ŷ).

Lemma 2.2.2. For every cluster center j, exactly one backup path is opened in N1(j).

Proof. Notice that exactly one token is placed in one of the roots in the neighborhood

of j. Also, whenever the token is received at some node v, that node is necessarily opened

(indicated by setting x̂v to 1), and it belongs to the backup path of the cluster (indicated

by setting ŷv to 1). Finally, every node v that receives a token sends it to exactly one of

its children, opening, in this way, all facilities in a path p from the root to the leaves. The

path p thus becomes the backup path of that cluster.

Lemma 2.2.3. E[ŷv] = yv for all v ∈ PF .

Proof. First, since ŷv is either 0 or 1, E[ŷv] = Pr[ŷv = 1].

Now, let us prove the lemma by induction on the distance from the node to the root

of its tree. In the basis, which occurs when v is a root, the probability of ŷv being 1 is

given by the probability of it being chosen during the token distribution, which is either
∑

p∈P1:p⊒r xjp = yv, when v is associated with a cluster center j, or 0 = yv otherwise.

When v is not a root, we can apply conditional probability to obtain that

Pr[ŷv = 1] = Pr[ŷv = 1|ŷπ(v) = 1]Pr[ŷπ(v) = 1] + Pr[ŷv = 1|ŷπ(v) = 0]Pr[ŷπ(v) = 0]

We known that Pr[ŷv = 1|ŷπ(v) = 0] = 0 and, by induction hypothesis, Pr[ŷπ(v) =

1] = yπ(v). Finally, Pr[ŷv = 1|ŷπ(v) = 1] is yv/yπ(v) since this is the probability of the

token being passed from π(v) to v (see line (5) of Round() and the lemma follows.

From the guarantees provided by both Lemmas 2.2.2 and 2.2.3, we fully determine the

probability distribution of the selected backup path in a cluster. Let j be a cluster center,

and Bj be the random variable that represent the backup path selected by j. We can

conclude that, for all p ∈ N1(j), Pr[Bj = p] = yp. Thus, we can present the observation

in Section 2.2.2 that led to Lemma 2.2.5 in the following lemma:

Lemma 2.2.4. The expected connection cost of a cluster center j to the backup path is

at most dav(j).

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 24

Proof. Due to Inequality 2.3, for all p ∈ P1, yp ≤ xjp. Thus,

E[d(j, Bj)] =
∑

p∈N1(j)

d(j, p)yp ≤
∑

p∈P1

cjpxjp = dav(j)

In the case of a non-central client j in cluster C, instead of simply obtaining an upper

bound to the expected cost of connecting j to the backup path of C, we obtain an upper

bound to the cost of connecting j to the backup path given that no node in N1(j) was

opened. This is necessary because, to analyze the expected connection cost of j, j might

use the backup path only if no path in N1(j) was opened, since using a path of N1(j)

yields a cheaper connection cost in general.

Lemma 2.2.5. Let j be a non-central client. If no path in N1(j) was completely opened,

then the expected connection cost for j is at most 2dmax(j) + dav(j).

Proof. Let j′ be the center of the cluster C to which j belongs, b ∈ N1(j
′) be the backup

path opened in C and D be the event of no path in N1(j) being completely open. We

know that N(j′) ∩ N(j) must be non-empty due to the way C was constructed. There

are two possible cases:

1. There is ℓ ∈ N(j′) ∩ N(j) and a path p′ ∈ N1(j
′) such that p′ ⊒ ℓ and d(j′, p′) ≤

dav(j′): in that case, by the triangle inequality, d(j, b) ≤ d(j, p)+d(j′, p′)+d(j, b) ≤

dmax(j)+dav(j′)+dmax(j′), where p is any path in N1(j) with p ⊒ ℓ; by construction

of C, dav(j′) + dmax(j′) ≤ dav(j) + dmax(j), thus d(j, b) ≤ 2dmax(j) + dav(j);

2. For every node ℓ ∈ N(j′) ∩ N(j) and every path p′ ∈ N1(j
′) such that p′ ⊒ ℓ,

d(j′, p′) > dav(j′): in that case, E[d(j′, b)|D] ≤ E[d(j′, b)] = dav(j′), thus

E[d(j, b)|D] ≤ d(j, p) + d(j′, p′) + E[d(j′, b)|D] ≤ dmax(j) + dmax(j′) + dav(j′) ≤

2dmax(j) + dav(j), where p is any path in N1(j) such that p ⊒ ℓ and p′ is any path

in N1(j
′) such that p′ ⊒ ℓ.

Next, we obtain the expectation of x̂v for all v ∈ PF so we can establish the expected

total facility opening cost and a lower bound to the probability of an entire path in P1 in

the neighborhood of each non-central client being entirely opened.

Lemma 2.2.6. E[x̂v] = xv, for all v ∈ PF .

Proof. It is sufficient to show that E[x̂v− ŷv] = xv−yv and then utilize this result together

with Lemma 2.2.3 to conclude this lemma.

Let us prove it by induction on the distance from v to the root of its tree. In the base

case, when v is a root, we conclude that E[x̂v − ŷv] = Pr[x̂v = 1, ŷv = 0] since x̂v ≥ ŷv
and both variables only assume values 0 and 1. Thus,

Pr[x̂v = 1, ŷv = 0] = Pr[x̂v = 1|ŷv = 0]Pr(ŷv = 0)

=
xv − yv
1− yv

(1− yv) = xv − yv (see Line 18 of Round())

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 25

Now, in the induction step, assume that v is a non-root node and that E[xπ(v)] = xπ(v).

As before, E[x̂v − ŷv] = Pr[x̂v = 1, ŷv = 0], but we must also relate this expression to

x̂π(v) so we can use the induction hypothesis. Luckily, v can only be open if π(v) is open,

so:

E[x̂v − ŷv] = Pr[x̂v = 1, x̂π(v) = 1, ŷv = 0]

= Pr[x̂v = 1|x̂π(v) = 1, ŷv = 0]Pr[x̂π(v) = 1, ŷv = 0] (2.7)

The event ŷv = 1 implies x̂π(v) = 1, i.e. the event ŷv = 1 is completely contained in

the event x̂π(v) = 1, that means that Pr[x̂π(v) = 1, ŷv = 0] = Pr[x̂π(v) = 1] − Pr[ŷv = 1],

which, due to the induction hypothesis and Lemma 2.2.3, is xπ(v) − yv.

To obtain Pr[x̂v = 1|x̂π(v) = 1, ŷv = 0], we can deduce that v must not have a token if

ŷv = 0 and conclude that the only way of x̂v being set to 1 is if line 19 of Round() gets

executed, which occurs with probability
xv − yv
xπ(v) − yv

.

Substitute those expressions on (2.7) to obtain the desired result.

2.2.4 Analysis

We can now obtain the approximation factor of the algorithm.

For any client j, let Fk(γ) be the greatest lower bound to the probability of any facility

of a path in N1(j) being opened, where γ is the total fractional utilization of paths by j,

given by the expression
∑

p∈N1(j)
xjp. If there is a path in N1(j) that is opened, simply

connect j to the path in N1(j) that would result in the smallest connection cost, otherwise

connect j to the backup path of its cluster. The following lemma bounds the expected

connection cost for j:

Lemma 2.2.7. For every client j, let Pj be the path for which j is assigned according to

the strategy above. Then E[d(j, Pj)] ≤ Fk(γ)d
av(j)+(1−Fk(γ))(2d

max(j)+dav(j)), where

γ =
∑

p∈N1(j)
xjp.

Proof. If j is a cluster center, this result is a corollary to Lemma 2.2.4. Otherwise,

client j is non-central and either no path in N1(j) is entirely opened, which occurs with

probability q for some q ∈ [0, 1], or some path in N1(j) is opened. In the latter case, the

expected connection cost is at most dav(j) because the probability of a path from N1(j)

being opened is proportional to its factional opening.

Let D be the event where no path in N1(j) is opened, and P j be the random variable

that represents the path selected by j, then:

E[d(j, P j)] ≤ (1− q)dav(j) + qE[d(j, P j)|D]

≤ (1− q)dav(j) + q(2dmax(j) + dav(j)) (see Lemma 2.2.5)

Finally, since Fk(γ) is a lower bound to 1− q:

E[d(j, P j)] ≤ Fk(γ)d
av(j) + (1− Fk(γ))(2d

max(j) + dav(j))

Now, we can obtain the approximation factor of the algorithm in terms of Fk(1):

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 26

Theorem 2.2.8. The algorithm is a (3 − 2Fk(1)) probabilistic approximation for the k-

LFLP.

Proof. Let P j : Ω → P1 be the random variable that represents the path client j is

connected to in the random solution obtained by the algorithm. Thus, the expected cost

is:

E[cost] = E

[

∑

p∈PF

cpx̂p +
∑

j∈C

d(j, P j)

]

=
∑

p∈PF

cpE[x̂p] +
∑

j∈C

E[d(j, P j)]

Due to Lemma 2.2.6 and Lemma 2.2.7, we have:

E[cost] ≤
∑

p∈PF

cpxp +
∑

j∈C

(Fk(1)d
av(j) + (1− Fk(1))(2d

max(j) + dav(j))).

We can evoke Lemma 2.2.1 to conclude that dmax(j) ≤ vj, and obtain

E[cost] ≤
∑

p∈PF

cpxp +
∑

j∈C

dav(j) + 2(1− Fk(1))
∑

j∈C

vj

=
∑

p∈PF

cpxp +
∑

j∈C,p∈P1

cjpxjp + 2(1− Fk(1))
∑

j∈C

vj

≤ OPT∗ + (2− 2Fk(1))OPT∗

≤ OPT + (2− 2Fk(1))OPT = (3− 2Fk(1))OPT,

where OPT∗ is the optimal value for the relaxed LP and OPT is the optimal value for

the ILP.

To compute an approximation factor for each value of k, it is not necessary to compute

Fk(1) exactly, any lower bound to Fk(1) can be used instead. Later we will obtain one

such lower bound with Theorem 2.2.13, but first we will describe some well known results.

Lemma 2.2.9. Given any real sequence {ai}
n
i=1 such that

∑n
i=1 ai ≥ 0,

a1a2 . . . an ≤

(

a1 + a2 + · · ·+ an
n

)n

Proof. Proof by induction on the size of the sequence.

In case n = 1, the Lemma is trivially true.

Assume the Lemma holds for sequences of size n. Consider a real sequence {ai}
n+1
i=1 of

size n + 1 such that
∑n+1

i=1 ai ≥ 0. Let µ = 1
n+1

∑n+1
i=1 ai ≥ 0. Without loss of generality,

make an+1 ≥ µ and an ≤ µ (there are always two elements with those properties, or the

sum of elements would have to be either strictly above or strictly below (n + 1)µ, which

would be a contradiction). Now consider the auxiliary sequence {a′i}
n
i=1 where, for i < n,

a′i = ai and a′n = an+1+ an−µ. We have that
∑n

i=1 a
′
i =

∑n+1
i=1 ai−µ = (n+1)µ−µ ≥ 0,

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 27

thus we can apply the induction hypothesis on {a′i}:

(

a1 + a2 + · · ·+ an + an+1 − µ

n

)n

= µn ≥ a1a2 . . . an−1(an + an+1 − µ)

Multiply both sides by µ to obtain:

µn+1 ≥ a1a2 . . . an−1a
′
nµ (2.8)

And, finally, (an + an+1 − µ)µ − anan+1 = (an+1 − µ)(µ − an) ≥ 0, implying that

a′nµ ≥ anan+1. Substitute this inequality on (2.8) to show the result for sequences of

size n+ 1. Consequently, by induction, the lemma holds.

