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Abstract
Let Aη := {b2nηc : n = 0, 1, 2, . . . }, where 1 ≤ η < 2. In the recent paper [Discrete Math. Lett. 4 (2020) 31–36], the authors
examined the subset-sums of the set Aη and then presented an encryption algorithm. The basics of the latter part is that
the encoded message is a public natural number N and everyone is allowed to query for the set (Aη uAη)∩ [1, N ] until they
find an element of it. Using the results about P (Aη), the set of subset-sums of Aη, it was shown that with the secret key
γ the message can be decoded in logarithmic time, but for an eavesdropper without the key it takes on average more than
N/log2N time. In this article, we show that the eavesdropper essentially can not figure out the codeword from the found
element of S, even if she got that element from the query sequence in a relatively short time.
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1. Introduction

The set {b2nηc | n = 0, 1, · · · }, where 1 ≤ η < 2, and its related subset-sums were investigated by Erdős and Graham
in [4]. Hegyvári also examined some properties of these subset-sums in the articles [2, 3]. Based on these works, in the
article [1], an encryption algorithm was examined using the aforementioned set and its subset-sums. In this article, we
further investigate that encryption process. We show that if an eavesdropper catches the message, she can not be certain
what the codeword was.

For any η ∈ [1, 2), let an := b2nηc and Aη := {an | n = 0, 1, 2, · · · }. We associate to Aη its so-called subset-sums:

P (Aη) :=

{ ∞∑
i=0

εiai : ai ∈ Aη; εi ∈ {0, 1} for all i;
∑
i

εi <∞

}
.

It was proven in the article [1] that every element of P (Aη) has a unique representation (see Proposition 3.2 in [1]). It
was also shown in [1] (see Proposition 3.3 in [1]) that the biggest gap of the set P (Aη) ∩ [1, ak] is equal to

∑k
j=1 ηj , where

η = 1.η1η2 · · · in binary form. Using these results, the authors of [1] also presented an encryption algorithm to send a
message. The coding process is given as follows:
Let cn be a binary codeword with n digits: cn = η1η2 · · · ηn, where each ηi ∈ {0, 1} for i = 1, 2, · · · , n. We associate an
η ∈ [1, 2) for the codeword cn: η = 1.η1η2 · · · ηn · · · (after ηn we can extend arbitrarily, only one assumption is important,
that we prefer the expression where ηi = 0 holds infinitely many times). The message is sent by Alice to Bob in the form of
N ∈ N. This N is public in the sense that an eavesdropper (Eve) can catch this message. Alice and Bob on the other hand
has a secret key 0 < γ < 1, which is available only for them.

Denote by B u C the restricted sum for the sets B,C ⊆ N, i.e.,

B u C := {b+ c | b ∈ B, c ∈ C and b 6= c}.

Towards the decoding process, let S be the following set:

S := (Aη uAη) ∩ [1, N ].

For the decoding process, let us define a query function f : [1, N ] 7→ {0, 1} such that f(x) = 0 if x 6∈ S and f(x) = 1 if x ∈ S.
Everyone can query an (x0, x0 +1, · · ·x0 +L) sequence of integers such that (f(x0), f(x0 +1), · · · , f(x0 +L))=(0, 0, · · · , 0, 1).
So we can query x0 and if it is not in S we can query x0+1 and so on until we find an element of S. The length of the query
sequence is Lx0

η (N) := L. For simplicity, let us denote by xL the number x0 + L.
In the 4th section of the article [1], the following two results were presented about this process.
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Theorem 1.1. If Alice sends the message N for which it holds that

γN ∈

[
n−1∑
i=0

ai + 1, an

)
,

then Bob can get the message by asking a query sequence starting by an appropriately chosen x0 such that

Lx0
η (N) ≤ log2N + 2.

Theorem 1.2. The expected length of the query sequence of an eavesdropper Eve, who chooses the start of the query sequence
uniformly at random in [1, N ] is

E(X) ≥ cN

log22N
,

(c > 0 absolute).

2. Decomposition lemmas

As we already mentioned, our purpose is to show that Eve can not really recognize the codeword even if she finds an xL ∈ S
in a relatively short time. We are going to restrict the length of a query sequence by Nβ , 0 < β < 1. This is not going to
cause problems, because this restriction only makes things harder for Eve, while Bob will still have enough query questions
to find the codeword in a short time (see Theorem 1.1). We will return to the right choice of β later.

