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Abstract

Consider a bipartite network where N consumers choose to buy or not to buy
M different products. This paper considers the properties of the logit fit of the
N×M array of “i-buys-j” purchase decisions, Y = [Yij ]1≤i≤N,1≤j≤M , onto a vector
of known functions of consumer and product attributes under asymptotic sequences
where (i) both N and M grow large, (ii) the average number of products purchased
per consumer is finite in the limit, (iii) there exists dependence across elements in
the same row or same column of Y (i.e., dyadic dependence) and (iv) the true
conditional probability of making a purchase may, or may not, take the assumed
logit form. Condition (ii) implies that the limiting network of purchases is sparse:
only a vanishing fraction of all possible purchases are actually made. Under sparse
network asymptotics, I show that the parameter indexing the logit approximation
solves a particular Kullback–Leibler Information Criterion (KLIC) minimization
problem (defined with respect to a certain Poisson population). This finding pro-
vides a simple characterization of the logit pseudo-true parameter under general
misspecification. With respect to sampling theory, sparseness implies that the first
and last terms in an extended Hoeffding-type variance decomposition of the score
of the logit pseudo composite log-likelihood are of equal order. In contrast, under
dense network asymptotics, the last term is asymptotically negligible. Asymptotic
normality of the logistic regression coefficients is shown using a martingale central
limit theorem (CLT) for triangular arrays. Unlike in the dense case, the normality
result derived here also holds under degeneracy of the network graphon. Relatedly,
when there “happens to be” no dyadic dependence in the dataset in hand, it spe-
cializes to recently derived results on the behavior of logistic regression with rare
events and iid data. Simulation results suggest that sparse network asymptotics
better approximate the finite network distribution of the logit estimator.

JEL Codes: C31, C33, C35

Keywords: Networks, Exchangeable Random Arrays, Dyadic Clustering, Sparse
Networks, Logistic Regression, Rare Events, Bipartite Network, Alternative
Asymptotics, Sparse Network Asymptotics



Let i = 1, . . . , N index a random sample of consumers and j = 1, . . . ,M a random
sample of products. For each consumer-product pair ij we observe Yij = 1 if consumer i

purchases product j and Yij = 0 otherwise. Let Wi ∈ W be a vector of observed consumer
attributes, Xj ∈ X a vector of product attributes and n

def
≡ M + N the total number

of sampled consumers and products. The conditional probability that consumer i buys
product j is given by

Pr (Yij = 1|Wi, Xj) = gn (Wi, Xj) (1)

with gn : W × X → {0, 1} an unknown regression function. In this paper I consider the
statistical properties of (a sequence of) parametric logit approximations of gn (w, x) when
(i) both N and M grow large at the same rate (i.e., M/n → ϕ ∈ (0, 1) as n → ∞),
(ii) the limiting purchase graph Y

def
≡ [Yij]1≤i≤N,1≤j≤M is sparse, and (iii) there exists

dyadic dependence (i.e., Yi1j1 and Yi2j2 may covary whenever {i1, jj} and {i2, j2} share
a common consumer or product index). Dyadic dependence arises in the presence of
unobserved consumer- and/or product-specific heterogeneity.

The novelty relative to prior work on dyadic regression by Graham (2020a,b), Menzel
(2021), Davezies et al. (2021) and others involves (i) the introduction of “sparse network
asymptotics” and (ii) an analysis which accommodates misspecification of the regres-
sion function. The sparse network thought experiment introduced in this paper leads
to novel asymptotic approximations which appropriately account for effects of dyadic
dependence when present, while simultaneously being robust to its absence (and other
forms of degeneracy).1 Accommodating misspecification allows researchers to conduct
inference on well-defined pseudo-true parameters in settings where their model for (1) is
only an approximation (as is invariably the case in practice).

In what follows random variables are denoted by capital Roman letters, specific real-
izations by lower case Roman letters and their support by blackboard bold Roman letters.
That is Y , y and Y respectively denote a generic random draw of, a specific value of, and
the support of, Y . A “0” subscript on a parameter denotes its population value and may
be omitted when doing so causes no confusion. In what follows I use graph, network and
purchase graph to refer to Y

def
≡ [Yij]1≤i≤N,1≤j≤M . All graph theory terms and notation

used below are standard (e.g., Chartrand and Zhang, 2012).

Sparseness

Let ρn = En [Yij] be the probability of the event that (randomly sampled) consumer
i buys (randomly sampled) product j. The notation En [·] is used to emphasize that
the probability law used to evaluate the expectation may vary with n (below I use the
notation E0 [·] to indicate an average with respect to the limiting probability law as

1An important precedent for the asymptotic thought experiment considered below is the work Bickel
et al. (2011). They study the properties of acyclic subgraph frequencies under sparseness.

1



n → ∞). Sparseness of the limit graph implies that the average consumer purchases only
a finite number of products in the limit:

λc
n

def
≡ Mρn → λc

0 with 0 < λc
0 < ∞ as n → ∞. (2)

Condition (2) is concordant with the fact that, for example, although consumers choose
from tens of millions of books, it is rare for individual libraries to exceed a few hundred
volumes (i.e., average consumer degree λc

n is small). Similarly, the lifetime sales of most
books rarely exceed several hundred copies, such that

λp
n

def
≡ Nρn → λp

0 with 0 < λp
0 < ∞ as n → ∞ (3)

(i.e., average product degree λp
n is also small).

Conditions (2) and (3) restrict the sequence of regression functions (1) such that

En [gn (Wi, Xj)]
def
≡ ρn = O

(
n−1
)
. (4)

Equation (4) implies that the number of purchases actually made is negligible relative
to the set of all possible purchases that could have been made; the purchase graph Y is
sparse. If, instead, the marginal purchase probability ρn was fixed at, or converged to, a
constant between zero and one, then the number of actual book purchases and the number
of possible book purchases would be of equal order (the so-called dense case). Sparseness
is a property of a sequence of graphs, each with an increasing number of vertices. It is
used here in the context of a particular asymptotic approximation argument, motivated
by the fact that in many real world graphs the number of edges present is small relative
to the number that could be present (e.g., Newman, 2010).

Dyadic dependence

Dyadic dependence refers to a particular pattern of dependence across the rows and
columns of Y. Consider predicting whether randomly sampled consumer i purchases
book j, say The Clue in the Crossword Cipher, the forty-fourth novel in the celebrated
Nancy Drew mystery series. Knowledge of the frequency with which other consumers
k = 1, . . . , i − 1, i + 1, . . . , N purchase book j will generally alter the econometrician’s
prediction of whether i also purchases book j. That is, for any k ̸= i,

Pr (Yij = 1|Ykj = 1) > Pr (Yij = 1)

or that Yi1j1 and Yi2j2 will covary whenever the two transactions correspond to a common
book (such that j1 = j2).

Similarly, if the econometrician knew that consumer i was a frequent book buyer,
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she might conclude that this consumer is also more likely to purchase some other book
(relative to the average consumer). That is Yi1j1and Yi2j2 will also covary whenever the
transactions correspond to a common buyer (such that i1 = i2).

Importantly, dependence across Yi1j1 and Yi2j2 when {i1, jj} and {i2, j2} share a com-
mon buyer or product index may hold even conditional on observed consumer, Wi, and
product attributes, Xj. Some consumers may have latent attributes (i.e., not contained
in Wi) which induce them to buy many books and some books may be especially popular
(for reasons not captured adequately by Xj). It might be, for example, that

Pr (Yij = 1|Ykj = 1,Wi,Wk, Xj) > Pr (Yij = 1|Wi, Xj) .