Lemma 2.2.10. Let c, d > 0 and {xi}
n
i=1 be a real sequence such that

∑n
i=1 xi = c then

n
∏

i=1

(1− xi + xid) ≤

(

1−
c

n
+

cd

n

)n

Proof. Apply Lemma 2.2.9 to a sequence {ai}
n
i=1 where, for all i ∈ {1, 2, . . . , n}, ai =

1− xi + dxi and the result follows.

Lemma 2.2.11. For all x ∈ R, 1 + x ≤ ex.

Proof. Let f : R→ R be a function such that, for all x ∈ R, f(x) = ex − x− 1. We must

show that f(x) ≥ 0 for all x ∈ R.

Consider the first derivative of f , f ′(x) = ex − 1. It is easy to verify that x > 0

implies f ′(x) > 0 and x < 0 implies f ′(x) < 0, since ex is a strictly increasing function

and f ′(0) = 0.

Now, we prove the lemma by contradiction. Assume that there is x ∈ R such that

f(x) < 0. We already know that x is different than 0 because f(0) = 0. There are two

cases:

1. x > 0: in that case, by the Mean Value Theorem, there must exist c such that

0 < c < x and f ′(c) =
f(x)− f(0)

x− 0
= f(x)/x < 0 implying that f ′(c) < 0, but, by

the previous observation, we would necessarily have f ′(c) ≥ 0 (a contradiction);

2. x < 0: similarly we utilize the Mean Value Theorem to show that there must exist c

such that x < c < 0 and f ′(c) =
f(0)− f(x)

0− x
= f(x)/x > 0, implying that f ′(c) > 0

which would be also be a contradiction.

Thus, we conclude that f(x) ≥ 0 for all x ∈ R and the lemma holds.

We now turn to the computation of a lower bound for Fk(γ). Consider the case for

a client j and a single tree with root r ∈ Pk. Let fk : [0, 1] → [0, 1] be a function that

receives the probability of opening the root of the tree and returns the greatest lower

bound to the probability of a path from root to leaf being entirely opened. For the

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 28

moment, also assume that, for all p ∈ PF , xp coincides with the utilization by j which

is yp ,
∑

q∈P1:q⊒p xjq, that is xp = yp. In this case, the probability of opening a root is

equal to the fractional utilization z ,
∑

p∈P1:p⊒r xjp = yr of the root by j. We know that,

by definition, f1(z) = z and, for k ≥ 2:

fk(z) = z

(

inf
n∈Z+,z1,z2,...,zn≥0:

∑
i zi=z

1−
n
∏

i=1

(

1− fk−1

(zi
z

))

)

For all i ∈ {1, 2, . . . , n}, we utilize zi/z as the probability of opening child i because

the expression in parenthesis is the probability of opening one path from root to leaf

conditioned on the event that the root was opened. Given that v was opened, we scale the

probability of opening every descendent u of v by a factor of 1/xv, for the following reason:

the probability of v and u opening are respectively xv and xu as stated in Lemma 2.2.6 and

u cannot be opened if v was not opened, thus the event of u being opened is completely

contained in the event of v being opened. Notice that, as we descend the levels, this

scaling of the probabilities does not produce wrong results because the scale factor also

changes. For instance, consider a chain of nodes u1, u2 and u3 where u1 is the parent of

u2 and u2 is the parent of u3. When we “reach” u1 the probability of opening u2 becomes

xu2
/xu1

and the probability of opening u3 becomes xu3
/xu1

. Later, when we go down a

level and “reach” u2, the conditional probability of opening u3 is divided by the conditional

probability of opening u2, thus becoming (xu3
/xu1

)/(xu2
/xu1

) = xu3
/xu2

as desired.

Lemma 2.2.12. If fk(z) ≥ z(1− c) for a non-negative constant c and all z ∈ [0, 1], then

fk+1(z) ≥ z(1− ec−1) for all z ∈ [0, 1].

Proof.

fk+1(z) = z

(

inf
n∈Z+,z1,z2,...,zn≥0:

∑
i zi=z

1−
n
∏

i=1

(

1− fk

(zi
z

))

)

≥ z

(

1− sup
n∈Z+,z1,z2,...,zn≥0:

∑
i zi=z

n
∏

i=1

(

1−
zi
z
(1− c)

)

)

For a fixed value n ∈ Z+, we apply Lemma 2.2.10 and then, by applying Lemma 2.2.11,

we get rid of n obtaining:

fk+1(z) ≥ z

(

1−

(

1−
1

n
+

c

n

)n)

≥ z
(

1− ec−1
)

Now, we generalize fk. Assume that fk(z, x) returns the greatest lower bound to the

probability of a path from root to leaf being entirely opened in the tree, given that z is

the fractional utilization by client j and x is the probability of opening the root. In the

case k = 1, we know, by definition, that f1(z, x) = x and, for k ≥ 2:

CHAPTER 2. THE K-LEVEL FACILITY LOCATION PROBLEM 29

fk(z, x) = x

 inf
n∈Z+,z1,z2,...,zn≥0:

∑
i zi=z

x≥x1,x2,...,xn≥0: ∀i xi≥zi

1−
n
∏

i=1

(

1− fk−1

(zi
x
,
xi

x

))

In this function, the fractional utilization by client j in each node of a subtree is scaled

with the fractional opening of the root because it serves as a tight lower bound to the

fractional opening of each node. If this value were not scaled properly, it would be possible

to reach lower values than any feasible assignment could possibly achieve.

It can be shown by induction that fk(z, x) ≥ fk(z), utilizing Inequality (2.3) to ensure

that the total flow of any client that passes through a node v must not be greater than

the fractional opening xv of v (in our case, the fractional opening is even increased by

scaling). Thus, we can utilize Lemma 2.2.12 to obtain a lower bound to fk(z, x) for all

z, x ∈ [0, 1].

Theorem 2.2.13. There is a non-decreasing real sequence {ck}k∈{1,2,3,... }, such that for

all γ ∈ R+, Fk(γ) ≥ 1− e(ck−1)γ > 0.

Proof. We will show that Lemma 2.2.12 with the basis f1(z) ≥ z = z(1 − 0) provides

such sequence. This lemma generates inductively a sequence that starts with c1 = 0

and, for every k ∈ {1, 2, 3, . . . }, maps ck+1 to eck−1. Lemma 2.2.11 shows that this

sequence is non-decreasing and, by induction, it can be shown that ck < 1, assuring us

that 1− e(ck−1)γ > 0.

Additionally Lemma 2.2.12 guarantees that fk(z) ≥ z(1− ck) and, since the rounding

of every tree occurs independently once tokens are distributed, we can obtain the lower

bound expression for Fk(γ) in the following way:

Fk(γ) ≥ 1− sup
n∈Z+,x1,x2,...,xn≥0:

∑
i xi=γ

n
∏

i=0

(1− fk(xi))

≥ 1− sup
n∈Z+,x1,x2,...,xn≥0:

∑
i xi=γ

n
∏

i=0

(1− xi(1− ck))

≥ 1− e(ck−1)γ,

where the last step is a combination of the results in Lemma 2.2.11 and Lemma 2.2.10.

Applying Theorem 2.2.13 to Theorem 2.2.8, we obtain that the algorithm is a (3−o(1))-

approximation. This result can be further improved by scaling opening variables by some

constant γ ≥ 1 and redistributing fractional connections from clients to paths in a manner

analogous to the UFLP case (see [7] for an example of this technique), but we will not

cover the details here. The resulting approximation factors for some fixed k are:

k 1 2 3 4 5 6 7 8 9 10

factor (without scaling) 1.74 2.06 2.25 2.38 2.46 2.53 2.58 2.62 2.66 2.68

factor (with scaling) 1.58 1.85 2.02 2.14 2.24 2.31 2.37 2.42 2.46 2.50

Chapter 3

The Dynamic Facility Location

Problem

The metric Dynamic Facility Location Problem (DFLP) is a generalization of the UFLP

where time is taken into account. At each time period, clients have different demands

that must be supplied by facilities previously opened, but the opening cost of facilities

change at each moment and connection costs might increase for facilities opened for too

long due to, for example, storage costs.

Formally, the problem is composed by a set of facilities F , a set of clients C and a set

T of discrete time periods numbered from 1 to T . The cost of opening facility i at time

period t is denoted by f t
i , the amount of demand of client j at time t is dtj and the cost of

connecting client j during time period t to facility i opened at time period s is denoted by

cstij , where necessarily s ≤ t. Additionally, the metric variation has the following property

related to connection costs: given i1, i2 ∈ F , j1, j2 ∈ C and time periods s, s′, t, t′ such

that 1 ≤ s ≤ s′ ≤ t, t′ ≤ T , we have that

csti1j1 ≤ cst
′

i1j2
+ cs

′t′

i2j2
+ cs

′t
i2j1

,

which we will refer as triangle inequality in the rest of this chapter.

A solution contains a set S ⊆ F × T of facility-period pairs to be opened and a map

φ : C × T → S that connects each client-period pair to a facility-period pair, where,

whenever φ(j, t) = (i, s), we must have that s ≤ t. An optimal solution minimizes the

cost, given by the following expression:

∑

(i,s)∈S

f s
i +

∑

j∈C,t∈T :
(i,s)=φ(j,t)

dtjc
st
ij .

When there is only one time period, the DFLP becomes the UFLP and, as a result, all

inapproximability results for the UFLP are also valid for this problem (see Section 2.1).

The metric Stochastic Facility Location Problem (SFLP) is a related problem in which

there is a set of facilities F , a set of clients C and a set of scenarios A. Connection costs

from clients to facilities are given by a metric function c : (C ∪ F)2 → R+ and the

considered time frame is subdivided into two discrete time periods or stages. In the first

30

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 31

stage, any subset of facilities can be opened and each facility i costs fi to be opened. In

the second stage, exactly one of many scenarios occur according to a known probabilty

distribution. Each scenario A ∈ A defines a subset of participating clients CA ⊆ C and,

for each facility i ∈ F , an opening cost fA
i that replaces the opening cost from the first

stage.

A solution to the SFLP consists of a set S ⊆ F of facilities to be opened in the first

stage and, for each scenario A ∈ A, a set of facilities SA ⊆ F to be opened in case

scenario A occurs and a map φA : CA → (SA ∪ S) connecting every participating client

to a facility available at that scenario. The cost of a solution is given by the following

expression:

∑

i∈S

fi +
∑

A∈A

pA

(

∑

j∈CA

cφA(j)j +
∑

i∈SA

fA
i

)

,

which is the expect sum of connection and opening costs. In Section 3.1, we discuss how

to reduce the SFLP to the DFLP in a way that allows algorithms for the DFLP to be

used as approximation algorithms to the SFLP with the same approximation factor.

The first approximation algorithm for the SFLP is an LP-rounding algorithm by Ravi

and Sinha [25] that obtains an approximation factor∗ of 5, combining the filtering tech-

nique by Lin and Vitter [20, 21] with a stage-constrained clustering of client-scenario

pairs.

