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Introduction 
In a prior article the author shows how one can construct all possible 
regular graphs. The author's investigation into the structure of 
regular graphs motivated applying them to constructing a standard 
(non-computer proof) of the famous Four-Color Theorem. After 
having discovered the basic method for solving the Four-Color 
Theorem in 1989, the author subjected the first unrefined proof to 
the review of a number of mathematicians throughout the world. 
Based on these formal and informal reviews the author made 
several minor fixes to the proof without disturbing its basic flow. 
In 1993, the author generalized the proof to n-dimensions opening 
the door to a new way of approaching science and engineering. 
The 2N Color Theorem should be regarded as a basic building 
block for a wide range of technical fields of practical interest 
such as, logistics engineering, human factors engineering, particle 
physics, molecular engineering, hardware engineering, network 
design, and much more. 

Basic Concepts and Notation 
Next we summarize theory, definitions and terminology employed 
in the proof of the 2N Color Theorem. Most of the concepts 
employed in this article are standard with the exception of the 
definition of semi-regularity defined later. 
   
A graph is planar, if it lies in a plane and vertices are the only 
places where edges intersect. Graphs that are not planar are said 
to be non-planar. We can alternatively regard a non-planar graph 
as one that requires exiting two dimensions to avoid intersections 
that are not vertices. This way of viewing non-planarity is more 
visual than the first and is equivalent. A proper coloring of a graph 
is one in which no two adjacent vertices are of the same color. 
The chromaticity of a graph is the minimum number of colors 

required to color the graph's vertices so that vertices are not of 
the same color. Clearly, regions of a map can be represented by a 
graph where the vertices are equivalent to regions in a map and 
the boundaries of the regions are equivalent to edges in a graph. 
   
The concept of a planar graph leads one to consider the topology 
of the plane. To that end, the well-known Jordan Simple Curve 
Theorem plays a dominant role. Basically, the Jordan Curve 
Theorem says that every continuous non intersecting closed curve 
J divides the plane into two open sets, one called the interior and 
the other the exterior, in such a way that any line joining a point 
from the interior to a point in the exterior must intersect J. The 
theorem seems obviously true, but is very difficult to prove. The 
Jordan Curve Theorem is a basic building block for deducing 
results related to the design of a network. The next stated result 
relies on the Jordan Curve Theorem.
   
We define Kn to be the graph with n vertices such that each of the 
vertices has exactly one edge to each of the other n 1 vertices. 
Two adjacent vertices having two or more edges between them are 
said to be linked. A graph has a link if at least one pair of adjacent 
vertices are linked. The next result stated is a special case of the 
well-known Kuratowski theorem and so we omit its proof. 

Theorem 1  
Kn for n>4 is non-planar.

The degree of a vertex is defined to be the number of edges 
emanating from the vertex. A p semi-regular graph is a graph 
having degree p for all of its vertices. We permit links in this 
definition, but not loops. A p-semi-regular graph with no links 
is p-regular. 
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Theorem 2 
Every 5-chromatic 4-semiregular graph is non-planar.
   
pf. The previous theorem provides an ideal basis for finite 
induction, because K5 is non planar, requires 5 colors, and is the 
only 4 semiregular graph having five vertices where each vertex 
must be adjacent to the remaining colors. Assume that every 4 
semiregular 5-chromatic graph G(k) with k vertices or less is non-
planar. Let G(k+1) be a 4 semiregular 5-chromatic graph with k+1 
Vertices. Temporarily assume a special case of the theorem where 
each vertex of G(k+1) is colored in such a way that every vertex 
is adjacent to each of the other colors. I.e. G(k+1) is like K5 in 
the sense that G(k+1) can only be colored with each vertex being 
adjacent to each of the 4 other colors. I.e. G(k+1) is 5-chromatic 
and 4-semiregular. 
  
The next critical Lemma (which essentially is the Four-Color 
Theorem) deals with this special class of 4 semiregular graphs 
which for all we care could consist only of disconnected unions 
of K5 without affecting the logic of the proof and that is what 
happens!! We assume k>5. For the special class of G(k+1) 
(temporarily assumed) at least two vertices must be identically 
colored for each color when k>5. 

The sequel shows how to prove a special case of Theorem 2 by 
induction. The special case of Theorem 2 is all that is needed to 
prove the Four-Color theorem and its generalization.  Theorem 2 
may be near impossible to prove directly but is unnecessary for 
proving the Four-Color Theorem. We prove the necessary special 
case of Theorem 2 needed to prove the Four-Color Theorem next.  