The structured form of dependence across the elements of [Yij]1≤i≤N,1≤j≤M described
above is a feature of separately exchangeable random arrays (Aldous, 1981; Hoover, 1979).
The inferential implications of such dependence, in the context of subgraph counts, were
first considered by Holland and Leinhardt (1976) almost fifty years ago. Bickel et al.
(2011) make an especially important recent contribution in this area. In the context of
regression models, the inferential implications of dyadic dependence have been considered
by, among others, Fafchamps and Gubert (2007), Cameron and Miller (2014), Aronow
et al. (2017), Tabord-Meehan (2018), Graham (2020a), Davezies et al. (2021) and Menzel
(2021) (see Graham (2020b, Section 4) for a review and references). This work gener-
ally considers the dense case. Dyadic dependence, in the context of the sparse network
asymptotics explored below, generates new issues.

1 Population and sampling assumptions

Let i ∈ N index consumers in an infinite population of interest. Associated with each
consumer is the vector of observed attributes Wi ∈ W = {w1, . . . , wJ} . Let j ∈ M index
products in a second infinite population of interest. The model is a two population one
(see Graham et al., 2018). Associated with each product is the vector of characteristics
Xi ∈ X = {x1, . . . , xK}. The finite support assumption on W and X is not formally
maintained below, but invoking it here simplifies the discussion of exchangeability.

Let σw : N → N be a permutation of a finite number of consumer indices which
satisfies the restriction [

Wσw(i)

]
i∈N = [Wi]i∈N . (5)

Restriction (5) implies that σw only permutes indices across observationally identical
consumers (i.e., those homogenous in W ). Let σx : M → M be an analogously constrained
permutation of a finite number of product indices. Adapting the terminology of Crane
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and Towsner (2018), I assume that the purchase graph is W -X-exchangeable

[
Yσw(i)σx(j)

]
i∈N,j∈M

D
= [Yij]i∈N,j∈M . (6)

Here D
= denotes equality of distribution. One way to think about (6) is as a requirement

that any probability law for [Yij]i∈N,j∈M should attach equal probability to all purchase
graphs which are isomorphic as vertex-colored graphs. Here Wi and Xj are associated
with the color of the corresponding consumer and product vertices in the overall purchase
graph. Virtually all single-population micro-econometric models assume that agents are
exchangeable, restriction (6) extends this idea to the two-population setting considered
here: our probability law for the model should not change if we re-label observationally
identical units.

Graphon

It is well-known that exchangeability implies restrictions on the structure of dependence
across observations in the cross-section setting (e.g., de Finetti, 1931). Aldous (1981),
Hoover (1979) and Crane and Towsner (2018) showed that exchangeable random arrays
also exhibit a special dependence structure. Let µ, {(Wi, Ai)}i≥1, {(Xj, Bj)}j≥1 and
{Vij}i≥1,j≥1 be sequences of i.i.d. random variables, additionally independent of one
another, and consider the purchase graph

[
Y ∗
ij

]
i∈N,j∈M, generated according to

Y ∗
ij = h (µ,Wi, Xj, Ai, Bj, Vij) (7)

with h : [0, 1] × W × X × [0, 1]2 → {0, 1} a measurable function, henceforth referred to
as a graphon (we can normalize µ, Ai, Bj and Vij to have support on the unit interval,
uniformly distributed, without loss of generality).

The results of Crane and Towsner (2018), which extend the earlier work of Al-
dous (1981) and Hoover (1979), show that, for any W -X-exchangeable random array
[Yij]i∈N,j∈M, there exists another array

[
Y ∗
ij

]
i∈N,j∈M, generated according to (7), such that

the two arrays have the same distribution. An implication of this result is that we may
use (7) as a nonparametric data generating process for [Yij]i∈N,j∈M.

Inspection of (7) indicates that exchangeability implies a particular pattern of de-
pendence across the elements of [Yij]i∈N,j∈M. In particular Yi1j1 and Yi2j2 may covary
whenever i1 = i2 or j1 = j2; this covariance may be present even conditional on observed
consumer and product attributes. This is, of course, precisely the dependence structure
discussed earlier.

The aggregate shock, µ, in (7) is analogous to the latent mixing variable appearing
in de Finetti’s (1931) original theorem. The distribution of µ is never identified and the
inference results described below may be (informally) thought of as being conditional on
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its realization; see Menzel (2021) for additional relevant discussion. Formally, the analysis
which follows works with a restriction of (7) which excludes µ:

Y ∗
ij = h (Wi, Xj, Ai, Bj, Vij) . (8)

Sampling process

Let Y = [Yij]1≤i≤N,1≤j≤M be the observed N ×M matrix of consumer purchase decisions.
Let W and X be the associated matrices of consumer and product regressors. I assume
that Y is the adjacency matrix associated with the subgraph induced by a random sam-
ple of consumers and products from a W -X-exchangeable with graphon (8). Let G∞,∞

denote this population network. Let Vc and Vp denote the set of consumers and products
randomly sampled by the econometrician from G∞,∞. We have Y equal to the adjacency
matrix of the network:

GN,M = G∞,∞ [Vc,Vp] . (9)

The marginal probability of the event, random consumer i, purchases random product j,
is thus

ρ0 = E [h (Wi, Xj, Ai, Bj, Vij)] . (10)

Let {GN,M} be a sequence of networks indexed by, respectively, the cardinality of the
sampled consumer and product index sets, N = |Vc| and M = |Vp|. The average number
of products purchased per consumer, or average consumer degree,

λc
n = Mρ0 (11)

will diverge as M → ∞ when 0 < ρ0 < 1. Likewise the average number of times a given
product is purchased, or average product degree,

λp
n = Nρ0 (12)

will also diverge as N → ∞. A consequence of this divergence is that the number
of possible purchases, and the number of actual purchases, will be of equal order. In
practice, as discussed earlier, only a small fraction of all possible purchases are made in
many real world settings. To capture this qualitatively in my asymptotic approximations
requires a slightly more elaborate thought experiment; which I outline next.

Instead of considering a sequence of graphs sampled from a fixed population, I consider
a sequence of graphs sampled from a corresponding sequence of populations. The sequence
of networks {GN,M} is one where both N and M grow at the same rate such that, recalling
that n = M +N ,

M/n → ϕ ∈ (0, 1) (13)
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as n → ∞. For each n the graphon describing the infinite population sampled from is

Yij = hn (Wi, Xj, Ai, Bj, Vij) . (14)

This sequence of graphons/populations {hn} has the property that network density

ρn = En [hn (Wi, Xj, Ai, Bj, Vij)]

may approach zero as n → ∞. (It would be technically more appropriate to index the
sequence {hn} by both N and M , as opposed to just n, however doing so adds no real
insight and clutters the notation.) Under this setup the order of λc

n = Mρn and λp
n = Nρn

will depend upon the speed with which ρn approaches zero as n → ∞.
As in other exercises in alternative asymptotics, indexing the population data generat-

ing process by the sample size is not meant to capture a literal feature of how the data are
generated, rather it is done so that the limiting properties of the model share important
qualitative features – in this case “sparseness” – with the actual finite network in hand.
In other settings such an approach has led to more useful asymptotic approximations, a
premise I maintain here (e.g., Staiger and Stock, 1997).

The following two assumptions provide the foundation for the sparse network limit
theory presented below.