Shmoys and Swamy [26] devised a PTAS for approximating with high probability a

certain class of linear relaxations for stochastic problems. In their algorithm, which is

an adaptation of the ellipsoid method, they sample the scenario distribution and obtain

the cost structure of the sampled scenarios by making requests to an oracle. They also

described, for some problems, how to round the solution to linear relaxations obtained

by their PTAS. In particular, for the FLP, they obtained a (3.378 + ǫ)-approximation

by using a FLP approximation algorithm that does not require knowledge of the clients’

demands in each scenario. As a consequence, their SFLP algorithm does not require the

exact scenario distribution or the costs in each scenario.

The first (and currently best) approximation algorithm for the DFLP is a 1.86-

approximation due to Ye and Zhang [38], which we will review in Section 3.2. Their

algorithm can also be used to approximate a solution for the SFLP with the same ap-

proximation factor, as we will see in Section 3.1.

3.1 Reduction from the SFLP to the DFLP

In this section, we will review a reduction presented by Ye and Zhang [38] from the

SFLP to the DFLP that allows approximation algorithms for the DFLP to be used as

approximation algorithms for the SFLP.

Formally, given an instance I to the SFLP, we will create an instance I ′ to the DFLP

such that any feasible solution to I ′ can be mapped one-to-one to a solution to I of the

∗The paper states that the algorithm is a 8-approximation, but for parameters α = 2/5 and β = 1/2,
it has an approximation factor of 5.

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 32

same cost. First, we determine that I ′ has two time periods, i.e. T = 2. Define its set of

clients to be C ′ , {(j, A) : A ∈ A, j ∈ CA}, where A is the set of scenarios of I and CA

is the set of clients active during scenario A. Let all clients (j, A) ∈ C ′ have demand 0

during time period 1 and demand pA during time period 2, where pA is the probability of

scenario A occurring in the second stage.

For every A ∈ A, let FA = {(i, A) : i ∈ F} be a set of facilities related to scenario A

and also let F I = {(i, I) : i ∈ F} be a set of facilities related to the first stage, where F is

the set of facilities from I. Denote the set of facilities in I ′ as F ′ ,
⋃

A∈A∪{I}F
A. For every

facility (i, I) ∈ F I , let its opening cost in time period 1 be equal to the corresponding first-

stage opening cost of i in I and let its opening cost in time period 2 be ∞. Analogously,

for every scenario A ∈ A and, for every facility (i, A) ∈ FA, let its opening cost during

time period 2 be pAf
A
i , where pA is the probability of occurrence of scenario A and fA

i

is the opening cost of facility i during scenario A, and let its opening cost during time

period 1 to be ∞.

Given a client (j, A) ∈ C ′ and a facility (i, B) ∈ F ′, define the connection cost to be

equal to the connection cost from i to j in I whenever either 1) A = B and (i, B) was

opened in the second time period; or 2) B = I and (i, B) was opened in the first time

period. Otherwise simply consider it to be ∞. We now need to ensure that the distances

as defined meet the metric definition as previously stated.

Assume we have two clients (j1, A1) and (j2, A2) and two facilities (i1, B1) and (i2, B2).

As previously stated, the following property holds†:

c((i1, B1, s1), (j1, A1, t1)) ≤ c((i2, B2, s2), (j1, A1, t1))

+ c((i2, B2, s2), (j2, A2, t2))

+ c((i1, B1, s1), (j2, A2, t2)), (3.1)

where s1, s2, t1 and t2 are the time periods where, respectively, facility (i1, B1), facility

(i2, B2), client (j1, A1) and client (j2, A2) were opened and 1 ≤ s1 ≤ s2 ≤ t1, t2 ≤ 2.

We will separate the proof in two cases. In the first case, we assume that both facilities

were opened in the same time period. We only need to consider the case in which there is

at least one pair client-facility whose distance is infinite, otherwise the triangle inequality

would follow directly from the triangle inequality of I. Without loss of generality, assume

that this is the case for client (j1, A1) and facility (i1, B1). If both facilities belong to

time period 1, then we must have B1 6= I so (j1, A1) has infinite distance from (i1, B1),

which would imply that client (j2, A2) would also have an infinite distance to (i1, B1),

ensuring that the triangle inequality would be satisfied. In case both facilities belong to

time period 2, we have that B1 6= A1, implying that at least one of these statements must

be also true: A1 6= B2, A2 6= B1 or A2 6= B2. By construction, that would mean that at

least one term in the right-hand side of inequality (3.1) would also be infinity, and the

triangle inequality would be satisfied as desired.

In the second case, we assume facilities were opened in different time periods. Again,

we only need to consider a case where at least one distance is infinite. We will also assume,

†For clarity, we are representing cst(i,B)(j,A) as c((i, B, s), (j, A, t)).

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 33

without loss of generality, that facility (i1, B1) was opened in time period 1 and facility

(i2, B2) was opened in time period two. Due to the constraints of the triangle inequality

in respect to time periods, we only need to check the case where (i1, B1) has an infinite

distance to some client, which would imply B1 6= I by construction, ensuring that both

clients have infinite distance to that facility and that the triangle inequality follows.

Thus, by case analysis, we conclude that the resulting instance I ′ is a valid DFLP

instance. We claim that this reduction is a cost-preserving one-to-one mapping from

feasible solutions to I ′ to feasible solutions to I: opening a facility (i, X) in I ′ corresponds

to opening a facility i either in the second stage, when scenario X occurs, or in the first

stage; also, in I ′, connecting a client (j, A) ∈ C ′ to a facility (i, X) ∈ F ′ corresponds to

connecting, in I, a client j to facility i during scenario A. Therefore, an approximation

for the DFLP can be used to obtain approximate solutions for the SFLP.

3.2 A 1.86-approximation for the DFLP

In this section, we review a 1.86-approximation by Ye and Zhang [38] for the DFLP.

Their algorithm uses an adaptation of the classical primal-dual strategy devised by Jain

and Vazirani [17] to obtain an intermediate solution that is later improved by greedy

augmentation. Similarly to the algorithm presented in Chapter 2, this algorithm is also

used as a basis for an algorithm that approximates a stochastic variant of the k-LFLP

that will be presented in Chapter 4. In this section, the notation [a, b] represents the set

of integers from a to b inclusive, that is {a, a+ 1, a+ 2, . . . , b− 1, b}.

3.2.1 Algorithm description

The problem has the following ILP:

minimize
T
∑

t=1

∑

i∈F

T
∑

s=1

∑

j∈C

dtjc
st
ijx

st
ij +

T
∑

s=1

∑

i∈F

f s
i y

s
i (3.2)

s.t.
∑

i∈F

t
∑

s=1

xst
ij = 1 ∀j ∈ C, t ∈ [1, T] (3.3)

xst
ij ≤ ysi ∀i ∈ F , j ∈ C, s, t ∈ [1, T] (3.4)

xst
ij , y

s
i ∈ {0, 1} ∀i ∈ F , j ∈ C, s, t ∈ [1, T] (3.5)

where, for each i ∈ F , j ∈ C and integers s, t ∈ [1, T], xst
ij is equal to 1 if and only if

client j is supplied at time t by facility i opened at time s. For every i ∈ F and integer

s ∈ [1, T], ysi is 1 if and only if facility i was opened in time t. inequalities (3.3) state

that, given a client j ∈ C and a time t ∈ [1, T], j must be supplied by a facility opened

before or exactly at time t. inequalities (3.4) ensure that, if a client j ∈ C is served at

time t ∈ [1, T] by facility i ∈ F at time s ∈ [1, t], facility i must be opened at time s. The

relaxed LP for this problem replaces the integrality constraints (3.5) with xst
ij , y

s
i ≥ 0 for

all i ∈ F , j ∈ C, s, t ∈ [1, T].

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 34

The dual LP is:

maximize
T
∑

t=1

∑

j∈C

αt
j

s.t. αt
j − dtjc

st
ij ≤ βst

ij ∀i ∈ F , j ∈ C, s, t ∈ [1, T]

T
∑

t=1

∑

j∈C

βst
ij ≤ f s

i ∀i ∈ F , s ∈ [1, T]

αt
j, β

st
ij ≥ 0 ∀i ∈ F , j ∈ C, s, t ∈ [1, T]

However, their primal-dual algorithm uses the following equivalent formulation to

make proofs for the upcoming lemmas and theorems clearer:

maximize
T
∑

t=1

∑

j∈C

dtjα
t
j (3.6)

s.t. αt
j − cstij ≤ βst

ij ∀i ∈ F , j ∈ C, s, t ∈ [1, T] (3.7)

T
∑

t=1

∑

j∈C

dtjβ
st
ij ≤ f s

i ∀i ∈ F , s ∈ [1, T] (3.8)

αt
j, β

st
ij ≥ 0 ∀i ∈ F , j ∈ C, s, t ∈ [1, T] (3.9)

which is the result of a simple scaling of variables from the former program, thus allow-

ing us to utilize both Strong Duality (see Theorem 1.1.2) and Complementary slackness

conditions (see Theorem 1.1.3).

Jain and Vazirani [17] presented an interpretation for the dual variables which can be

adapted to the dual LP for the DFLP. Suppose that there was an integral solution to the

original ILP that is also an optimal solution to the relaxed primal LP. In that case, we can

say that, for each (j, t) ∈ C × [1, T], αt
j is the “budget” of the client-period pair (j, t) and,

for all (j, t) ∈ C×[1, T], βst
ij is the amount of its budget that (j, t) uses to “pay” the opening

of facility i at time period s, where i is the facility, opened at period s, that satisfies j’s

demand during time period t. To verify that this interpretation is compatible with the

linear programs, simply apply complementary slackness: if xst
ij = 1, then αt

j = βst
ij + cstij ,

which shows that the budget is utilized to “pay” the cost of connecting j to i through

time periods from s to t and to “pay” a contribution to open i at time period s; also, if

ysi = 1,
∑T

t=1

∑

j∈C d
t
jβ

st
ij = f s

i , which means that a facility i opened at time period s must

have enough contributions from pairs (j, t) ∈ C × [1, T] (each scaled by their respective

demands) to be able to pay its opening cost.

Now, we describe the algorithm. Given a parameter δ > 0, it first scales the opening

costs of facilities in all time periods by δ and then proceed to three phases. In the first

phase, it executes a variation of the dual-ascent strategy, obtaining a feasible dual solution.

In the second, a feasible primal solution is derived from the feasible dual solution from the

first phase. And, finally, in the third phase, the cost scaling is removed and the solution

obtained so far is iteratively improved by greedily opening new facilities, in a process

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 35

known as greedy augmentation that we will describe in Section 3.2.4.

3.2.2 Phase 1: obtaining a feasible dual solution

The algorithm is based on a notion of time unrelated to the time periods from the problem

description. At θ = 0, all dual variables are set to 0, facility-period pairs (i, s) ∈ F× [1, T]

are closed and client-period pairs (j, t) ∈ C × [1, T] are unfrozen. Starting at θ = 0, each

variable αt
j, for j ∈ C and integral t ∈ [1, T], is increased uniformly as time passes until

the client-period pair (j, t) becomes frozen. Whenever a pair (j, t) ∈ C × [1, T] becomes

frozen, αt
j stops increasing and, for all (i, s) ∈ F × [1, T], if βst

ij was increasing due to an

event (see below), it stops. To ensure feasibility of the obtained solution, there are three

events that must be handled appropriately:

1. For some closed pair (i, s) ∈ F × [1, T], the associated inequality (3.8) is met with

equality, i.e.
∑T

t=1

∑

j∈C d
t
jβ

st
ij = f s

i . In that case, we say that (i, s) becomes tenta-

tively open (it stops being closed) and, for all unfrozen pairs (j, t) such that βst
ij > 0,

(i, s) becomes the connecting witness of (j, t) and (j, t) becomes frozen.