Let P(k) notate the kth case of proposition k. P(1) is K5 the graph 
that consists of 5 vertices each connected to the others.  K5 is 
5-chromatic, four semi-regular and nonplanar. P(2)is the extension 
of P(1) to add a vertex that satisfies four semi-regularity, and is 
5-chromatic.  Adding a new vertex to P(1) forces adding four 
more vertices to maintain four semi-regularity that is 5 chromatic 
including the added new vertex because it cannot connect to the 
vertices from P(1). I.e. P(2) results in K5∪K5.  The same logic 
that applies to forcing P(2)to be the union of two K5s applies to 
P(k+1) the addition of K5 retains the nonplanarity found in the 
case of P(k+1) By induction we have established the special case 
of Theorem 2 required to prove the Four Color Theorem.  

At this point Theorem 2 is established but only for the special 
class of 4 semiregular 5 chromatic graphs temporarily assumed. 
I.e. Theorem 2 is only partially proved for a special case of it. 

For the Four-Color proof we require that only this special class of 
4 semiregular graphs (ones like K5) are proven non-planar. After 
employing this partial result to prove the Four-Color Theorem the 
rest of the cases of the preceding theorem, being a special case of 
the Four-Color Theorem itself, follows immediately! 

We emphasize that the preceding Theorem 2 is not proven 
completely, yet. Only the special case of it needed to prove the 
Four-Color Theorem is proven at this point! (Where is it written 
in stone that a proof must follow a linear sequence?) We should 
think of the Theorem 2 as being on hold while we use a proven 
special case of it to prove the Four-Color Theorem, which can 
then in turn imply the rest of Theorem 2. The argument almost 
seems circular!   

A vertex is saturated if in a proper coloring the vertex is adjacent 
to vertices which exhaust the remaining colors. A path in a graph 

is a sequence of adjacent vertices with their connecting edges. A 
graph is connected if there exists a path between every pair of 
vertices in it.  

Lemma 
If a connected graph G with more than 5 vertices is 5-chromatic 
and a proper coloring requires at least one non-removably 
saturated vertex then G is non-planar.
   
pf. By assumption there exists a non-removably saturated vertex 
v1. Removably saturated means that the finite process described 
in this proof can be employed to recolor G so that all of V1’s 
adjacent vertices exhaust the colors other than the one of v1. If all 
vertices of G are either removably saturated or unsaturated then 
four adjacent vertices each are missing a color and it cannot be 
the color of V1 since all of the vertices saturating v1 are adjacent 
to v1, G is assumed 5-chromatic. Therefore one of the 5 possible 
colors is missing in all four of the adjacent vertices of v1. We can 
replace the one missing color in all four of the adjacent vertices 
of v1 with the color of v1 contradicting that v1 is non-removably 
saturated as assumed. 

Without loss of generality we assume that V1 is any non-
removable saturated vertex of G. In the diagram let V1 be adjacent 
to V2,V3,V4 and v5 exhausting the 5 colors of the assumed proper 
coloring as depicted in the diagram. 

V1 may have more than one adjacent vertex of the same color. 
To simplify the above we only depict one vertex representing 
each color. We can repeat the foregoing argument for every other 
non-removable saturated node in a graph G proving that all such 
non-removably saturated vertices must be adjacent to another 
such non-removable saturated vertex.  

The same sequence of reasoning applies to each of the colors 
saturating V1. One of the non-removable saturated vertices of G, 
say V3, must connect to a nonadjacent vertex of V1 or the graph 
G would not be connected. We can assume that there exists at 
least one vertex in G nonadjacent to V1. The preceding sequence 
of reasoning applied to V1 may be repeated on V3 to create a 
sequence of non-removable saturated vertices V1,V3,...  As the 
graph is finite, the procession must terminate in the evolution of a 
4-regular sub-graph requiring 5 colors where each vertex is non-
removably saturated. i.e. Eventually, the vertices whose existence 
are forced by the process are already included in the 4-regular 
sub-graph being generated. The conclusion follows from the 
proven special case of the previous partially proven Theorem 2.

Definition of Derivative Graph 
Assume a graph G is 5-chromatic. The derivative graph D(G) is 
formed by partitioning the vertices of G into subsets A, B, C, D, 
and E according to a proper coloring. The partitioned subsets are 
treated as though they are the vertices of a new graph. Defining 
the edges of the derivative graph is slightly more complicated. 
First, we consider all paths starting with each vertex in each of the 
partitioned sets. Each path emanating from one of the partitioned 
sets traverses a vertex e (not necessarily in the same partition set 
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as the initial vertex of the path containing e) where a maximum 
number of colors are adjacent. Select any one such vertex. An edge 
is defined from the partition set A to B, if the selected vertex e 
is adjacent to the color represented by B. Similarly, all edges are 
defined. Obviously, a graph can have a multiplicity of derivative 
graphs.  
   