Assumption 1. (Sampling) (i) i = 1, . . . , N and j = 1, . . . ,M index independent
random samples of consumers (N) and products (M) respectively; (ii) Wi ∈ W, with
W a compact subset of Rdim(Wi) and fW (w) bounded and bounded away from zero on
W; similarly Xj ∈ X, with X a compact subset of Rdim(Xj) and fX (x) bounded and
bounded away from zero on X; (iii) [Yij]1≤i≤N,1≤j≤M is generated according to (14); (iv)
the sequence of samples is such that M

M+N
→ ϕ ∈ (0, 1) as N,M → ∞.

The sequence of graphons {hn} is left nonparametric, but restricted such that in the
limit the graph is sparse (i.e., conditions (2) and (3) above hold). To ensure this prop-
erty I impose the stronger condition, observing that En [hn (Wi, Xj, Ai, Bj, Vij)|Wi, Xj] =

gn (Wi, Xj):

Assumption 2. (Conditional Sparseness) : The graphon sequence {hn} is such
that (i)

ngn (w, x) = λ0 (w, x) + o
(
n−1
)

with 0 < λ0 (w, x) < ∞ for all (w, x) ∈ W × X and (ii) ngn (w, x) ≤ k (w, x) for all n
and (w, x) ∈ W× X with E [k (Wi, Xj)] < ∞.

Assumption 2 implies that the conditional probability that a type Wi = w customer
buys a type Xj = x product is O (n−1) for all (w, x) ∈ W × X. This restriction has two
important implications for the analysis which follows.
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First, it ensures, as desired, that the limiting graph is sparse. Let λ0 = λc
0 + λp

0 equal
the sum of the limiting average consumer and product degrees. Note that nρn → λ0

and further that λ0 = E [λ0 (Wi, Xj)]. In what follows I will call λ0 (w, x) the (limiting)
conditional degree function.

Second, it implies that consumer and product attributes do not affect the order of
the probability that an edge forms. It rules out, for example, the existence of observable
subpopulations of products, say those with Xj = x, that are purchased by a non-trivial
fraction of consumers of, say, type Wi = w. This can be restrictive: if i indexes moviegoers
and j films, then it rules out film types Xj = x which “everyone” sees. In contrast, if
i indexes econometricians and j research articles, it seems reasonable to assume that
there are no observable econometrician-article combinations, Wi = w, Xj = x, where the
event i cites j occurs with high probability.2 Indeed, sparseness of the type imposed by
Assumption 2 appears to be a useful description of many real world graphs (Newman,
2010).

2 Pseudo composite likelihood estimator

The estimation target is the coefficient vector indexing (an approximation of) the regres-
sion function gn (w, x) . Other than the sparseness restrictions imposed by Assumption 2,
the form of gn (w, x) is left unspecified. Let Zij = z (Wi, Xj) be a vector of known basis
functions in the underlying consumer and product attributes Wi and Xj (excluding the
constant) and consider the sequence – indexed by n – of parametric logit models:

en (Wi, Xj; θ) =
exp

(
α + Z ′

ijβ − lnn
)

1 + exp
(
α + Z ′

ijβ − lnn
) , (15)

where θ = (α, β′)′.
Sequence (15) has the feature that

nen (Wi, Xj; θ) → exp
(
α + Z ′

ijβ
)

as n → ∞ and hence shares the sparseness features of the population graphon gn (w, x).
Its implied (limiting) average consumer and product degrees are

λc (ϕ, θ) = ϕE
[
exp

(
α + Z ′

ijβ
)]

, λp (ϕ, θ) = (1− ϕ)E
[
exp

(
α + Z ′

ijβ
)]

.

For large n, the logit model is shown to provide a well-defined approximation of the
conditional degree function λ0 (w, x). Furthermore, the pseudo-true parameter values
indexing this approximation are consistently estimable with a Gaussian limit distribution.

2Feedback from the referees was especially helpful in formulating Assumption 2.
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Note that in the event that gn (w, x) happens to take the logit form, Assumption 2
holds since, with gn (w, x) = en (Wi, Xj; θ0) and λ0 (w, x) = exp

(
α0 + Z ′

ijβ0

)
, we have

ngn (w, x)− λ0 (w, x) =

[
exp

(
α0 + Z ′

ijβ0

)
1 + 1

n
exp

(
α0 + Z ′

ijβ0

) − exp
(
α0 + Z ′

ijβ0

)]

= − exp
(
α0 + Z ′

ijβ0

) [ 1
n
exp

(
α0 + Z ′

ijβ0

)
1 + 1

n
exp

(
α0 + Z ′

ijβ0

)]
= o

(
n−1
)
.

(we can also set k (w, x) = λ0 (w, x)).

Estimation

To estimate θ I propose maximizing the pseudo composite log-likelihood function

θ̂ = argmax
θ∈Θ

Ln (θ) (16)

with Ln (θ) =
1

NM

∑N
i=1

∑M
j=1 lij,n (θ) and lij,n (θ) the logit kernel function:

lij,n (θ) = (2Yij − 1)
(
R′

ijθ − lnn
)
− ln

(
1 + exp

(
(2Yij − 1)

[
R′

ijθ − lnn
]))

(17)

for Rij

def
≡
(
1, Z ′

ij

)′. The use of the word ‘composite’ emphasizes that the criterion
function only models the data at the dyad level; no attempt is made to model the precise
structure of dependence across dyads (see Lindsey, 1988; Cox and Reid, 2004). The
use of the word ‘pseudo’ emphasizes the allowance for misspecification of the dyad-level
regression function. Indeed the analysis in this paper is potentially compatible with
a wide variety of actual network generating process; whether the estimated regression
function approximation has any structural economic significance or is simply a predictor
for Yij given Wi and Xj will vary from application to application.

Consistency

Let θ0 = (α0, β
′
0)

′ denote the pseudo-true value of θ; θ0 indexes a unique “best approxi-
mation” of the conditional degree function λ0 (w, x). To characterize this “best approxi-
mation” Lemma 1 below provides a uniform convergence result for the pseudo composite
log-likelihood function. This result is used to both characterize the population approx-
imation problem for which θ0 is the unique solution and to demonstrate consistency of
the maximum pseudo composite likelihood estimate θ̂ for θ0.

In addition to Assumptions 1 and 2 above, I require a standard identification condition
(e.g., Amemiya, 1985, p. 270).
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Assumption 3. (Identification)
(i) θ0 = (α0, β

′
0)

′ ∈ A× B = Θ, A and B compact;
(ii) Zij ∈ Z with Z a compact subset of Rdim(Zij) with fZ (z) bounded on z ∈ Z;
(iii) E

[
ZijZ

′
ij

]
is a finite non-singular matrix;

(iv) V (|Yij|Wi, Xj, Ai, Bj) ≥ κ > 0.

Let f0 (v|w, x) be the Poisson probability mass function (pmf) with rate parameter
λ0 (x,w) and f (v|w, x; θ) the one with rate parameter λ (z; θ) = exp (α + z′β). The
corresponding distribution functions are F0 and Fθ. Let δn

def
≡ ln(n)

NM

∑N
i=1

∑M
j=1 Yij; in

Appendix A I show:

Lemma 1. (Limiting Objection Function) Let L∗
n (θ) = Ln (θ) + δn. Under As-

sumptions 1, 2 and 3
sup
θ∈Θ

|nL∗
n (θ)− L0 (θ)|

p→ 0

as n → ∞ with

L0 (θ) = −DKL (F0∥Fθ) + S (F0) ,

where DKL (F0∥Fθ)
def
≡ E0

[
ln
{

f0(Vij |Wi,Xj)

f(Vij |Wi,Xj ;θ)

}]
in the Kullback–Leibler divergence from Fθ

to F0 and S (F0)
def
≡ E0 [λ0 (Wi, Xj) lnλ0 (Wi, Xj)]−E0 [λ0 (Wi, Xj)] does not vary with θ.