2. For some pairs (j, t) ∈ C × [1, T] and (i, s) ∈ F × [1, T] where (i, s) is closed, αt
j

becomes equal to cstij . In this point, we say that (j, t) is tight with (i, s) and, if

(j, t) is unfrozen, βst
ij begins to increase at the same rate as αt

j so the associated

inequality (3.7) remains satisfied.

3. For some pairs (j, t) ∈ C × [1, T] and (i, s) ∈ F × [1, T] where (i, s) is tentatively

opened, αt
j becomes equal to cstij . In this case, we say that (j, t) becomes tight with

(i, s), (i, s) becomes the connecting witness of (j, t) and (j, t) becomes frozen.

We simulate this process until all pairs (j, t) ∈ C × [1, T] become frozen, when the

resulting valuation of the dual variables becomes our feasible dual solution.

3.2.3 Phase 2: obtaining a feasible primal solution

First, we create a dependency graph G(V,E) where the set of vertices V is composed by

all the facility-period pairs (i, s) ∈ F × [1, T]. There is an edge joining two facility-period

pairs (i, s) and (i′, s′) if and only if there is a client-period pair (j, t) ∈ C such that βst
ij > 0

and βs′t
i′j > 0. Whenever u, v ∈ V are connected by an edge, u and v are said to be

dependent.

Next, we obtain a maximal independent set I on G such that, for each pair (i, s) ∈

F×[1, T], either (i, s) ∈ I or there is a pair (i′, s′) ∈ I dependent on (i, s) such that s′ ≤ s.

One way of ensuring this property is to iteratively build an independent set starting with

the empty set and considering all pairs in F×[1, T] in non-decreasing order of time period,

adding a pair under consideration to the set only if the resulting set is still independent.

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 36

A description of the algorithm follows:

1 I ← ∅

2 V ′ ← F × [1, T]

3 sort V ′ by time period

4 for v ∈ V ′ do

5 if I ∪ {v} is independent on G then

6 I ← I ∪ {v}

7 end

8 end

Finally, for all pairs (i, s) ∈ I, open facility at time period s. Connect every client-

period pair (j, t) ∈ C × [1, T] (j, t) to a facility-period pair (i, s) ∈ I that minimizes

cstij .

3.2.4 Phase 3: greedy augmentation

Finally, there is still the possibility that opening certain facilities at certain time periods

might decrease the solution’s cost, because the cost of opening any of them is compensated

by a reduction in connection costs as some clients could be re-routed to them. In this

phase, we remove cost scaling applied at the beginning, considering the original opening

costs.

Let Sol be any feasible integral solution to an instance of the DFLP. For every pair

(i, s) ∈ F × [1, T], let gain(Sol, i, s) , C−C ′− f s
i , where C is the total connection cost in

Sol and C ′ is the total connection cost after Sol is modified to include facility i opened at

time period s and, at each time period, clients are connected to their “closest” available

facilities. Also, define ratio(Sol, i, s) , gain(Sol, i, s)/f s
i .

While there are facility-period pairs that, if opened, can reduce the overall solution

cost, i.e. while there is a facility-period pair (i, s) such that gain(Sol, i, s) > 0, the greedy

augmentation procedure iteratively opens one such pair that maximizes the ratio between

gain and opening cost. Or, more precisely, the procedure works as described below.

1 Sol← solution from Phase 2

2 while ∃(i, s) ∈ F × [1, T] : gain(Sol, i, s) > 0 do

3 (i, s)← argmax(i,s)∈F×[1,T] ratio(Sol, i, s)

4 Open i at time period s in Sol re-routing clients to closest available facilities.

5 end

6 return Sol

3.2.5 Analysis

We will analyze the solution obtained after Phase 2, assuming, without loss of generality,

that we did not apply cost scaling.

Theorem 3.2.1. Let Sol be the solution obtained by the algorithm after Phase 2 for an

instance I, FSol be the total opening cost of Sol, CSol the total connection cost of Sol and

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 37

OPT be the optimal value of the DFLP for I. Then,

3FSol + CSol ≤ 3OPT

Proof. Let I be the maximal independent set obtained at the end of Phase 2. Define

D′ , {(j, t) : j ∈ C, t ∈ [1, T], ∃(i, s) ∈ I, s.t. βst
ij > 0}. This is the set of all client-period

pairs that have a non-zero contribution to facilities opened in Sol. Also, for every pair

(j, t) ∈ C × [1, T], if j is served in Sol during time period t by a facility i opened in time

period s, then define δjt , i and γjt , s.

We know that, for each (i, s) ∈ I,

f s
i =

T
∑

t=1

∑

j∈C

dtjβ
st
ij

Thus, we obtain the total opening cost of Sol as a summation over D′:

FSol =
∑

(i,s)∈I

f s
i =

∑

(i,s)∈I

∑

(j,t)∈C×[1,T]

dtjβ
st
ij

=
∑

(i,s)∈I

∑

(j,t)∈D′

dtjβ
st
ij

=
∑

(j,t)∈D′

∑

(i,s)∈I

dtjβ
st
ij

=
∑

(j,t)∈D′

dtjβ
γjtt
δjtj

,

where the last inequality follows from I being independent.

Now, we consider the total connection cost, given by the expression

CSol =
∑

(j,t)∈C×[1,T]

dtjc
γjtt
δjtj

We only need to upper bound the connection costs of all pairs (j, t) ∈ C × [1, T].

Consider pairs (j, t) ∈ C × [1, T], such that (j, t) ∈ D′. In that case, there is a pair

(i, s) ∈ I such that βst
ij > 0. In that case, we know that (i, s) = (δjt, γjt) and, also,

αt
j = c

γjtt
δjtj

+ β
γjtt
δjtj

. As a consequence, c
γjtt
δjtj

= αt
j − β

γjtt
δjtj

.

For pairs (j, t) ∈ C× [1, T] such that (j, t) 6∈ D′, we know that there must be a facility-

period pair (i, s) ∈ I that is dependent on the connecting witness (i′, s′) of (j, t) such

that s ≤ s′ and can be connected to (j, t). Also, due to the definition of dependency,

there must exist (j′, t′) ∈ C × [1, T] such that βs′t′

i′j′ > 0 and βst′

ij′ > 0. Note that (j′, t′)

must be connected to (i, s). In this case, we can apply triangle inequality c
γjtt
δjtj
≤ cstij ≤

cs
′t
i′j + cs

′t′

i′j′ + cst
′

ij′ . We know that (j′, t′) is tight with (i, s) and (i′, s′) and (j, t) is tight with

(i′, s′), this implies that cs
′t
i′j ≤ αt

j, c
s′t′

i′j′ ≤ αt′

j′ and cst
′

ij′ ≤ αt′

j′ .

Let θs
′

i′ denote the moment when (i′, s′) became tentatively open. Since (i′, s′) is

the connecting witness of (j, t), either (j, t) became frozen exactly when (i′, s′) became

tentatively open or later, implying that θs
′

i′ ≤ αt
j. Also, if (j′, t′) did not became frozen

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 38

by the time θs
′

i′ , it would become frozen at that moment since βs′t′

i′j′ > 0, making αt′

j′ ≤ θs
′

i′ .

Thus αt′

j′ ≤ αt
j and c

γjtt
δjtj
≤ αt

j + 2αt′

j′ ≤ 3αt
j.

Let D = C × [1, T]. We can now prove the theorem:

3FSol + CSol ≤ 3
∑

(j,t)∈D′

dtjβ
γjtt
δjtj

+
∑

(j,t)∈C×[1,T]

dtjc
γjtt
δjtj

≤ 3
∑

(j,t)∈D′

dtj(α
t
j − β

γjtt
δjtj

+ β
γjtt
δjtj

) +
∑

(j,t)∈D\D′

3dtjα
t
j

= 3
∑

(j,t)∈D

dtjα
t
j ≤ 3OPT

Next, we show that, after greedy augmentation, the algorithm obtains a 1.86-

approximation.

First, we simplify the problem, considering an instance of the UFLP that is not nec-

essarily metric. For that instance, let F ′ be the set of facilities, C ′ be the set of the

clients, c′ : F ′ × C ′ → R be the connection cost function and f ′ : F ′ → R be the opening

cost function. To transform the DFLP instance into an UFLP instance, simply map ev-

ery facility-period pair in the DFLP instance to a facility in the UFLP instance, that is

F ′ = F × [1, T], and map every client-period pair in the DFLP instance to a client in the

UFLP. The connection cost function is defined in the following manner, given (i, s) ∈ F ′

and (j, t) ∈ C ′, c′((i, s), (j, t)) , dtjc
st
ij .

The classic ILP formulation for the UFLP is:

minimize
∑

i∈F ′

f ′
iyi +

∑

i∈F ′,j∈C′

c′ijxij (3.10)

∑

i∈F ′

xij = 1 ∀j ∈ C ′ (3.11)

xij ≤ yi ∀i ∈ F ′, j ∈ C ′ (3.12)

xij, yi ∈ {0, 1} ∀i ∈ F ′, j ∈ C ′ (3.13)

where, for each i ∈ F ′ and j ∈ C ′, xij is a binary variable that determines whether client j

is connected to facility i (a value of 1 indicates that there is a connection) and, for each

i ∈ F ′, yi is 1 if and only if facility i is opened. Inequalities (3.11) indicate that all clients

need to be connected to exactly one facility, and inequalities (3.12) indicate that whenever

a client is connected to a facility, that facility must be opened.

Now, consider the relaxed LP of the above ILP produced by replacing inequali-

ties (3.13) by xij, yi ≥ 1, ∀i ∈ F ′, j ∈ C ′. Then, we can show the following lemma:

Lemma 3.2.2 (Lemma 2.6 in [10]). Given any feasible fractional solution Sol for the

relaxed LP for an instance I of the UFLP, such that FSol ,
∑

i∈F ′ f ′
iyi is the total opening

cost and CSol ,
∑

i∈F ′,j∈C′ c′ijxij is the total connection cost, and a feasible integral solution

Sol′ to I with total connection cost C, then

∑

i∈F ′

yigain(i) ≥ C − (FSol + CSol)

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 39

where gain(i) refers to Sol′ (see Section 3.2.4 for a definition).

Proof. We may assume that, for every i ∈ F ′ and j ∈ C ′, either xij = yi or xij = 0,

because, in case that there is a pair i, j such that yi > xij, it is possible replace facility i

by two copies i1 and i2 setting their associated variables in the following manner: yi1 = xij

and yi2 = yi − xij and, for all clients j′, xi1j′ = min(xij′ , xij) and xi2j′ = xij′ − xi1j′ . This

transformation generates a feasible fractional solution with the same fractional opening

and connection costs and, thus, can be used in place of the original fractional solution for

this theorem.