We might note that the derivative graph of K5 is itself and in 
general derivative graphs of complete graphs are themselves. 
From a purely mathematical point of view it may be of interest 
to attempt to characterize all graphs that are their own derivative 
graph. I.e. are complete graphs the only ones that are their own 
derivative? The derivative graph is a way to systematically address 
all possible coloring relationships in a comprehensive way that 
allows proving the Four-Color Theorem 3. The derivative graph 
concept gives a convenient way of systematically treating all color 
relationships in a graph format. The author originally invented 
the concept, because of a desire to be certain that all interactions 
between coloring and network logic are considered. 

Theorem 3 
A planar graph requires no more than four colors for a proper 
coloring. 
   
pf. Assume that there exists a planar graph G requiring a minimum 
of 5 colors so that no two colors are adjacent. There must be at least 
one vertex that is non-removably saturated or the graph could be 
colored with less than 5 colors.  Let G' be a derivative graph of G 
that allows at least one vertex in G to be saturated.  Note that the 
derivative graph gives a snap shot comprehensive representation 
of the overall coloring of G. G has many possible derivative 
graphs G’ and at least one that allows a vertex connected to all of 
the four colors or G would not be 5-chromatic. We can assume 
without loss of generality that there are vertices in G that have 1,2, 
or 3 of the other colors adjacent because we could modify G to 
have additional vertices, if necessary, that satisfy this assumption 
without loss of generality. G' has vertices that are adjacent to either 
2 or 3 of its nodes at most, because it cannot connect to four of G's 
vertices by the preceding lemma that would force nonplanarity 
contrary to the assumption that G is planar. I.e. G or a modified 
version of G has a derivative graph that admits a G’ with a vertex 
that is saturated and vertices that are unsaturated with 1,2, or 
3 adjacent different colors. Therefore, G must be 4-chromatic 
contrary to assumption because none of its vertices require more 
than 2 or 3 colors to properly color all of its adjacencies according 
to the Lemma contradicting the assumption that G is planar for 
Theorem 3. This proves that only four colors are necessary to color 
G contrary to the assumption that G is planar and is 5-chromatic.   
   
The last Theorem 3 is referred to as the Four-Color Theorem and 
has been claimed to have been verified by a case study method 
employing computer algorithms. The Four-Color Theorem is 
listed as one of the three most famous unsolved mathematical 
problems with Fermat's conjecture in number theory and 
Riemann's hypothesis in function theory [1]. The origin of the 
problem is traceable to a Physics student by the name of Frances 
Guthrie, who attended the University College of London in 1852. 
Mathematicians became interested in the problem in about 1878, 
when the well known English mathematician Cayley posed the 
problem in a meeting of the London Mathematical Society. The 
quest to prove the theorem has motivated mathematicians to 
develop much new interesting theory, but failed to produce a 
standard proof until now. The proof given here relies only on 
traditional methods of proving theorems.  
   

Recent articles on graph coloring, indicate that much interest still 
exists in this area of research [2,3]. One recent article defines a 
graph to be (m,k) colorable if its vertices can be colored with m 
colors so that each vertex is forced to be contiguous to at most 
k vertices of the same color [2]. The Four-Color Theorem says 
that all planar graphs are (4,0) colorable. Another recent article 
generalizes the notion of graph coloring as a function f from V(G) 
into a finite set of integers i=1,2...k, such that the inverse image 
of each i has property (color) P [3]. These recent articles employ 
their way of conceptualizing chromaticity to develop interesting 
new theory. 

Extension to Higher Dimensions and Potential Applications 
The Four-Color Theorem generalized to space becomes the Six 
Color Theorem. In fact, we can generalize the Four-Color Theorem 
to N dimensions to be the 2N Color Theorem. The proofs of the 
previous section all generalize with minor modifications. 
  
 The 2N Color Theorem is essentially about orientation. In 
one dimensional space, only two directions are possible and 
correspondingly relative to one dimension the 2N Color Theorem 
is the Two-Color theorem. Confining to the two-dimensional plane 
results in the Four-Color Theorem and three-dimensional space 
in the Six Color Theorem. We can also correspond orientations 
to faces of a hypercube. For example, the square seems to be the 
ideal shape representing orientation in the plane, while the cube 
with its six faces is ideal for representing orientation in space. 
Undoubtedly, a 2N faced hypercube with N-1 dimensioned faces 
is ideal for representing orientation in N dimensions. 
   