The addition of δn to Ln (θ) ensures the existence of a well-defined limit; since it
does not change the value of θ̂, replacing Ln (θ) with L∗

n (θ) does not change inference.
The E0 [·] notation in the definition of DKL (F0∥Fθ) indicates that Vij is (conditionally)
Poisson with rate parameter λ0 (Xi,Wj); which may or may not coincide with λ (Zij; θ) =

exp
(
α + Z ′

ijβ
)
.

Lemma 1 suggests the follow pseudo-true parameter as a target for estimation:

θ0 = argmin
θ∈Θ

DKL (F0∥Fθ) . (18)

Equation (18) indicates that θ0 indexes the best approximation, in the (Poisson)
Kullback–Leibler divergence sense, of λ0 (x,w) – averaged over the distribution of
Wi and Xj – in the family of exponential parametric conditional degree functions
{exp (α + Z ′

12β) : α ∈ A, β ∈ B}. If en (w, x; θ0) = gn (w, x) for all (w, x) ∈ W × X, then
θ0 indexes the true probability law for the graph.

The purchase graph [Yij]1≤i≤N,1≤j≤M coincides with the outcome of NM dependent
and heterogenous Bernoulli trials, each with O (n−1) success probabilities. Given this
structure it is (perhaps) ex post unsurprising that the limiting criterion function, and
hence the form of the pseudo-true parameter θ0, is related to the Poisson distribution.
The Bernoulli distribution with small success probabilities is well-approximated by the
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Poisson distribution (Mises, 1921; Hodges and Le Cam, 1960). The take away for the
analysis at hand, is that λ (z; θ0) = exp (α0 + z′β0) is as close as possible to λ0 (x,w) over
(w, x) ∈ W× X in a well-defined and interpretable way.

Theorem 1. (Consistency) Under Assumptions 1, 2 and 3 (i) θ0 is the unique maxi-
mizer of L0 (θ), as defined in Lemma 1, and (ii) the maximum pseudo composite likelihood
estimate θ̂

p→ θ0.

Proof. See Appendix A.

Asymptotic normality

The limit distribution of θ̂ under dense network asymptotics was derived by Graham
(2020b,a). More general results for dyadic M-estimators under dense network asymp-
totics, including results on the bootstrap and cross-fitting, can be found in Menzel (2021),
Davezies et al. (2021) and Chiang et al. (2022a). None of these results apply here. To
derive a result that does apply, begin with the mean value expansion

√
n
(
θ̂ − θ0

)
=
[
nHn

(
θ̄
)]+ × n3/2Sn (θ0) ,

where F+ denotes a generalized inverse if the matrix F and

Sn (θ) =
1

NM

N∑
i=1

M∑
j=1

sij,n (θ) , (19)

with sij,n (θ) =
∂lij,n(θ)

∂θ
= (Yij − eij,n (θ))Rij and eij,n (θ) = en (Wi, Xj; θ) =

e
(
α + Z ′

ijβ − lnn
)
, corresponds to the score vector of the pseudo composite likelihood

and

Hn (θ) =
1

NM

N∑
i=1

M∑
j=1

∂2lij,n (θ)

∂θ∂θ′
(20)

to the associated Hessian matrix. Here θ̄ is a mean value between θ0 and θ̂ which may
vary from row to row.

Lemma 2, stated and proved in Appendix A, shows that, after re-scaling by n, that
nHn (θ) converges uniformly to the negative of

Γ̃ (θ) = E

[
exp (α + Z ′

12β)

(
1 Z ′

12

Z12 Z12Z
′
12

)]
. (21)

An intuition for why Hn (θ) needs to be rescaled to ensure convergence is that, under
sparse network asymptotics, information accrues at a slower rate: the effective sample
size is not NM = O (n2), but rather O (n), an order of magnitude lower. Note that,
under part (iii) of Assumption 3, the matrix Γ̃0

def
≡ Γ̃ (θ0) is of full rank. This fact, in
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conjunction with Lemma 2 (stated in Appendix A), gives the linear approximation

√
n
(
θ̂n − θn

)
= −Γ̃−1

0 × n3/2Sn (θ0) + op (1) .

To derive the limit distribution of
√
n
(
θ̂n − θn

)
I show that the distribution n3/2Sn (θ0)

is well-approximated by a Gaussian random variable. The main tool used is a martingale
CLT for triangular arrays. That the variance stabilizing rate for Sn (θ0) is n3/2, like the
need to rescale the Hessian, is non-standard. The need to “blow up” Sn (θ0) at a faster
than

√
n rate is a consequence of the fact that the summands in Sn (θ0) are Op (n

−1). A
second complication is that, for any fixed n, Sn (θ0) is not mean zero. This bias reflects
the discrepancy between the finite network pseudo composite log-likelihood criterion and
the limiting population problem described by Lemma 1 above.

A detailed proof of Theorem 2, stated below, is provided in Appendix B. Here I outline
the main arguments, which begin with the following four part decomposition of the score
vector

Sn (θ) = U1n (θ) + U2n (θ) + Vn (θ) + bn (θ) (22)

where

U1n (θ) =
1

N

N∑
i=1

[
s̄c1i,n (θ)− bn (θ)

]
+

1

M

M∑
j=1

[
s̄p1j,n (θ)− bn (θ)

]
(23)

U2n (θ) =
1

NM

N∑
i=1

M∑
j=1

{
s̄ij,n (θ)− bn (θ)−

[
s̄c1i,n (θ)− bn (θ)

]
(24)

−
[
s̄p1j,n (θ)− bn (θ)

]}
Vn (θ) =

1

NM

N∑
i=1

M∑
j=1

{sij,n (θ)− s̄ij,n (θ)} (25)

bn (θ) = E [Sn (θ)] (26)

with s̄ij,n (θ) = s̄n (Wi, Xj, Ai, Bj; θ) with s̄n (w, x, a, b; θ) =

E [sij,n (θ)|Wi = w,Xj = x,Ai = a,Bj = b] and

s̄c1i,n (θ) =s̄c1,n (Wi, Ai; θ)

s̄p1j,n (θ) =s̄p1,n (Xj, Bj; θ)

with s̄c1,n (w, a; θ) = E [s̄n (w,Xj, a, Bj; θ)] and s̄p1,n (x, b; θ) = E [s̄n (Wi, x, Ai, b; θ)].
A variant of decomposition (22) also features in Graham (2020a), Menzel (2021) and

Graham et al. (2022). It can be derived by first projecting Sn (θ) on to A = [Ai]1≤i≤N ,
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W = [Wi]1≤i≤N , B = [Bj]1≤j≤M , and X = [Xi]1≤j≤N as follows:

Sn (θ) = E [Sn (θ)|W,X,A,B] + {Sn (θ)− E [Sn (θ)|W,X,A,B]}

=
1

NM

N∑
i=1

M∑
j=1

s̄ij,n (θ) +
1

NM

N∑
i=1

M∑
j=1

{sij,n (θ)− s̄ij,n (θ)} . (27)

Next observe that 1
NM

∑N
i=1

∑M
j=1 s̄ij,n (θ) is a two sample U-Statistic, albeit one defined

partially in terms of the latent variables Ai and Bj. Equation (23) corresponds to the
Hajek Projection of this U-statistic onto (separately) {(W ′

i , Ai)}Ni=1 and
{(

X ′
j, Bj

)}M
j=1

.
Equation (24) is the usual Hajek Projection error term.