Let σ : C ′ → F ′ map every client to its associated facility in the feasible integral

solution Sol′ and define, for every i ∈ F ′, DSol(i) , {j : xij > 0}. Now, suppose

that we reassign all clients in DSol(i) to i. In that case, for each i ∈ F ′, we define

gain′(i) = −fi +
∑

j∈DSol(i)
(c′σ(j)j − c′ij) as the net cost of opening a facility i. Note that

gain(i) ≥ gain′(i), since greedy augmentation will essentially re-route a subset of clients

to facility i in order to maximize the net cost and it is always an option to re-route exactly

the clients of DSol(i).

Finally, we can show the result:

∑

i∈F ′

yigain(i) ≥
∑

i∈F ′

yigain
′(i)

=
∑

i∈F ′

yi

−f ′
i +

∑

j∈DSol(i)

(c′σ(j)j − c′ij)

= −
∑

i∈F ′

yif
′
i +
∑

i∈F ′

∑

j∈DSol(i)

yi(c
′
σ(j)j − c′ij)

= −FSol +
∑

i∈F ′

∑

j∈DSol(i)

xij(c
′
σ(j)j − c′ij)

= −FSol − CSol +
∑

j∈C′

c′σ(j)j
∑

i∈F ′

xij

= C − (FSol + CSol)

The following intermediate result will help us show the next lemma:

Lemma 3.2.3. Given two real sequences (ai)
N
i=1 and (bi)

N
i=1 such that, for every i ∈

{1, 2, . . . N}, bi > 0,

max
i=1..N

ai
bi
≥

∑N
i=1 ai

∑N
i=1 bi

Proof. Let ℓ , argmaxi=1..N ai/bi. We know that, for all i ∈ {1, 2, . . . , N}, aℓbi ≥ aibℓ.

Sum all these inequalities to obtain aℓ
∑N

i=1 bi ≥ bℓ
∑N

i=1 ai and finally multiply this

inequality by 1/(bℓ
∑N

i=1 bi) to reach the desired result.

Lemma 3.2.4 (Lemma 4.3 in [10]). Let Sol be any feasible fractional solution for an

instance I of the UFLP with total connection cost CSol and total fractional opening FSol,

also let Sol′ be any feasible integral solution to I with total opening cost F and total

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 40

connection cost C. If we apply greedy augmentation to Sol′, the final solution will have

cost at most

F + FSol max

{

0, ln

(

C − CSol

FSol

)}

+ FSol + CSol

Proof. In case C ≤ FSol +CSol, the lemma holds trivially. So, we assume C > FSol +CSol.

Define Solk the solution at the k-th iteration of the greedy augmentation procedure,

and let Ck and Fk be respectively the total connection and opening costs of Solk. Define

Sol0 , Sol′.

We will show that, at any iteration k, there must exist a facility q ∈ F ′ such that

ratio(q) ≥ Ci−CSol−FSol

FSol
. Let (yi)i∈F be the fractional opening of facilities in Sol, de-

fine F∗ = {i : i ∈ F , yi > 0} and consider sequences (ai)i∈F∗ , (yigain(i))i∈F∗ and

(bi)i∈F∗ , (yifi)i∈F∗ (assume all facilities have non-zero opening cost, since facilities with

zero opening costs can be opened at will), applying Lemma 3.2.3, we know that:

max({ratio(i) : i ∈ F∗}) = max

({

yigain(i)

yif ′
i

: i ∈ F∗

})

≥

∑

i∈F∗ yigain(i)
∑

i∈F∗ yif ′
i

=

∑

i∈F∗ yigain(i)

FSol

Applying Lemma 3.2.2, we obtain that the facility in F∗ with greatest ratio, can be

chosen as q.

We can show that the increase of total opening cost from iteration k to iteration k+1

is at most FSol
Ck−Ck+1

Ck−CSol
by using the fact that that greedy augmentation opens a facility

with maximum ratio, implying that

Ck − Ck+1 − (Fk+1 − Fk)

Fk+1 − Fk

= ratio(q) ≥
Ck − CSol − FSol

FSol

=⇒
Ck − Ck+1

Fk+1 − Fk

≥
Ck − CSol

FSol

⇐⇒ FSol
Ck − Ck+1

Ck − CSol

≥ Fk+1 − Fk

We now argue that the there is an iteration m ≥ 1 where Cm ≤ FSol + CSol. By

contradiction, assume that, in the last iteration i, Ci > FSol + CSol. We know that there

is facility q with ratio(q) ≥ (Ci − (FSol + CSol))/FSol which, by our assumption, implies

that q has ratio(q) > 0 and thus could be selected for the next iteration of the algorithm,

implying that i is not the final iteration. Thus, by contradiction, there is an iteration i

where Ci ≤ FSol + CSol. Let m be the first iteration with this property.

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 41

We will now show that Cm + Fm ≤ F + FSol max
{

0, ln C−CSol

FSol

}

FSol + CSol:

Cm + Fm = F + Cm +
m
∑

i=1

(Fi − Fi−1)

≤ F + Cm + FSol

m
∑

i=1

(

Ci−1 − Ci

Ci−1 − CSol

)

≤ F + Cm + FSol

m
∑

i=1

(

1−
Ci − CSol

Ci−1 − CSol

)

(3.14)

Note that Ci > CSol for all i < m because, by choice of m, Ci > CSol + FSol.

Now, to maximize expression (3.14), consider its partial derivative with respect to

Cm, namely 1− FSol

Cm−1−CSol
, which is strictly greater than 0 since Cm−1 > FSol +CSol. This

implies that (3.14) will reach its maximum value when Cm is maximum, which occurs at

Cm = FSol+CSol. Thus, we can freely assume from now on that Cm is equal to FSol+CSol.

Also, we have that, for all i ∈ {1, 2, . . . ,m}, 1 − Ci−CSol

Ci−1−CSol
≤ ln

(

Ci−1−CSol

Ci−CSol

)

, because,

for all real x > 0, 1−x ≤ ln(1/x) due to Lemma 2.2.11. Here, we assume that Cm > CSol

because Cm = FSol + CSol and, if FSol were zero, we would have the trivial case where all

facilities in F∗ could be opened. Thus,

Cm + Fm ≤ F + Cm + FSol

m
∑

i=1

ln

(

Ci−1 − CSol

Ci − CSol

)

≤ F + Cm + FSol ln

(

C − CSol

Cm − CSol

)

= F + CSol + FSol + FSol ln

(

C − CSol

FSol

)

where the last step was given by our assumption that Cm = CSol + FSol.

Since all iterations that follow m will only reduce the solution’s cost, we have arrived

at the desired conclusion.

Theorem 3.2.5 (Adapted from Theorem 1 of [22]). Let I be an instance of the UFLP

and Sol be any (possibly fractional) solution to I where F is the total opening cost of Sol

and C is the total connection cost of Sol (in particular, Sol could be the optimal solution

for I). If it is possible to generate a solution Sol1 such that

δFSol1 + CSol1 ≤ γfδF + γcC,

for real paramaters δ, γf , γc > 0, where FSol1 is the opening cost of Sol1 and CSol1 is the

connection cost of Sol1, then, if we apply greedy augmentation to Sol1, resulting in solution

Sol2, we conclude that

cost(Sol2) ≤ max

(

γf + 1−
1

δ
, γf + ln δ, 1 +

γc − 1

δ

)

cost(Sol).

Proof. The proof is divided in two cases according to whether CSol1 < F + C or CSol1 ≥

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 42

F + C.

In the first case, assume CSol1 < F + C. Thus,

FSol1 + CSol1 =
δFSol1 + CSol1

δ
+

(

1−
1

δ

)

CSol1

≤
γfδF + γcC

δ
+

(

1−
1

δ

)

(C + F)

=

(

γf + 1−
1

δ

)

F +

(

1 +
γc − 1

δ

)

C

≤ max

(

γf + 1−
1

δ
, 1 +

γc − 1

δ

)

cost(Sol)

And, since greedy augmentation does not increase cost, cost(Sol2) ≤ cost(Sol1) and

the result follows.

Now, assume CSol1 ≥ F + C. This assumption implies in ln
(

CSol1
−C

F

)

≥ 0, thus, by

Lemma 3.2.4, we know that

cost(Sol2) ≤ FSol1 + F ln

(

CSol1 − C

F

)

+ F + C

By our initial assumption, we have that CSol1 ≤ γfδF + γcC − δFSol1 , and, as a

consequence:

cost(Sol2) ≤ FSol1 + F ln

(

γfδF + (γc − 1)C − δFSol1

F

)

+ F + C

We will maximize the right-hand expression, choosing a appropriate value for FSol1 .

Notice that 0 ≤ FSol1 ≤ (γf − 1)F + γc−1
δ

C and the partial derivate of the expression

with respect to FSol1 is non-negative in this interval. Thus, the expression is maximized

at FSol1 = (γf − 1)F + γc−1
δ

C and, as a consequence,

cost(Sol2) ≤ (γf + ln δ)F +

(

1 +
γc − 1

δ

)

C

≤ max

(

γf + ln δ, 1 +
γc − 1

δ

)

cost(Sol)

And we have obtained the desired result also in this case.

And, finally, we can prove, combining Theorem 3.2.5 and Theorem 3.2.1, that, at the

end of Phase 3, the obtained solution is a 1.86-approximation.

Theorem 3.2.6. The algorithm described in this section is a 1.86-approximation.

Proof. The solution Sol1 after Phase 2, if we apply cost scaling, has the following property

due to Theorem 3.2.1:

3δFSol1 + CSol1 ≤ 3(δFSol + CSol)

CHAPTER 3. THE DYNAMIC FACILITY LOCATION PROBLEM 43

where Fx and Cx are, respectively, the total opening and connection cost of solution

x ∈ {Sol1, Sol} and Sol is an optimal solution to the instance without scaling.

This property ensures, via Theorem 3.2.5, that the algorithm has an approximation

factor of

max

(

2−
1

3δ
, 1 + ln(3δ), 1 +

2

3δ

)

Setting δ = 0.782, shows that the algorithm is a 1.86-approximation.

Chapter 4

Approximations for the k-Level

Stochastic Facility Location Problem

In this chapter, we will consider the k-Level Stochastic Facility Location Problem (k-

LSFLP), which is a combination of both the k-LFLP and the Stochastic FLP (refer to

Chapters 2 and 3 for more details on these problems). Let us first define the problem

precisely.

An instance of the k-LSFLP is comprised by a set of clients C, a set of facilities F , a

set of scenarios A, a metric c over C ∪ F and facility opening costs.

As in the SFLP, decisions are separated in two time periods called stages. In the first

stage, the set of participating clients is not known, but some facilities can be opened in

advance. In the second stage, exactly one scenario randomly occurs, revealing the set of

participating clients and possibly changing the opening cost for some facilities. The cost

of opening facility i in the first stage is denoted by f I

i . For each scenario A ∈ A, the set

of participating clients is CA, the opening cost of facility i ∈ F during that scenario is fA
i

and the probability of A ocurring is given by pA.

As in the k-LFLP, each facility belongs to one of k levels and we denote the set of all

facilities at level ℓ by Fℓ. However, we can only connect clients by chains of facilities in the

second stage, when the set of participating clients is known. Thus, for each scenario A,

every client j ∈ CA must be connected by a chain of facilities φA(j) = (i1, i2, . . . , ik) ∈

F1 ×F2 × · · · × Fk resulting in a connection cost of d(j, φA(j)) = cji1 +
∑k

p=2 cip−1ip .