From the logistics network design point of view the generalization 
to three-dimensional space has limited value for the following 
reasons [4]. (1) Space communities barely exist. (2) The fourth 
dimension cannot be employed to bridge space the way the third-
dimension permits bridging out of the plane. However, since for 
the most part we live in a three-dimensional world and hardware 
is designed three dimensionally, the Six Color Theorem has many 
potential applications. For example, reducing the probability of 
mid-air collision depends on spatiality considerations. Optimizing 
design of processes taking place in a production line constrained 
to three dimensions is another potential application involving 
spatiality considerations. The author has macro-designed a space 
station that offers a best-design for optimizing logistics flow based 
on the Six Color Theorem. 
  
In general, the Six Color Theorem applies to design of hardware 
systems, production lines, and any three-dimensional activity 
where spatiality plays a role. Assuring optimal proximity of 
required switches on a control panel to one or more simultaneous 
users of a control panel requires considering relative position 
carefully to minimize motion as well as maximize convenience 
of operation and minimizing collisions of users. Both quality of 
motion and convenience play a dominant role in setting up a user-
friendly production line, control panel, and user interface for most 
equipment. The Army's MANPRINT (Manpower, Personnel and 
Integration) program especially highlights design as it relates to 
the man machine interface (MMI). For electronic systems, electro-
magnetic interference and radiation are design concerns. For such 
systems, the objective of minimizing interference relates directly to 
spatiality in the circuitry. In chemistry, three dimensional networks 
representing complex molecules have been employed extensively 
by Pauling and others to further the boundaries of biology and 
chemistry. The Six Color Theorem places constraints on possible 
bonding of atoms which could lead to new discovery in biology 
and chemistry.
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The extension to the Eight Color Theorem seems likely to apply to 
the physics of the space time continuum whereas higher dimension 
color theorems will no doubt eventually find application in particle 
physics. The definition of non-spatiality to follow will clarify this 
point. The author believes that the extension of the Four-Color 
Theorem to N dimensions goes to the heart of what reality must 
be. It is essence even more primitive than subatomic particles. 
The Color Theorems represent non physical reality preceding the 
smallest particle. As a point of entry to physics, color theorems 
are more primitive and therefore more likely to unify physical 
phenomena, such as electro-magnetism, nuclear forces and gravity. 
In this regard, at risk of being an anti-biblical teaching we might 
suggest editing Genesis to say "First there was orientation and 
then there was light." 
   
In space all bodies have a gravitational field influencing the 
gravitational fields of other bodies sharing their environment. 
Distance between the bodies is the main factor in measuring the 
degree of influence. The interactions of gravitational fields of 
bodies in space determines the curvature of the space surrounding 
them as well as their motion relative to each other. The bodies do 
not have to be planets, stars or other large massed bodies. Basic 
physical principles apply to the behavior of subatomic particles 
with additional subatomic forces to consider. When applying the 
basic truth of the 2N Color Theorem at the subatomic level we are 
in the domain of quantum or particle physics. When applying it to 
bodies of large masses like stars and planets, we are in the domain 
of astronomy. The same basic (non-physical) logic characterized 
by the 2N Color Theorem in the space time continuum applies 
to either the micro or macro level physics. Therefore, if a unified 
field theory exists then the 2N Color Theorem seems to be the 
most logical point of entry to such a theory. 
   
Summing up application, we should reflect on the all-pervasive 
nature of the 2N Color Theorem, which is equivalent to orientation 
and characterizes maximal adjacency. Engineers and scientists 
have a need to assimilate basic truths, such as exemplified by the 
2N Color Theorem, as a starting point for detailed investigation 
and exploitation of nature. Survival and quality of life depends on 
man's understanding of his universe. Application possibilities for 
the Six Color Theorem to the three-dimensional world in which 
we live is limited only by our imagination. Next we prove the Six 
Color Theorem realizing that the steps of the proof depend in no 
way on three dimensions and extend easily to N dimensions. Take 
note of the space station depicted at the end of this article shows 
how one can design a space capsule with six separate rooms such 
that each one can access the other five rooms through a doorway.   