The final term in (22), bn (θ), arises because – for any fixed n – bn (θ0) = E [Sn (θ0)]

is not mean zero. Instead we have, after some manipulation, that

bn (θ0) =
1

NM

N∑
i=1

M∑
j=1

E [(Yij − eij,n (θ0))Rij]

=
1

n
E [(λ0 (W1, X2)− exp (R′

12θ0))R12] +
1

n
E [(ngn (W1, X2)− λ0 (W1, X2))R12]

+
1

n
E [(exp (R′

12θ0)− ne12,n (θ0))R12]

=
1

n
E [(ngn (W1, X2)− λ0 (W1, X2))R12]

+
1

n
E
[(

exp (R′
12θ0)

[
1− 1

1 + 1
n
exp (R′

12θ0)

])
R12

]
(28)

which, by Assumption 2, is o (n−2).3

Define ϕn

def
≡ M/n, s̄c1i,n

def
≡ s̄c1i,n (θ0) , s̄

p
1j,n

def
≡ s̄p1j,n (θ0) and also s̄ij,n

def
≡ s̄ij,n (θ0).

Similarly let Sn = Sn (θ0) and so on. Applying the variance operator to Sn yields:

V (Sn) =V (U1n) + V (U2n) + V (Vn) (29)

=
Σc

1n

N
+

Σp
1n

M
+

1

NM
[Σ2n − Σc

1n − Σp
1n] +

Σ3n

NM

where

Σc
1n = V

(
s̄c1i,n

)
Σp

1n = V
(
s̄p1j,n

)
(30)

Σ2n = V (s̄ij,n) = V (E [sij,n|Wi, Xj, Ai, Bj])

Σ3n = E [V (sij,n|Wi, Xj, Ai, Bj)] .

In the dense case Σc
1n, Σp

1n, Σ2n and Σ3n are all constant in n; hence the asymptotic
3While not developed in the theory which follows, equation (28) suggests that part of the bias in

Sn (θ0) is estimable (namely the second term to the right of the last equality in (28)). This, in turn,
suggests that it might be fruitful to explore methods of bias reduction.
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properties of Sn coincide with those of U1n (the bias term is also zero in this case). Since
U1n is a sum of independent random variables a standard argument gives

n1/2Sn
D→ N

(
0,

Σc
1

1− ϕ
+

Σp
1

ϕ

)
(31)

as long as Σc
1 and/or Σp

1 are non-zero (see Graham (2020a) or Davezies et al. (2021)).
In the degenerate – but still dense – case, as emphasized by Menzel (2021), the limiting
behavior of n1/2Sn may be degenerate and, after appropriate rescaling, may also be non-
Gaussian.

Under the sparse network asymptotics considered here, the orders of Σc
1n, Σp

1n, Σ2n

and Σ3n vary with n. This affects the order of the four variance terms in (29) and, con-
sequently, which components of Sn contribute to its asymptotic properties. In Appendix
B I show the order of the four terms in (29) are, respectively,

V (Sn) =O

(
ρ2n
N

)
+O

(
ρ2n
M

)
+O

(
ρ2n
MN

)
+O

( ρn
MN

)
=O

([
λc
0,n

ϕn

]2
1

(1− ϕn)

1

n3

)
+O

([
λc
0,n

ϕn

]3
1

n3

)

+O

([
λc
0,n

ϕn

]2
1

ϕn (1− ϕn)

1

n4

)
+O

(
λc
0,n

ϕ2
n (1− ϕn)

1

n3

)
.

Since Σc
1 and Σp

1 are both O (ρ2n) = O (n−2) we can multiply them by n2 to stabilize them.
Define Σ̃c

1 to be the limit of n2Σ1n and Σ̃p
1 to be the limit of n2Σp

1n. Similarly we can
define Σ̃3 to be the limit of nΣ3n, all as n → ∞. Normalizing (29) by n3/2 therefore gives

V
(
n3/2Sn

)
=

Σ̃c
1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)
+O

(
n−1
)

(32)

where I also use the fact that Σ2n = O (n−2). We also have, from Assumption 2, that
E
[
n3/2Sn

]2
= E

[
n3/2bn

]2
= o (n−1) .

Under sparse network asymptotics both U1n and Vn matter. In Appendix B I further
show that U1n+Vn is a martingale difference sequence (MDS) to which a martingale CLT
can be applied; Theorem 2 then follows.

Theorem 2. Under Assumptions 1, 2 and 3

√
n
(
θ̂ − θ0

)
D→ N

(
0, Γ̃−1

0

[
Σ̃c

1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)

]
Γ̃−1
0

)

as n → ∞.

Proof. See Appendix B.
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Theorem 2 indicates that under sparse network asymptotics there are additional
sources of sampling variation in

√
n
(
θ̂ − θ0

)
relative to those which appear in the dense

case. Not incorporating these into inference procedures will lead to tests with incorrect
size and/or confidence intervals with incorrect coverage. A further advantage of consid-
ering sparse network asymptotics is that Theorem 2 remains valid even under degeneracy
of the graphon, hn (Wi, Xj, Ai, Bj, Vij). For example, if the graphon is constant in Ai and
Bj such that Yij and Yik do not covary conditional on covariates (and likewise for Yji and
Yki), then Σ̃c

1 = Σ̃p
1 = 0, but Theorem 2 nevertheless remains valid (condition (iv) of 3

ensures that Σ̃3 will be positive definite). In contrast, under dense network asymptotics,
degeneracy – as elegantly shown by Menzel (2021) – generates additional complications.
In that case the variance of U1n is identically equal to zero, while that of U2n and Vn

are of equal order. In some cases, the behavior of U2n may even induce a non-Gaussian
limit distribution (see van der Vaart (2000)). In the sparse network case, U2n is always
negligible relative to Vn. Furthermore Vn is – after suitable scaling – approximately a
Gaussian random variable.

Limit theory under correct specification

Theorem 2 holds for a general nonparametric regression function gn (w, x), with θ0 a vector
of pseudo-true parameters as defined by equation (18) above. If, in fact, gn (w, x) =

en (w, x; θ0) for all (w, x) ∈ W × X, then calculations in the Appendix B indicate the
asymptotic variance simplifies to

√
n
(
θ̂ − θ0

)
D→ N

(
0, Γ̃−1

0

[
Σ̃c

1

1− ϕ
+

Σ̃p
1

ϕ

]
Γ̃−1
0 +

Γ̃−1
0

ϕ (1− ϕ)

)
,

which follows from an information matrix type equality result of nV (sij,n) → Γ̃0 as
n → ∞.