Therefore, a feasible solution to this problem is comprised by: a subset of facilities F I

to be opened in the first stage; for each A ∈ A, a subset of facilities FA to be opened in

the second stage if scenario A is realized; and, for each A ∈ A and j ∈ CA, a sequence

φA(j) = (i1, i2, . . . , ik) such that iℓ ∈ F I ∪ FA is an open facility of level ℓ. An optimal

solution minimizes the expected cost, which is given by the following expression

∑

i∈F I f I
i +

∑

A∈A pA

(

∑

i∈FA fA
i +

∑

j∈CA d(j, φA(j))
)

.

We may refer to the solution’s expected cost from here onwards simply as the solution’s

cost to avoid confusion when dealing with randomized algorithms for this problem.

We also consider a variant of the k-LSFLP introduced by Wang et al. [31], where

a client may be connected only to facilities opened in the same stage. That is, for ev-

44

CHAPTER 4. APPROXIMATION FOR THE K-LSFLP 45

ery A ∈ A, and j ∈ CA, if φA(j) = (i1, i2 . . . , ik), then either {i1, i2, . . . , ik} ⊆ F I, or

{i1, i2, . . . , ik} ⊆ FA. A facility can be opened in both stages if it helps minimize the total

cost, in which case, both its first and second stage opening costs must be paid. In this

thesis, we will refer to this variant as the k-Level Stochastic Stage-Constrained Facility

Location Problem (k-LSSCFLP).

Note that this variant is only applicable to situations where it is possible to distinguish

the stages in which facilities were opened, since constraining the stage of facilities to which

a client can connect may impose an unbounded increase in cost that would be otherwise

unjustified. For instance, if we have k = 2, A = {A}, F1 = {i1} and F2 = {i2} such that

f I
i1
= fA

i2
= 1 and fA

i1
= f I

i2
= M , where M is a large positive number; it is better to open

facility i1 during the first stage and facility i2 during the second stage for a total opening

cost of 2, while the stage constrained version would result in a cost of at least 1+M ≫ 2.

For the k-LSSCFLP, Wang et al. [33] presented a combinatorial 7-approximation al-

gorithm, and Wang et al. [32] presented a 4-approximation based on linear programming.

Recently, Wu et al. [36] presented a primal dual (3 + ǫ)-approximation for the metric

2-LSSCFLP. In Section 4.1, we will show an algorithm reminiscent of [32] that adapts

Byrka and Rybicki [9] k-LFLP approximation to obtain better approximation factors for

all k ≥ 2.

For the k-LSFLP, to the best of our knowledge, there were no previous known results

at the time of writing. We will show in Section 4.2 how to obtain a (2k − 1 + o(1))-

approximation that has an approximation ratio of 3.495, 5.157 and 7.034 for respectively

k = 2, k = 3 and k = 4.

4.1 k-LSSCFLP

In this section, we demonstrate that Byrka and Rybicki’s (3−o(1))-approximation for the

k-Level Facility Location Problem (k-LFLP) [9] (see Section 2.2 for a detailed review) can

be adapted to provide a (4 − o(1))-approximation for the k-LSSCFLP. Their algorithm

is based on the rounding of an LP-formulation based on trees of facilities. Once the LP

relaxation is solved, the fractional openings of tree nodes and a clustering procedure are

used to recursively round each tree. In the stochastic case, where facilities might be opened

during the first stage or in one of the scenarios during the second stage, we create, for

every tree in the original formulation, one copy of that tree corresponding to the first stage

and |A| copies corresponding to each one of the scenarios. After obtaining a fractional

solution to the LP relaxation, we scale fractional openings and connections, restricting

the rounding procedure for every client-scenario pair to one of the stages according to

which stage receives more connections for that client-scenario pair. The following table

shows the approximation factor obtained by this approach some values of k:

k 1 2 3 4 5 6 7

factor 2.27 2.56 2.78 2.95 3.07 3.17 3.25

CHAPTER 4. APPROXIMATION FOR THE K-LSFLP 46

Level 1

Level 2

Level 3

1st stage Scenario A Scenario B

Figure 4.1: Original graph and obtained forest.

4.1.1 LP Formulation

Our LP formulation is similar to the one presented by Byrka and Rybicki, with the

addition of structure related to the stochastic nature of this problem.

Next, we obtain a forest R by making copies of trees in R′: for each tree of R′, we

make one copy corresponding to the first stage, and one copy for each scenario of the

second stage. Formally, we define Pℓ = P
′
ℓ × ({I} ∪ A), for 1 ≤ ℓ ≤ k, PF := ∪kℓ=1Pℓ, and

R is the corresponding induced forest on PF . An example of the obtained forest is given

in Figure 4.1.

Let C ′ be the set of all pairs (j, A), henceforth denoted by jA, such that A ∈ A and

j ∈ CA. In the following, we will interpret each jA as a client that must be served in

scenario A. Let PI
C be the set of tuples of the form∗ (jA, i1, i2, . . . , ik)I ∈ C

′×P1. Also, for

a fixed A ∈ A, let PA
C be the set of tuples of the form (jA, i1, i2, . . . , ik)A ∈ C

′ ×P1. Each

tuple in PX
C , X ∈ {I, A}, starting with a client jA represents a path of facilities that jA

may use to satisfy its demand, that is, a path whose facilities should all be opened in the

first stage or all be opened in scenario A. The set of all such paths is PC =
⋃

X∈{I}∪A P
X
C ,

and the set of all considered paths is P = PC ∪ PF .

We define costs for each element of P in the following way. Recall that pA is the

probability of scenario A occurring, and c is the metric function over C ∪ F . For each

path p = (jA, p′)X ∈ PC , where X ∈ {I, A}, define cp = pA · d(j, p
′), where d(j, p′) =

cji1+
∑k

ℓ=2 ciℓ−1iℓ . This corresponds to the increase in the solution’s cost caused by serving

client j in scenario A by the path (i1, i2, . . . , ik) where facilities were opened either in the

first stage, when X = I, or in scenario X, when X ∈ A. For p = (iℓ, iℓ+1, . . . , ik)X ∈ PF ,

define cp as the amount increased in the solution’s cost if facility iℓ were opened in scenario

X, if X ∈ A, or the cost of opening it in the first stage, if X = I. Hence, cp is equal to

∗We made a small abuse of notation to improve readability: (. . . , ik−1, ik)X , (. . . , ik−1, ik, X).

CHAPTER 4. APPROXIMATION FOR THE K-LSFLP 47

pXf
X
iℓ

, if X ∈ A, or cp = f I
iℓ
, if X = I. The resulting ILP for the k-LSSCFLP is given by:

min
∑

p∈P

cpxp (4.1)

s.t.
∑

p∈PC :jA∈p

xp ≥ 1 ∀ jA ∈ C ′ (4.2)

∑

p∈PC :jA∈p,p⊐q

xp ≤ xq ∀ jA ∈ C ′, ∀q ∈ P \ PC (4.3)

xp ≤ xπ(p) ∀ p ∈ P \ (PC ∪ Pk) (4.4)

xp ∈ {0, 1} ∀ p ∈ P (4.5)

where p ⊐ q denotes that tuple q is suffix of tuple p, and π(p) is the parent path of

path p in forest R. Note that this means that, if p ⊐ q, both p and q belong in the same

scenario/stage, also note that all client-scenario pairs have paths that belong in the first

stage, the ones in PI
C . For each p = (jA, i1, . . . , ik)X ∈ PC , variable xp indicates whether

client j in scenario A is served by the path (i1, i2, . . . , ik) of facilities opened either in the

first stage, when X = I, or in the scenario X, if X ∈ A. Variables xp for all p ∈ P \ PC

indicate whether the tree node p is opened. Inequalities (4.2) state that every client j in a

scenario A is served by a path. Inequalities (4.3) state that if a client is served by a path,

the tree nodes in that path are opened. Inequalities (4.4) state that, whenever a tree node

is open, its parent node is also open. In the relaxed version, integrality constraints (4.5)

are replaced by inequalities xp ≥ 0 for all p ∈ P .

The dual program of the relaxed LP is:

max
∑

jA∈C′

vAj

s.t. vAj −
∑

q∈P\PC :q⊐p

wA
j,q ≤ cp ∀ p = (jA, . . .) ∈ PC (4.6)

−yp +
∑

jA∈C′

wA
j,p ≤ cp ∀ p ∈ P1

−yp +
∑

q∈Pℓ−1:p⊐q

yq +
∑

jA∈C′

wA
j,p ≤ cp ∀ ℓ ∈ {2, . . . , k − 1}, p ∈ Pℓ

∑

q∈Pk−1:p⊐q

yq +
∑

jA∈C′

wA
j,p ≤ cp ∀ p ∈ Pk

vAj , w
A
j,p, yp ≥ 0 ∀ p, jA

4.1.2 Clustering and rounding

Based on an optimal solution of the relaxed LP, Byrka and Rybicki’s algorithm [9] obtains

a clustering of the clients such that, for each cluster, one client is considered the center. By

using a careful randomized opening procedure, the expected facility opening cost becomes

equal to the opening cost of the LP. Moreover, the procedure guarantees that there is a

path in PC of opened facilities that starts at the cluster center and has a “small” expected

CHAPTER 4. APPROXIMATION FOR THE K-LSFLP 48

length. Non-center clients can utilize this path as “backup” if there is no preferable path

of opened facilities nearby. However, note that there is at least a constant probability of

preferable paths being available.

In the stochastic case, this strategy cannot be used directly, since some paths asso-

ciated with a cluster center may not belong to the scenario of a non-center client in the

same cluster. Therefore, before the clustering procedure, we decide at which stage each

client will be served and we restrict clusters to only contain clients that will be served in

the same stage. In our algorithm, a client jA ∈ C ′ is clustered in the first stage whenever
∑

p∈PI

C
:jA∈p xp ≥ 1/2, where x is an optimum solution to the relaxed LP. Otherwise, it is

clustered in the second stage.

Define PCl(jA) = {p ∈ PX
C : jA ∈ p, xp > 0} where X = I, if jA is clustered in the

first-stage, and X = A otherwise. Notice that PCl(jA) contains all paths that serve jA

in the stage it was clustered. We will obtain a modified feasible solution x̄ from x, where

each client is served only in one stage. Solution x̄ is defined as follows: for p ∈ P \ PC ,

x̄p = 2xp; for every pair jA and path p ∈ PCl(jA), x̄p = xp/
∑

q∈PCl(jA) xq; and, for every

remaining path p, x̄p = 0.

All pairs jA are inspected in non-decreasing order of dmax
j,A + Cj,A, where dmax

j,A is the

maximum length of a path in PCl(jA) and Cj,A is the average path length in PCl(jA)

weighted by the corresponding fractional opening in x̄. Whenever an unclustered pair jA

is inspected, a new cluster is created, composed of jA, which is also the cluster center,

and all unclustered pairs j′A
′

such that there are paths p ∈ PCl(jA) and p′ ∈ PCl(j′A
′

)

that belong to the same stage and scenario (if applicable) and reach the same k-th level

facility, that is, there exist ik ∈ Fk, and X ∈ {I} ∪ A such that p = (jA, . . . , ik)X , and

p′ = (j′A
′

, . . . , ik)X .