Assume now that Eve finds an element xL ∈ S after querying at most Nβ . What she can do is try to decompose xL into
the sum of b and b′, where b, b′ ∈ Aζ (for some 1 ≤ ζ < 2) and she hopes that eventually ζ = η. This is equivalent to the task
of finding b and b′, b + b′ = xL, b > b′ where in binary form the first few digits of b forms exactly b′, since both of them are
equal to b2sζc for some s ∈ N.

Now, we are going to look at this task in a third equivalent form. We search for the pairs (b, k) that satisfy:

xL = b+

⌊
b

2k

⌋
(1)

where 1 < b < xL and 1 ≤ k ≤ blog2 xLc + 1. Notice that k determines b, since xL is fixed. Now, our goal is to guarantee
that for many k such b exists. For this, lets analyze (1) for a fixed k.

Lemma 2.1. For fixed xL, k ∈ N, there is a solution for (1) if and only if xL 6≡ −1 mod (2k + 1).

Proof. First lets reshape (1):

xL = b+

⌊
b

2k

⌋
⇐⇒ b+

b

2k
− 1 < xL and xL ≤ b+

b

2k
⇐⇒

⇐⇒ b
2k + 1

2k
< xL + 1 and xL ≤ b

2k + 1

2k
⇐⇒ 2k

2k + 1
xL ≤ b <

2k

2k + 1
(xL + 1).

To guarantee a solution to (1), we need to prove the existence of an integer greater than
2kxL
2k + 1

,

but strictly less than
2kxL + 2k

2k + 1
.

We claim that there is such an integer if and only if xL 6≡ −1 mod (2k + 1). Lets look at 2kxL in the following form:

2kxL = pk(2
k + 1) + tk,

where 0 ≤ tk ≤ 2k, tk ∈ Z. We need an integer

b′ ∈
[
2kxL
2k + 1

,
2kxL + 2k

2k + 1

)
=

[
pk +

tk
2k + 1

, pk +
tk + 2k

2k + 1

)
.

This is equivalent to the existence of an integer

b′′ ∈
[

tk
2k + 1

,
tk + 2k

2k + 1

)
.

If tk = 0 then 0 ∈
[

tk
2k+1

, tk+2k

2k+1

)
, and if tk > 1 then 1 ∈

[
tk

2k+1
, tk+2k

2k+1

)
. It follows that there is such an integer if and only if

tk 6= 1⇐⇒ 2kxL 6≡ 1 mod (2k + 1)⇐⇒ xL 6≡ −1 mod (2k + 1).

64



B. Bakos and M. Pálfy / Discrete Math. Lett. 5 (2021) 63–67 65

Our purpose now is to show the existence of many k, where this incongruence holds. The following lemma will ensure
this.

Lemma 2.2. Let k be an integer such that k ≥ 1
2 log2 xL. In this case, there is an integer solution for (1) either for k or for

k + 1.

Proof. For contradiction, suppose that both of the following linear congruences hold:

xL ≡ −1 mod (2k + 1) and xL ≡ −1 mod (2k+1 + 1).

On the other hand, 2k +1 and 2k+1 +1 are relative primes, so by the Chinese remainder theorem any solution to the above
congruent system has a unique solution under mod (2k + 1)(2k+1 + 1). Hence, the smallest positive integer that satisfies
both of the above congruences simultaneously is (2k+1)(2k+1+1)−1. Thus xL ≥ (2k+1)(2k+1+1)−1. From this, a trivial
estimate shows that xL > 22k, contradicting the assumptions of the theorem.

3. Result on security against an eavesdropper

Now, we want to underestimate the number of b’s which Eve considers viable. From the previous lemma, we know that
Eve can decompose xL in many ways to satisfy (1). But, to delude Eve it is not enough to just have b’s which satisfy (1).
Remember that Eve wants b’s which can be the starting sequence of the codeword and she can check if this hypothesis of
her is compatible with the queries or not. What do we mean by this?

Fix a b ∈ N such that for some k: xL = b + b b
2k
c. Considering Eve’s point of view, she thinks that she queried from a

set Aζ u Aζ , where ζ ∈ [1, 2) and she hopes that ζ = η. To have this theory, she has to assume that aj = b2jζc = b, where
j = blog2 bc. In this case, the first elements of the set Aζ would be:

1 =
⌊ b

2blog2 bc+1

⌋
, · · ·

⌊
b

2

⌋
, b.