Relationship with rare events analysis using iid data

King and Zeng (2001) discuss, with a focus on finite sample bias, the behavior of logistic
regression under “rare events” with iid data. Evidently binary choice analyses where the
marginal frequency of positive events is quite small are common in empirical work.4 The
properties of logistic regression under sequences where the number of “events” becomes
small (i.e., “rare”) relative to the sample size as it grows were recently characterized by
Wang (2020) (see also Owen (2007)). The main result in Wang (2020) coincides with a
special case Theorem 2 above.5 To see this observe that if the graphon is constant in Ai

4The King and Zeng (2001) has close to five thousand citations on Google Scholar.
5In fact, Theorem 2 is a bit more general even in the special case of no dyadic dependence as it also

accommodate misspecification of the the regression function.
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and Bj, then s̄ij,n will be identically equal to zero for all 1 ≤ i ≤ N and 1 ≤ j ≤ M .
In this scenario there is no “dyadic dependence” (after conditioning on Wi and Xj) and
Σ̃c

1 = Σ̃p
1 = 0. Under these conditions, also maintaining correct specification, Theorem 1

specializes to
√
n
(
θ̂ − θn

)
D→ N

(
0,

Γ̃−1
0

ϕ (1− ϕ)

)
,

as n → ∞. This is precisely, up to some small differences in notation, the result given in
Theorem 1 of Wang (2020).6

In his analysis Wang (2020) emphasizes that information accumulates more slowly
under “rare event asymptotics”. In the present setting this is reflected in the need to
rescale the Hessian matrix by n to achieve convergence (see Lemma 2 in Appendix A).
In the network setting dyadic dependence additionally reduces the asymptotic precision
with which θ0 may be estimated (cf., Graham et al., 2022). If a researcher is working
with a sparse network and concerned about dyadic dependence, then she should base
inference on Theorem 2. If the graphon is degenerate or, more strongly, the elements of
[Yij]1≤i≤N,1≤j≤M are, in fact, iid, then her inferences will remain valid (since Theorem 2
specializes to the “rare events” result of Wang (2020) in that case).

3 Simulation experiments

In this section I report the results of a small set of simulation experiments.
An annotated Python Jupyter Notebook with replication code is available in the
Supplemental Materials. The Monte Carlo experiments utilize the ‘bilogit’ esti-
mation command included in the Python ‘netrics’ package; available on GitHub
(https://github.com/bryangraham/netrics). The goal of these experiments is to assess
the finite sample quality of the sparse network asymptotic approximations developed
above in a stylized setting. The question of precisely how to best conduct inference when
analyzing sparse networks (e.g., assessing the relative merits of different methods of vari-
ance estimation) is largely open and not directly addressed (see Chiang et al. (2022b)).

For the Monte Carlo experiments I set the graphon, hn (Wi, Xj, Ai, Bj, Vij), equal to

Yij = 1
(
α + z (Wi, Xj)

′ β + ln (Ai) + ln (Bj)− ln (n) ≥ Vij

)
with Vij a standard exponential random variable. Averaging over Vij yields

En [Yij|Wi, Xj, Ai, Bj] =
1

n
exp

(
α + z (Wi, Xj)

′ β
)
AiBj.

6Wang (2020) scales by the square root of the number of events or “ones” in the dataset. This is, of
course, of the same order as n as defined here. This difference leads to a minor difference in our two
variance expressions. Making these adjustments the results coincide.
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I set {Ai}Ni=1 and {Bj}Mj=1 to be iid log-normal sequences of random variables with µ =

−1/12 and σ = 1/
√
6. This implies that both Ai and Bj are mean one and, furthermore,

that the variance of ln (Ai) + ln (Bj) is one third that of Vij. This generates meaningful,
but not overpowering, cross dyad dependence. Under these assumptions the regression
function equals

gn (w, x) =
1

n
exp

(
α + z (Wi, Xj)

′ β
)
.

Finally I set z (Wi, Xj) =
(

Wi Xj WiXj

)′
with {Wi}Ni=1 iid Bernoulli with a success

probability πw = 1/
√
3 and {Xj}Mj=1 iid Bernoulli with a success probability πx = 1/

√
3

. This implies that one third of dyads are of the Wi = Xj = 1 type.
I simulate data for five sample sizes: n = 64, 144, 256, 576 and 1024 with N = M in

all cases. I set α = ln (64× 0.04), βw = βx = 0 and βwx = ln 4 ≈ 1.3863. This implies
that ρn = 0.08, 0.036, 0.020, 0.009 and 0.005 across the five designs. Note that θ0 is fixed
across these designs, but the triangular array structure of the DGP induces a decline in
density with n. For each design I perform 5, 000 Monte Carlo replications.

The design is a stylized version of how a researcher might analyze data from a simple
consumer-product promotion experiment. Let Ai be consumer-specific heterogeneity, Bj

product quality heterogeneity, Wi = 1 if consumer i was randomly invited to participate
in a ‘sale’ and zero otherwise and Xj = 1 if product j was randomly determined to be
‘sale eligible’ and zero otherwise. The treatment effect of being invited to participate
in the sale increases the purchases probability for sale eligible items by a factor of four
(βwx = ln 4); there is no spillover effect onto non-eligible items (βw = 0). Likewise there
is no direct effect of an item being ‘sale eligible’ on the probability of making a purchase
(βx = 0). In what follows I focus on estimation of, and inference on, the interaction
coefficient βwx.

In the experiments, the logit approximation does not coincide with the population
regression function for any fixed n, however the approximation error declines as n → ∞.
Therefore the pseudo composite maximum likelihood estimates of θ̂ are consistent for
their population analogs. However, we would expect to observe noticeable bias in small
samples. This is shown in the first two rows of Table 1: for smaller samples mean and
median bias are modestly large relative to the standard deviation of β̂wx across the 5, 000

Monte Carlo replications (row 3). As predicted, this bias declines with n.

The theoretical rate-of-convergence results outlined above suggest that the standard
deviation of β̂wx in design 2 should be two thirds of that in design 1. In practice we have
that 0.4221

0.7039
≈ 0.60 ≈

1√
144
1√
64

= 2
3
, which is close. That in design 3 should be three quarters of

that in design 2 (actual: 0.2968
0.4221

≈ 0.70 ≈
1√
256
1√
144

= 3
4
); design 4 two thirds of that in design 3

(actual: 0.1972
0.2968

≈ 0.66 ≈
1√
576
1√
256

= 2
3
); and design 5 three quarters of that in design 4 (actual:
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Table 1: Monte Carlo Results, βwx

(1) (2) (3) (4) (5)
n = 64

ρn = 0.080
n = 144

ρn = 0.036
n = 256

ρn = 0.020
n = 576

ρn = 0.009
n = 1, 024
ρn = 0.005

Mean Bias 0.1209 0.0615 0.0396 0.0171 0.0119
Median Bias 0.1632 0.0635 0.0406 0.0149 0.0127

Std. Dev. 0.7039 0.4221 0.2968 0.1972 0.1516
Mean S.E. - Sparse 0.6779 0.4638 0.3445 0.2340 0.1783

Coverage (95% CI) - ‘Sparse’ 0.8754 0.9286 0.9442 0.9496 0.9434
Coverage (95% CI) - ‘Dense’ 0.3468 0.3620 0.3506 0.3208 0.2922

Notes: Results based on 5,000 replications of the data generating process described in the
text. The Monte Carlo standard deviation of the point estimates (row 3) is a robust measure
(the difference between 95th and 5th percentiles of the estimated coefficient’s Monte Carlo
distribution divided by the corresponding quantile differences of a standard normal variate). The
standard deviation of the simulation error on the coverage estimates is

√
α (1− α) /5000 ≈ 0.003

for α = 0.05. See the text for additional information.

0.1516
0.1972

≈ 0.77 ≈
1√
1024
1√
576

= 3
4
). Overall the Monte Carlo rate-of-convergence estimates track

theoretical predictions well.
The final two rows of Table 1 report the actual coverage of two different nominal 95

percent Wald-based confidence intervals. The sparse intervals are Wald ones which use
a variance estimate suggested by Cameron and Miller (2014). This estimate can also
be thought of as a bias-corrected version of the usual jackknife variance estimate (see
Efron and Stein (1981); Cattaneo et al. (2014); Graham (2020b)). A description of the
variance estimate, which is a direct analog estimate of the asymptotic variance presented
in Theorem 2, is given in Appendix C. The ‘dense’ intervals are based upon the analog
estimate of the dense asymptotic variance given by Graham (2020a) (see also Appendix
C).