In the following, we will use the randomized rounding procedure by [9], denoted by

ROUND(·) as a black-box, that receives a tree from R rooted at some vertex ik ∈ Fk,

a fractional solution x to the LP associated with R and a bit that informs whether a

token was placed in ik, and returns a set of facilities from the tree to open. Refer to

Section 2.2.3 for more details and results. In this procedure, whenever a token is passed,

we are guaranteed that there is at least one path starting at a first level whose facilities

are all opened.

For each cluster center jA, we randomly select one path p ∈ PCl(jA) with probability

x̄p and place a token in the root node at the end of this path. Finally, we execute the

procedure ROUND(·) on the root of each tree passing the fractional openings of x̄. This

guarantees that, for each cluster center jA, at least one path of PCl(jA) is opened.

4.1.3 Algorithm and analysis

In summary, the algorithm executes the following steps:

1. Solve the relaxed LP and obtain a solution x;

2. For every pair jA ∈ C ′, if
∑

p∈PI

C
:jA∈p xp ≥ 1/2, classify it as first-stage served,

otherwise it is second-stage served;

CHAPTER 4. APPROXIMATION FOR THE K-LSFLP 49

3. Obtain the feasible solution x̄ and execute the clustering procedure, distributing

tokens accordingly, as defined in Section 4.1.2;

4. Execute procedure ROUND(·) according to x̄ and the distribution of tokens;

5. For every scenario A, connect client j ∈ CA in that scenario to the shortest path

i1i2 . . . ik such that every facility iℓ in the path belongs to the ℓ-th level and all

facilities were opened during the same stage and are available in scenario A.

The above algorithm solves a linear program of size O(mnk|A|) where n is the max-

imum number of facilities per level and m is the number of clients and, if k is made

constant, the size is polynomial.

For every scenario A ∈ A and client j ∈ CA, let Pj,A be the random variable that

represents the path assigned to j during scenario A and Cj,A , d(j, Pj,A) be the length

of the path jPj,A. The next lemma, which is very similar to Lemma 2.2.7, bounds the

expected value of Cj,A:

Lemma 4.1.1. Let jA ∈ C ′, then

E[Cj,A] ≤ 2Fk(2)C
∗
j,A + 2(1− Fk(2))(d

max
j,A + C∗

j,A) ,

where C∗
j,A =

∑

p∈P1
x(jA,p)d(j, p).

Proof. By applying Lemma 2.2.7, we obtain that:

E[Cj,A] ≤ Fk(2)Cj,A + (1− Fk(2))(2d
max
j,A + Cj,A) ,

where Cj,A =
∑

p∈PX
1
x̄(jA,p)d(j, p) with X = A if jA is served in the second stage and

X = I if jA is served in the first stage.

To obtain the desired result, we only need to show that Cj,A ≤ 2C∗
j,A:

Cj,A =
∑

p∈PX
1

x̄(jA,p)d(j, p)

=
∑

p∈PX
1

x(jA,p)d(j, p)

/

∑

p∈PX
1

x(jA,p)

≤
∑

p∈P1

x(jA,p)d(j, p)

/

∑

p∈PX
1

x(jA,p)

≤ 2
∑

p∈P1

x(jA,p)d(j, p)

= 2C∗
j,A

Theorem 4.1.2. The expected solution cost generated by the rounding algorithm is at

most (4− 2Fk(2))OPT, where OPT is the optimal cost.

Proof. The expect cost of opening facilities through the rounding algorithm equals to the

opening cost in the feasible LP solution as demonstrated in Lemma 2.2.6. Since in the

CHAPTER 4. APPROXIMATION FOR THE K-LSFLP 50

solution x̄ we have doubled the opening of x, the expected opening cost is 2F ∗, where F ∗

is the total opening cost associated with x. Now we can use Lemma 4.1.1 to bound the

expected value of the solution’s cost:

E[Cost] ≤ 2F ∗ +
∑

j∈C,A∈A

pAE[Cj,A]

≤ 2F ∗ +
∑

j∈C,A∈A

pA(2Fk(2)C
∗
j,A + 2(1− Fk(2))(d

max
j,A + C∗

j,A)) .

By Inequality (4.6) of the dual LP program, and using complementary slackness we

obtain dmax
j,A ≤ vAj /pA. Let C∗ be the total connection cost associated with x. We get:

E[Cost] ≤ 2F ∗ +
∑

j∈C,A∈A

pA(2Fk(2)C
∗
j,A + 2(1− Fk(2))(d

max
j,A + C∗

j,A))

≤ 2F ∗ + 2C∗ + 2(1− Fk(2))
∑

j∈C,A∈A

vAj

≤ 2F ∗ + 2C∗ + 2(1− Fk(2))(F
∗ + C∗)

≤ (4− 2Fk(2))OPT.

To bound the function Fk(γ), we can simply use Theorem 2.2.13.

4.2 k-LSFLP

In this section, we describe a 3.495-approximation algorithm for 2-LSFLP that can be

extended to a (2k − 1 + o(1))-approximation for the k-LSFLP. Our algorithm splits one

problem instance into two 1-LSFLP instances that can be solved individually by a known

algorithm. The main idea is that, after solving each level separately, one may assign each

pair client-scenario to one opened facility of each level, resulting in worse performance

for instances whose optimal solutions have cost dominated by the connection cost. To

mitigate this issue, before solving each one-level instance, we scale all opening costs by

a given parameter δ, solve both instances and, then, apply the greedy augmentation

technique [14] to each solution.

4.2.1 Algorithm

The algorithm proceeds as follows. Given a 2-LSFLP instance I, it creates two 1-LSFLP

instances:

1. I1 containing all scenarios, clients and first-level facilities; connection costs are twice

the corresponding values in I, and opening costs are equal to the opening costs in

I;

2. I2 containing all scenarios, clients and second-level facilities; connection costs and

opening costs are equal to the corresponding values in I.

CHAPTER 4. APPROXIMATION FOR THE K-LSFLP 51

Clients

Level 1

Level 2

jA j′B

I

A B

jA j′B

I

jA j′B

A B

Figure 4.2: Optimal solution for original problem, and solutions Sol†1 and Sol†2 for instances
I1 and I2, respectively. Connections costs in Sol†1 are doubled.

Then, it solves both 1-LSFLP instances by applying Ye and Zhang’s primal-dual al-

gorithm [37] (see Chapter 3) with opening costs scaled by a parameter δ > 0, and applies

greedy augmentation to each solution individually. Finally, it combines both solutions by

opening the same facilities in the same stage/scenario and, for each scenario A and client

j ∈ CA, whenever A is realized, j is connected to the shortest path of available facilities.

Now we detail the greedy augmentation in the context of solutions to a 1-LSFLP

instance. For each (u,X) ∈ F×({I}∪A), “opening (u,X)” is defined as opening facility u

either when scenario X is realized (if X ∈ A), or in the first stage (if X = I). Given

a solution for 1-LSFLP, for every pair (u,X) ∈ F × ({I} ∪ A), define gain(u,X) = C −

C ′ − f̄X
u , where C is the expected connection cost of current solution, C ′ is the expected

connection cost after (u,X) is opened and, for each scenario, clients are connected to the

shortest available path of facilities, and f̄X
u is the expected cost of opening (u,X), that

is, f̄X
u = pXf

X
u if X ∈ A, and f̄X

u = f I

u if X = I.

For a solution to an instance of the FLP, the greedy augmentation procedure consists

in iteratively selecting a pair (u,X) ∈ F × ({I} ∪ A) that maximizes gain(u,X)/f̄X
u and

opening it, until there is no pair (u,X) with gain(u,X) > 0.

4.2.2 Analysis

For the analysis, we first obtain feasible solutions to both I1 and I2 from an optimal

solution to I. Given an optimal solution of cost F ∗ + C∗ for instance I, where F ∗ is the

total opening cost and C∗ is the total connection cost, we create two feasible solution Sol†1
and Sol†2 for instances I1 and I2, respectively. For each ℓ ∈ {1, 2}, we proceed as follows

(see Figure 4.2): solution Sol†ℓ opens all ℓ-th level facilities in the same stage/scenario as

in the optimal solution for the original problem; and, for every scenario A ∈ A and client

j ∈ CA connected to a path (j, i1, i2) in the original solution, connect client j in scenario A

to facility iℓ (notice that iℓ may be opened either in the first stage, or in scenario A).

Let the cost of Sol†ℓ (for ℓ ∈ {1, 2}) be equal to F ∗
ℓ +C∗

ℓ where F ∗
ℓ is the total opening

cost and C∗
ℓ the total connection cost. It is easy to show that F ∗

1 + F ∗
2 = F ∗ and

C∗
1 + C∗

2 ≤ 3C∗ (see Figure 4.2).

By reasoning as in the proof of Theorem 3.2.5, it is possible to show the following

lemma:

Lemma 4.2.1. For ℓ ∈ {1, 2}, let Solℓ be a feasible solution to instance Iℓ with opening

costs scaled by δ > 0. Let the total cost of Solℓ be δFSolℓ + CSolℓ where δFSolℓ is the total

CHAPTER 4. APPROXIMATION FOR THE K-LSFLP 52

(scaled) opening cost and CSolℓ is the total connection cost. If 3δFSolℓ+CSolℓ ≤ 3(δF ∗
ℓ +C∗

ℓ)

then, after applying greedy augmentation to Solℓ, the resulting solution has total cost upper

bounded by

max

(

1 + ln 3δ, 2−
1

3δ

)

F ∗
ℓ +

(

1 +
2

3δ

)

C∗
ℓ .

We can now obtain the approximation factor.

Theorem 4.2.2. The algorithm described in Section 4.2.1 is a 3.495-approximation for

the 2-LSFLP.

Proof. For ℓ ∈ {1, 2}, let Solℓ be the solution obtained by the Ye and Zhang’s primal-dual

procedure [37] to the instance Iℓ with opening costs scaled by a parameter δ > 0. Let the

cost of Solℓ be δFSolℓ +CSolℓ . The primal-dual guarantees that: 3δFSolℓ +CSolℓ ≤ 3OPTℓ,

where OPTℓ is the cost of an optimal solution to Iℓ with scaled opening costs. Since

solution Sol†ℓ is feasible, we conclude that 3δFSolℓ +CSolℓ ≤ 3(δF ∗
ℓ +C∗

ℓ) and we can apply

Lemma 4.2.1:

cost(Sol′ℓ) ≤ max

(

1 + ln 3δ, 2−
1

3δ

)

F ∗
ℓ +

(

1 +
2

3δ

)

C∗
ℓ ,

where cost(Sol′ℓ) is the solution cost after applying greedy augmentation to Solℓ.

Notice that the sum cost(Sol′1) and cost(Sol′2) is an upper bound to the cost of the

final solution, since we open the same facilities in the same stages/scenarios, and we can

connect, without increasing connection costs, each client j ∈ CA in a scenario A ∈ A, to

a path (j, i1, i2), where iℓ (ℓ ∈ {1, 2}) is the facility of Sol′ℓ to which j was connected in

scenario A.