Denote by Cb the set that has exactly the same elements as above:

Cb :=

{⌊ b

2blog2 bc+1

⌋
, · · ·

⌊
b

2

⌋
, b

}
.

Eve can exclude certain b’s by looking up if during her query sequence she queried for some x ∈ Aζ u Aζ , x < xL. She
can do it because if she did indeed query such an x, then she would have got f(x) = 1. But, in this case she would have
stopped querying there and would have got x as an element of S instead of xL.

Before we go further, we prove a simple statement that ensures that Eve actually knows (Aζ uAζ)∩ [1, xL]. Or in other
words, the exclusion method relies only on b and not on the elements of Aζ , larger than b (which are unknown to Eve).

Claim. (Aζ uAζ) ∩ [1, xL] = (Cb u Cb) ∩ [1, xL].

Proof. First, we recall that we assume b = b2jζc = aj . It is obvious that (Aζ u Aζ) ∩ [1, xL] ⊇ (Cb u Cb) ∩ [1, xL]. For the
other direction, take an arbitrary x ∈ (Aζ uAζ) ∩ [1, xL]. Notice that it is enough to prove that x = al + am holds for some
l,m ≤ j, l 6= m. We know by assumption that xL = aj + ak for some k < j. Note that for every n ∈ N: 2an = 2b2nζc ≤
b2n+1ζc = an+1. Assume for contradiction that x = al+ am and l > j, in this case we would get xL = aj + ak < 2aj ≤ aj+1 ≤
al < al + am = x.

We are going to say that a b is acceptable for Eve if it is a solution of (1) for some k and it can not be excluded by Eve
with the previous method (checking if she queried for any x < xL, x ∈ Aζ uAζ , which is equivalent, by the above claim, to
checking if she queried for any x < xL, x ∈ Cb u Cb). We want to emphasize here, that acceptability now relies only on b

(and not on the elements of Aζ which are larger than b). Lets denote the number of acceptable solution for Eve by µ (for a
fixed xL).

We want Eve to have a lot of acceptable b’s so we try to deny the ability of exclusion from her. For this purpose, from
now on we restrict the length of the query sequence by Nβ . How does this affect Eve’s exclusion method? First notice that
in order to exclude a certain b it is enough for her to check if she queried x̂ = max{x ∈ Cb u Cb | x < xL}, the largest
element of CbuCb smaller than xL. So if we can ensure that Nβ ≤ xL− x̂, then she can not exclude this b. We will use this
observation in the next theorem.

As we mentioned earlier, we are proving that Eve can not figure out the codeword uniquely. We need to specify what
that means exactly. So far we have investigated only solutions for (1). If Eve finds a k and a corresponding b as a solution
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of (1), then she assumes b = b2sζc for some s ∈ N, 1 ≤ ζ < 2 and hopes that ζ = η. The first n+ 1 digits of ζ is equivalent
to an n digit codeword (1.ζ1ζ2 · · · ζn · · · ∼ d = ζ1ζ2 · · · ζn), so she has to get these n + 1 digits. Since the length of b is at
most the length of xL, Eve only knows at most blog2 xLc + 1 digits of ζ. So she can choose the values of the remaining
h = n+1− (blog2 xLc+1) = n−blog2 xLc digits arbitrarily, leaving her with at least 2h different ζ, which have the property,
that their first blog2 bc+1 digits form the number b. And this is only for one acceptable b. (We know that at least one always
exists, which is the one corresponding to η, which is determined by the real codeword.)

So if xL is too small, then this leaves Eve with a lot of unknown information about the codeword. The second part of
the next theorem is about the case when she finds an xL where n − blog2 xLc is small (i.e. xL is large). In this case there
are many acceptable ways to decompose xL. So she has many b’s to start the codeword with, leaving her in inconsistency,
even though she has low level of freedom to extend them into possible codewords.

We are going to call an integer d = ζ1ζ2 · · · ζn (where each ζi ∈ {0, 1} for i = 1, 2, · · · , n) possible codeword viable if
there is an acceptable b which is the prefix of d in binary form. For a fixed xL denote the number of viable codewords by ν.
Obviously µ ≤ ν, since every acceptable b can be extended (possibly in many ways) into a viable d.