In the designs with smaller samples, the sparse confidence intervals undercover slightly,
but once n is large enough such that bias is negligible, their actual and nominal coverage
coincide. As suggested by the theory, the actual coverage of the dense asymptotic intervals
are well below nominal levels in all designs.

Table 2 summarizes the sampling behavior of the components of

n3/2Sn (θ0) = n3/2U1n (θ0) + n3/2U2n (θ0) + n3/2Vn (θ0) + n3/2bn (θ0) .

For each Monte Carlo draw I construct each component of n3/2Sn (θ0) analytically (see
the Python Jupyter Notebook in the Supplemental Materials). The variance of these
components is then estimated by their sampling variance across the 5,000 Monte Carlo
draws (i.e., by Monte Carlo integration). Table 2 reports the mean and standard devi-
ation of each of the components n3/2Sn (θ0) in the the n = 256 and n = 1, 024 designs;
specifically the elements corresponding to the interaction coefficient βwx.
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Table 2 indicates that, for the designs considered here, n3/2U1n (θ0) and n3/2Vn (θ0)

are of equal order, while – as asserted by the theoretical analysis – n3/2U2n (θ0) is of lower
order. The closeness of the Monte Carlo standard deviations across the two samples also
indicates that n3/2 is the correct variance stabilizing rate. The Monte Carlo estimate
of the bias in n3/2S1n (θ0) also closely tracks its theoretical counterpart. Most impor-
tantly, the normal approximation to n3/2 [U1n (θ0) + Vn (θ0)], which underlies Theorem 2,
appears to be quite accurate. Normalized by its standard deviation, the tail frequen-
cies of n3/2 [U1n (θ0) + Vn (θ0)] are close to those of a standard normal random variable
(especially for the larger sample size).
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Table 2: Accuracy Sparse Network Asymptotics for β̂wx

(1) (2) (3) (4) (5) (6)
n3/2Sn (θ0) n3/2U1n (θ0) n3/2U2n (θ0) n3/2Vn (θ0) n3/2 [U1n (θ0) + Vn (θ0)] n3/2bn (θ0)

Panel A: n = 256

Mean 2.164 0.0446 -0.0045 0.0227 0.0672 2.101
Std. Dev. 5.2165 3.8460 0.3196 3.6122 5.2090 -

Pr (T ≥ 1.645) 0.0578 0.0546 0.0422 0.0542 0.0576 -
Pr (T ≤ 1.645) 0.0400 0.0432 0.0502 0.0472 0.0412 -
Pr (T ≥ 1.96) 0.0324 0.0290 0.0282 0.0308 0.0304 -
Pr (T ≤ 1.96) 0.0154 0.0184 0.0360 0.0246 0.0166 -

Panel B: n = 1, 024

Mean 1.116 0.0399 -0.0025 -0.0019 0.0380 1.081
Std. Dev. 5.3091 3.8169 0.1555 3.7162 5.3123 -

Pr (T ≥ 1.645) 0.0502 0.0526 0.0432 0.0508 0.0504 -
Pr (T ≤ 1.645) 0.0490 0.0490 0.0522 0.0476 0.0490 -
Pr (T ≥ 1.96) 0.0276 0.0244 0.0266 0.0236 0.0268 -
Pr (T ≤ 1.96) 0.0236 0.0234 0.0362 0.0234 0.0244 -

Notes: Results based on 5,000 replications of the data generating process described in the text. The forms of Sn (θ0), U1n (θ0), U2n (θ0), Vn (θ0)
and , bn (θ0) are based on pencil and paper calculations and the details of the simulated data generating process (see the Python Jupyter Notebook
in the Supplemental Materials for details).
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Appendix

The appendix includes proofs of the formal results stated in the main text as well
as statements and proofs of supplemental results. All notation is as established in the
main text unless stated otherwise. Equation numbering continues in sequence with that
established in the main text.

A Identification and consistency

Proof of Lemma 1 (Representation result for θ0)

To show Lemma 1 is is convenient to observe that L0 (θ) = E
[
λ0 (Xi,Wj)R

′
ijθ
]
−

E
[
exp

(
R′

ijθ
)]

. To see this equality note that

L0 (θ) =E
[
λ0 (Xi,Wj)R

′
ijθ
]
− E

[
exp

(
R′

ijθ
)]

=E0

[
Vij ln

(
exp

(
R′

ijθ
)

λ0 (Xi,Wj)

)]
+ E [λ0 (Xi,Wj)]

− E
[
exp

(
R′

ijθ
)]

+ E [Vij ln (λ0 (Xi,Wj))]− E [λ0 (Xi,Wj)]

=E0

[
ln

{
f (Vij|Wi, Xj; θ)

f0 (Vij|Wi, Xj)

}]
+ E [λ0 (Xi,Wj) ln (λ0 (Xi,Wj))]− E [λ0 (Xi,Wj)]

=− DKL (F0∥Fθ) + S (F0) .

To show uniform convergence of nL∗
n (θ) to L0 (θ) write L∗

n (θ) = Ln (θ) + δn as the
average

L∗
n (θ) =

1

NM

N∑
i=1

M∑
j=1

l∗ij,n (θ) (33)

with kernel, recalling that Rij =
(
1, Z ′

ij

)′,
l∗ij,n (θ) = YijR

′
ijθ − ln

(
1 +

1

n
exp

(
R′

ijθ
))

. (34)

The form of (34) follows from the fact that, manipulating (17) in the main text

l∗ij,n (θ) = (2Yij − 1)
(
R′

ijθ − lnn
)
− ln

(
1 + exp

(
(2Yij − 1)

[
R′

ijθ − lnn
]))

+ Yij lnn

= Yij

(
R′

ijθ − lnn
)
− ln

(
1 + exp

(
R′

ijθ − lnn
))

+ Yij lnn

= YijR
′
ijθ − ln

(
1 +

1

n
exp

(
R′

ijθ
))

.
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First I show that

lim
n→∞

E
[
nl∗ij,n (θ)

]
=L0 (θ) (35)

=E
[
λ0 (Xi,Wj)R

′
ijθ
]
− E

[
exp

(
R′

ijθ
)]

pointwise in θ ∈ Θ. By part (ii) of Assumption 1, part (ii) of Assumption 2 and parts (i)
and (ii) of Assumption 3 we have the dominating function

|ngn (w, x) r′θfW (w) fX (x)| ≤ k (w, x)× sup
r∈(1,Z),θ∈Θ

|r′θ| × fW (w) fX (x) < ∞.

Part (i) of Assumption 2 implies that ngn (w, x) r
′θ converges pointwise to λ0 (x,w) r

′θ.
The Dominated Convergence Theorem then yields

lim
n→∞

E
[
ngn (Wi, Xj)R

′
ijθ
]
→ E

[
λ0 (Xi,Wj)R

′
ijθ
]
. (36)

Next, the exponential function characterization expx = lim
n→∞

(
1 + x

n

)n and continuity of
the ln (·) function yield the limit

lim
n→∞

ln

(
1 +

1

n
exp (r′θ)

)n

= exp (r′θ) .