Thus, the cost of the final solution can be upper bounded by

max

(

1 + ln 3δ, 2−
1

3δ

)

(F ∗
1 + F ∗

2) +

(

1 +
2

3δ

)

(C∗
1 + C∗

2)

≤max

(

1 + ln 3δ, 2−
1

3δ

)

F ∗ + 3

(

1 +
2

3δ

)

C∗ .

By setting 3δ = 12.1215, we obtain the desired result.

The same idea can be generalized for k levels, resulting in a (2k − 1 + o(1))-

approximation. Given an instance I, first, create k instances, each associated with fa-

cilities of one of the k levels, and double the connection costs of instances for the first

k−1 levels. To obtain an approximate solution, scale the opening costs by an appropriate

parameter δ > 0, solve each instance with Ye and Zhang’s primal-dual procedure, apply-

ing greedy augmentation, and, finally, open the facilities opened in the solutions of each

one-level instance (at exactly the same stage/scenario), connecting clients by shortest

paths.

Theorem 4.2.3. The algorithm described in the paragraph above is a (2k − 1 + o(1))-

approximation.

Chapter 5

Concluding remarks

In this thesis, we reviewed approximation algorithms for some variations of the Facil-

ity Location Problem and presented new α-approximations for variations of the k-Level

Stochastic FLP adapting the ones we had seen.

We started in Chapter 2 with a review of the (3−o(1))-approximation for the k-LFLP

by Byrka and Rybicki [9]. Their algorithm solved a slightly modified LP for the k-LFLP

that organized facilities in a forest of k-level trees, then proceeded to use an adaptation

of the results by Garg, Konjevod and Ravi [13] for the Group Steiner Tree Problem to

round the LP.

In Chapter 3, we reviewed the 1.86-approximation by Ye and Zhang [38] for the DFLP.

Their algorithm adapted the 3-approximation by Jain and Vazirani [17] for the UFLP (see

Section 1.2) by refining the way a maximal independent set of facilities is selected and,

then, applying the greedy augmentation procedure that improves the result in the worst

case [22, 10].

Finally, in Chapter 4, we demonstrated that, for the k-LSSCFLP, Byrka and Rybicki

algorithm can be adapted to obtain (4 − o(1))-approximation that has approximation

factors 2.56, 2.78 and 2.95 for, respectively, k = 2, 3 and 4, improving the best known

factor of 4 by Wang et al. [32] for the k-LSSCFLP and 3 + ǫ by Wu et al. [36] for the

2-LSSCFLP. Also, we applied Ye and Zhang’s algorithm to obtain a 3.495-approximation

for the 2-LSFLP that can be adapted to a (2k−1+o(1))-approximation for the k-LSFLP,

which, to the best of our knowledge, is the first approximation algorithm for this problem.

In future research, new approximation techniques for stochastic problems might be

attempted for the k-LSSCFLP to reduce its current gap in relation to the k-LFLP. Also,

Byrka, Li and Rybicki’ algorithm for the prize-collecting k-LFLP [8] might have an adap-

tation to the k-LSSCFLP that might obtain a better approximation factor. For the

k-LSFLP, there might be untried techniques that reduce the approximation factor below

the 2k − 1 threshold or that factor might be shown to be optimal.

54

Bibliography

[1] K. Aardal, F. A. Chudak, and D. B. Shmoys. A 3-Approximation Algorithm for the

k-Level Uncapacitated Facility Location Problem. Information Processing Letters,

72(5-6):161–167, 1999.

[2] A. A. Ageev, Y. Ye, and J. Zhang. Improved Combinatorial Approximation Algo-

rithms for the k-Level Facility Location Problem. In Proc. 30th International Collo-

quium on Automata, Languages and Programming, ICALP., pages 145–156, 2003.

[3] A.A. Ageev. Improved approximation algorithms for Multilevel Facility Location

problems. Operations Research Letters, 30(5):327 – 332, 2002.

[4] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,

2004.

[5] A. Bumb and W. Kern. A simple dual ascent algorithm for the Multilevel Facility

Location Problem. In Michel Goemans, Klaus Jansen, José D.P. Rolim, and Luca

Trevisan, editors, Approximation, Randomization, and Combinatorial Optimization:

Algorithms and Techniques, volume 2129 of Lecture Notes in Computer Science, pages

55–63. Springer, 2001.

[6] J. Byrka and K. Aardal. An Optimal Bifactor Approximation Algorithm for the

Metric Uncapacitated Facility Location Problem. SIAM Journal on Computing,

39(6):2212–2231, 2010.

[7] J. Byrka, M. R. Ghodsi, and A. Srinivasan. LP-rounding algorithms for Facility-

Location Problems. Computing Research Repository, abs/1007.3611, 2010.

[8] J. Byrka, S. Li, and B. Rybicki. Improved approximation algorithm for k-Level UFL

with penalties, a simplistic view on randomizing the scaling parameter. In Interna-

tional Workshop on Approximation and Online Algorithms, pages 85–96. Springer,

2013.

[9] J. Byrka and B. Rybicki. Improved LP-rounding approximation algorithm for k-

Level Uncapacitated Facility Location. In International Colloquium on Automata,

Languages, and Programming, pages 157–169. Springer, 2012.

[10] M. Charikar and S. Guha. Improved combinatorial algorithms for the Facility Lo-

cation and k-Median problems. In Proc. 40th Annual Symposium on Foundations of

Computer Science, pages 378–388. IEEE, 1999.

55

BIBLIOGRAPHY 56

[11] V. Chvátal. Linear Programming. Freeman, 1983.

[12] G. Cornuéjols, G. L. Nemhauser, and L. A. Wolsey. The Uncapacitated Facility

Location Problem. Technical report, DTIC Document, 1983.

[13] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm

for the Group Steiner Tree Problem. In Howard J. K., editor, Proc. 9th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 253–259. ACM/SIAM, 1998.

[14] S. Guha and S. Khuller. Greedy strikes back: improved facility location algorithms.

Journal of Algorithms, 31(1):228–248, 1999.

[15] S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and network design

problems. In Proc. 41st Annual Symposium on Foundations of Computer Science,

pages 603–612, 2000.

[16] INFORMS. Section on Location Analysis. https://www.informs.org/Community/

SOLA, 2015.

[17] K. Jain and V. Vazirani. Approximation algorithms for metric Facility Location

and k-Median problems using the Primal-Dual schema and Lagrangian relaxation.

Journal of the ACM (JACM), 48(2):274–296, 2001.

[18] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computa-

tional Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[19] R. Krishnaswamy and M. Sviridenko. Inapproximability of the Multi-level Uncapac-

itated Facility Location Problem. In Proc. 23rd Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 718–734, 2012.

[20] J. Lin and J. S. Vitter. Approximation algorithms for geometric median problems.

Information Processing Letters, 44(5):245–249, 1992.

[21] J. Lin and J. S. Vitter. ǫ-approximations with minimum packing constraint violation

(extended abstract). In S. Rao Kosaraju, M. Fellows, A. Wigderson, and J. A. Ellis,

editors, Proc. 24th Annual ACM Symposium on Theory of Computing, pages 771–782.

ACM, 1992.

[22] M. Mahdian, Y. Ye, and J. Zhang. Improved Approximation Algorithms for Metric

Facility Location Problems. In Proc. 5th International Workshop on Approximation

Algorithms for Combinatorial Optimization, pages 229–242, 2002.

[23] A. Meyerson, K. Munagala, and S. Plotkin. Cost-distance: two metric network

design. In Proc. 41st Annual Symposium on Foundations of Computer Science, pages

624–630, 2000.

[24] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1982.

BIBLIOGRAPHY 57

[25] R. Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algorithms for

stochastic optimization problems. In D. Bienstock and G. Nemhauser, editors, Inte-

ger Programming and Combinatorial Optimization, volume 3064 of Lecture Notes in

Computer Science, pages 101–115. Springer, 2004.

[26] D. B. Shmoys and C. Swamy. An approximation scheme for stochastic linear program-

ming and its application to stochastic integer programs. J. ACM, 53(6):978–1012,

2006.

[27] D. B. Shmoys, E. Tardos, and K. Aardal. Approximation Algorithms for Facility

Location Problems (Extended Abstract). In Proc. 29th Annual ACM Symposium on

the Theory of Computing, May 4-6, pages 265–274, 1997.

[28] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 4th

edition, 2016.

[29] V. Vazirani. Approximation algorithms. Springer, 2003.

[30] J. Vygen. Approximation algorithms facility location problems. Forschungsinstitut

für Diskrete Mathematik, Rheinische Friedrich-Wilhelms-Universität, 2005.

[31] Z. Wang, D. Du, A. F. Gabor, and D. Xu. An approximation algorithm for the k-

level stochastic facility location problem. Operations Research Letters, 38(5):386–389,

2010.

[32] Z. Wang, D. Du, A. F. Gabor, and D. Xu. Erratum to: "An approximation algorithm

for the k-level stochastic facility location problem" [Operations Research Letters

38(2010) 386-389]. Operations Research Letters, 39(2):160–161, 2011.

[33] Z. Wang, D. Du, and D. Xu. A Primal-Dual Approximation Algorithm for the k-

Level Stochastic Facility Location Problem. In B. Chen, editor, Algorithmic Aspects

in Information and Management, volume 6124 of LNCS, pages 253–260. Springer,

2010.

[34] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cam-

bridge University Press, 2011.

[35] L. A. Wolsey and G. L. Nemhauser. Integer and combinatorial optimization. Wiley,

1990.

[36] C. Wu, D. Du, and D. Xu. Primal-dual approximation algorithm for the two-level

facility location problem via a dual quasi-greedy approach. Theoretical Computer

Science, 562:213 – 226, 2015.

[37] Y. Ye and J. Zhang. An Approximation Algorithm for the Dynamic Facility Location

Problem. In M. Cheng, Y. Li, and D.-Z. Du, editors, Combinatorial Optimization in

Communication Networks, volume 18 of Combinatorial Optimization, pages 623–637.

Springer US, 2006.

BIBLIOGRAPHY 58

[38] Y. Ye and J. Zhang. An approximation algorithm for the dynamic facility location

problem. In Combinatorial Optimization in Communication Networks, pages 623–

637. Springer, 2006.

[39] J. Zhang. Approximating the two-level facility location problem via a quasi-greedy

approach. Mathematical Programming, 108(1):159–176, 2006.

	1 Introduction
	1.1 Preliminary definitions
	1.2 The Uncapacitated FLP

	2 The k-Level Facility Location Problem
	2.1 Literature overview
	2.2 A (3-o(1))-approximation for the k-LFLP
	2.2.1 ILP formulation
	2.2.2 Clustering
	2.2.3 Randomized Facility Opening
	2.2.4 Analysis

	3 The Dynamic Facility Location Problem
	3.1 Reduction from the SFLP to the DFLP
	3.2 A 1.86-approximation for the DFLP
	3.2.1 Algorithm description
	3.2.2 Phase 1: obtaining a feasible dual solution
	3.2.3 Phase 2: obtaining a feasible primal solution
	3.2.4 Phase 3: greedy augmentation
	3.2.5 Analysis

	4 Approximation for the k-LSFLP
	4.1 k-LSSCFLP
	4.1.1 LP Formulation
	4.1.2 Clustering and rounding
	4.1.3 Algorithm and analysis

	4.2 k-LSFLP
	4.2.1 Algorithm
	4.2.2 Analysis

	5 Concluding remarks
	Bibliography