In the upcoming theorem we will consider two cases, xL ≥ Nα or xL ≤ Nα, where 0 < α < 1, and we will give a lower
bound on µ and ν respectively. We will give some more restriction on α later and we will also discuss its relationship to
other variables N, γ, β.

Theorem 3.1. (i). If xL < Nα then

ν ≥ γN1−α

2
.

(ii). If xL ≥ Nα then

µ ≥

(
α− β − 2

log2N
− 1

2

)
α log2N − 3

2
.

Proof. (i). In this case, even if Eve finds the correct b for xL she misses some bits of the codeword. To be more precise, if
the length of the codeword is n we have the following inequalities:

missing bits = n− blog2 xLc ≥ blog2 γNc − blog2 xLc ≥ log2 γ − 1 + log2N − log2 xL ≥ log2 γ + (1− α) log2N − 1.

Thus,
µ ≥ 2missing bits ≥ γN1−α

2
.

(ii). We are going to prove the existence of acceptable b’s belonging to certain values of k ∈ [ 12 log2 xL, (α−β−
2

log2N
) log2 xL].

From Lemma 2.2, we know that if k ≥ 1
2 log2 xL, then for either k and k + 1 there is a b solution for (1). But, it also needs

to be acceptable. Because of the argument above we only have to ensure Nβ ≤ xL − x̂ for this.
Since xL = b+

⌊
b
2k

⌋
, x̂ is either b+

⌊
b

2k+1

⌋
or
⌊
b
2

⌋
+
⌊
b
4

⌋
and therefore⌊ b

2k

⌋
−
⌊ b

2k+1

⌋
≤ min

(⌊ b
2k

⌋
−
⌊ b

2k+1

⌋
, b+ 1−

⌊ b
2

⌋
−
⌊ b
4

⌋)
≤ xL − x̂.

So, we are left to see if the following inequality holds:⌊ b
2k

⌋
−
⌊ b

2k+1

⌋
≥ Nβ .

Starting from the left side we get: ⌊ b
2k

⌋
−
⌊ b

2k+1

⌋
≥ b

2k
− 1− b

2k+1
≥ xL

2k+2
≥ Nα

2k+2
.

So, we need Nα

2k+2 ≥ Nβ . Since we are now considering k ≤ (α− β − 2
log2N

) log2 xL, we get the following:

k ≤ (α− β − 2

log2N
) log2 xL ≤ (α− β − 2

log2N
) log2N = log2N(α− β)− 2.

If we look at the left and right side and reorder the inequality we can easily get the desired inequality. Now, from this
and from Lemma 2.2 we can say that for every k in the interval [ 12 log2 xL, (α− β −

2
log2N

) log2 xL] either k or k+1 gives an
acceptable b for Eve. So, by pairing the integers of interval we get

µ ≥

⌊⌊
(α− β − 2

log2N
) log2 xL

⌋
−
⌈
1
2 log2 xL

⌉
+ 1

2

⌋
≥

⌊
(α− β − 2

log2N
) log2 xL − 1

2 log2 xL − 1

2

⌋
≥

≥
(α− β − 2

log2N
− 1

2 ) log2 xL − 3

2
≥

(α− β − 2
log2N

− 1
2 )α log2N − 3

2
.
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4. Concluding remarks

It is worth to take a look at what the results of Theorem 3.1 really mean. In both parts of this theorem, we get more
acceptable solutions if N is large. We can guarantee this part, but after a certain point an absurdly large N is not very
practical. So, we want to optimize the parameters α and β as well.

The parameter β is best to be as small as possible (but can not be too small because Bob has to be able to find the
codeword). Theorem 1.2 tells us that the lower bound log2N + 1 < Nβ is required to give Bob the ability to get the
codeword with the secret key γ, regardless of the restriction on the length of a query sequence. So, we can choose for
example β = logN (2 logN), which tends to 0, as N →∞.

In the case of α, it is a bit more complicated than that β. We can say that α is a double-edged weapon in the following
sense: According to part (i), α is better to be small, while according to part (ii) it is better to be large (close to 1).

We gather here the acquired bounds on N with respect to the parameters. Here, we consider the case when we only
want to ensure more than one viable codeword. From Theorem 3.1, we get that if we want ν > 1 in part (i) and µ > 1 in
part (ii), then N has to satisfy the following lower bounds: (i)→ N > ( 2γ )

1
1−α and (ii)→ N > 2

7
α(α−β−1/2) .
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