Theorem 4 
Every 6-semiregular 7-chromatic graph is non-spatial.
  
 pf. As before, we have an ideal basis for finite induction, because 
K7 is non-spatial, requires 7 colors and is a 6 semiregular graph 
having seven vertices. Assume that every 6 semiregular 7 chromatic 
graph G(k) with k vertices is non-spatial. Let G(k+1) be any 6 
semiregular 7-chromatic graph with k+1 vertices. Temporarily 
assume that each vertex of G(k+1) is colored in such a way that 
every vertex must be adjacent to each of the other colors required. 
I.e. G(k+1) is like K7 in every respect including that G(k+1) can 
only be colored with each vertex being adjacent to each of the 6 
other colors.   The following Lemma is all about this special class 
of 6 semiregular graphs which consists of disconnected unions of 
K7!!   We assume k>7. For the special class of G(k+1) (temporarily 
assumed) at least two vertices must be identically colored for each 

color when k>7. Remove any vertex from G(k+1) colored the 
same as another vertex in G(k+1). The loose ends of the six edges 
that were connected to the removed vertex may be tied together 
to form a new 6 semiregular graph G'(k) having k vertices. The 
resulting graph G' must require 7 colors or the excised vertex 
could be placed back to rebuild G(k+1) colored with only one 
vertex of the original color removed, contradicting that two such 
vertices had to exist for the special class of 6 semiregular graphs 
considered temporarily. By the induction assumption G'(k) is non-
spatial. Therefore, G(k+1) must also be non-spatial because G'(k) 
is non-spatial.  By finite induction the Theorem is established for 
the special class of 6 semiregular 7 chromatic graphs temporarily 
assumed.   For the rest of the Six Color proof to be valid only 
this special class of 6 semiregular graphs (ones like K7) need be 
non-spatial. Once the Six Color Theorem is proven the preceding 
theorem, being a special case of the Six Color Theorem, must 
necessarily be true just as it was in the Four-Color case. The reader 
should note as before that the preceding theorem is not proven 
yet, but as in the Four-Color Theorem the special case needed to 
prove the Six Color Theorem is proven at this point. As before, 
we should view the preceding theorem as being on hold while 
we use its induction hypothesis to prove the Six Color Theorem, 
itself. The proof is analogous to the preceding one used to prove 
the Four-Color Theorem 3. Obviously, it can be generalized to 
any dimension as can the Four Color-Theorem itself.
      
Optimal adjacency requirements in space dictate that the basic 
design of the ideal space station should conform to the Six Color 
Theorem since one cannot have a seven-compartment space station 
that does not have at least two compartments nonadjacent! Six 
compartments are the best that one can do according to the Six 
Color Theorem. Of course, one can sub-compartmentalize each 
of the six compartments to maximize their internal adjacencies. 
A space station designed with each of its six main compartments 
compartmentalized into six sub-compartments will have thirty-six 
compartments to maximize adjacencies. This fractal-like sub-
optimization may be carried out as many times as necessary and 
practical. 

Lemma 
If a connected graph G with more than 7 vertices is 7-chromatic 
and a proper coloring requires at least one saturated vertex then 
the graph is non-spatial.
  
 pf. The proof is identical to the analogous one for the Four-Color 
Theorem substituting 6 for 4 and 7 for 5. 

Generalization of Derivative Graph 
Assume a graph G is n-chromatic. To define the general 
derivative graph we partition the vertices of G into subsets A1, 
A2,...An according to color. The partitioned subsets are treated as 
though they are the vertices of a new graph. The definition is a 
straightforward analog to the Four-Color definition.  

Theorem 
An hyper-spatial graph represented in N dimensions requires at 
most 2N colors to ensure that no two adjacent vertices have the 
same color.
    
pf. Suppose a hyper-spatial graph G requires 2N+1 colors.  
Symmetry forces G' to have a (2N-1)-regular derivative graph. 
G' cannot have an arc determined by a maximally saturated vertex 
by the Lemma. The Structure Theorem for regular graphs forces 
G' to be 2N-1 or 2N-2 regular. This means G is 2N-chromatic 
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contrary to assumption.  
   
The author proved in a previous unpublished article that in general 
a graph with an odd number of vertices cannot be odd regular [4]. 
The earlier article by the author gives some basic theory related 
to extending the Color Theorems to N dimensions. The previous 
article also gives several interesting structural theorems about 
regular graphs and a method for constructing all regular graphs. 
It was no accident that the prior article set the groundwork for 
generalizing and solving the Four-Color Theorem. Attempting to 
find a standard proof of the Four-Color Theorem was one of the 
principle motivations for the earlier article, too.   
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