To verify the stronger equality

lim
n→∞

E
[
ln

(
1 +

1

n
exp

(
R′

ijθ
))n]

= E
[
exp

(
R′

ijθ
)]

(37)

it suffices to show that

sup
w∈W,x∈X

∣∣∣∣ln(1 + 1

n
exp (r′θ)

)n

fW (w) fX (x)− exp (r′θ) fW (w) fX (x)

∣∣∣∣→ 0

as n → ∞. Under part (ii) of Assumption 1 and parts (i) and (ii) of Assumption 3 this
follows if

sup
x∈[x,x̄]

∣∣∣∣ln(1 + 1

n
exp (x)

)n

− exp (x)

∣∣∣∣→ 0 (38)

with [x, x̄] the support of possible values the index r′θ. Let bn (x) = ln
(
1 + 1

n
exp (x)

)n−
exp (x); since b′n (x) = exp (x)

[
1

1+ 1
n
exp(x)

− 1
]
< 0 on x ∈ [x, x̄] condition (38) holds since

both bn (x) and bn (x̄) converge to zero. Condition (35) follows directly from (36) and
(37).

Second, since (35) also gives lim
n→∞

E [nL∗
n (θ)] = L0 (θ), the mean square error decom-

position
E
[
(nL∗

n (θ)− L0 (θ))
2] = (E [nL∗

n (θ)]− L0 (θ))
2 + V (nL∗

n (θ))
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implies convergence of nL∗
n (θ) to L0 (θ) in mean square if V (nL∗

n (θ)) → 0 as n → ∞.
This follows under Assumptions 2 and 3 since

V (nL∗
n (θ)) =

n2

N
O
(
ρ2n
)
+

n2

M
O
(
ρ2n
)
+

n2

NM
O (ρn)

= O
(
n−1
)
+O

(
n−1
)
+O

(
n−1
)
.

By concavity of L∗
n (θ) in θ, this convergence is uniform in θ ∈ Θ. Lemma (1) follows

directly with some algebra.

Proof of Theorem 1: consistency of θ̂ for θ0

The result follows by verifying conditions (i) to (iv) of Theorem 2.1 in Newey and Mc-
Fadden (1994, p. 2121). Part (ii) of follows from Assumption 3, part (iii) follows by
inspection, part (iv) was shown in Lemma 1. Part (i) requires demonstrating uniqueness
of the solution

θ0 = argmax
θ∈Θ

L0 (θ) . (39)

For this to hold it suffices to verify global concavity of L0 (θ) in θ. Direct calculation
yields first and second order conditions equal to

E
[
∂L0 (θ)

∂θ

]
= E

[(
λ0 (Xi,Wj)− exp

(
R′

ijθ
))

Rij

]
E
[
∂2L0 (θ)

∂θ∂θ′

]
= −E

[
exp

(
R′

ijθ
)
RijR

′
ij

] def
≡ Γ (θ) . (40)

Under Assumption 3 the matrix Γ (θ) is negative definite for all θ ∈ Θ; therefore L0 (θ)

is globally concave in θ ∈ Θ with unique maximum θ0.

Hessian convergence

Note that for en (v) = exp (v − lnn) / [1 + exp (v − lnn)] , we have that e′n (v) =

en (v) [1− en (v)] and e′′n (v) = en (v) [1− en (v)] [1− 2en (v)]. Further let eij,n (θ) =

en
(
R′

ijθ
)
; with this notation we can write the first three derivatives of the kernel function

of the composite log-likelihood with respect θ as

sij,n (n) = (Yij − eij,n (θ))Rij (41)
∂sij,n (θ)

∂θ′
= −eij,n (θ) [1− eij,n (θ)]RijR

′
ij (42)

∂

∂θ′

{
∂sij,n (θ)

∂θp

}
= −eij,n (θ) [1− eij,n (θ)] [1− 2eij,n (θ)]RijR

′
ijRp,ij (43)

with (43) holding for for p = 1, . . . , dim (θ).
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Let t = (θ − θ0) and note that t ∈ T with T compact by Assumption 3. Associated
with any t ∈ T is a θ ∈ Θ. With these preliminaries we can show that nHn (θ) converges
uniformly to Γ̃ (θ), as defined in equation (21) of the main text.

Lemma 2. (Uniform Hessian Convergence) Under Assumptions 1, 2 and 3

sup
θ∈Θ

∥∥∥nHn (n)− Γ̃ (θ)
∥∥∥ p→ 0.

Proof. Let ∥A∥2,1 =
∑N

i=1

√∑M
j=1A

2
ij denote the ℓ2,1 matrix norm. Note that θ = θ0 + t

and hence that Hn (θ0 + t) = Hn (θ) . The mean value theorem, as well as compatibility
of the Frobenius matrix norm with the Euclidean vector norm, gives for any t and t̄ both
in T,

∥Hn (θ0 + t)−Hn (θ0 + t̄)∥2,1 ≤
dim(θ)∑
p=1

∥∥∥∥∥ 1

NM

N∑
i=1

M∑
j=1

∂

∂θ′

{
∂sij,n (θ0 + t)

∂θp

}∥∥∥∥∥
F

∥t− t̄∥2 .

Since E [eij,n (θ) [1− eij,n (θ)] [1− 2eij,n (θ)]] = O (n−1) we have that, inspecting (43)
above, for any t ∈ T,∥∥∥∥∥ 1

NM

N∑
i=1

M∑
j=1

∂

∂θ′

{
∂sij,n (θ0 + t)

∂θp

}∥∥∥∥∥
F

= Op

(
n−1
)
.

This gives ∥nHn (θ0 + t)− nHn (θ0 + t̄)∥2,1 ≤ Op (1) · ∥t− t̄∥2. Next, again recalling that
θ0 + t = θ, we have that

Hn (θ0 + t) = − 1

NM

N∑
i=1

M∑
j=1

eij,n (θ) [1− eij,n (θ)]RijR
′
ij

= − 1

NM

N∑
i=1

M∑
j=1

1

n
exp

(
R′

ijθ
)
RijR

′
ij +Op

(
1

n2

)
,

which gives, using a law of large numbers for U-Statistics, nHn (θ)
p→ Γ (θ) for all t ∈ T.

The claim then follows from an application of Lemma 2.9 of Newey and McFadden (1994,
p. 2138).

B Proof of Theorem 2

To show Theorem 2 I first verify the rate-of-convergence analysis for Sn given in the main
next. Next I show asymptotic normality of U1n + Vn, after normalization. I then prove
the main result.
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Asymptotic variance of the score

To prove (29), the decomposition of the variance of the score given in the main text, and
hence that

V
(
n3/2Sn

)
=

Σ̃c
1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)
+O

(
n−1
)

use the definitions given in (30) of the main text and observe that

Σc
1n =E [(Y12 − e12,n) (Y13 − e13,n)R12R

′
13]− b2n

=O
(
ρ2n
)
+ o

(
n−4
)

(44)

and also that

Σp
1n =E [(Y21 − e21,n) (Y31 − e31,n)R21R

′
31]− b2n.

=O
(
ρ2n
)
+ o

(
n−4
)
. (45)

Turning to Σ2n and Σ3n we get that

Σ2n =E [E [ (Y12 − e12,n)R21|W1, X2, A1, B2]

×E [ (Y12 − e12,n)R21|W1, X2, A1, B2]
′]− b2n

=O
(
ρ2n
)
+ o

(
n−4
)

(46)

and further that

Σ3n =E
[
{sij,n − s̄ij,n} {sij,n − s̄ij,n}′

]
=O (ρn) (47)

by virtue of the equality Y 2
ij = Yij (which holds because Yij is binary-valued).

From Assumption 2 we have that ρn = O (n−1), hence (44) implies that n2Σc
1n = O (1),

(45) that n2Σp
1n = O (1), and (47) that nΣ3n = O (1). This gives

V (Sn) =O

(
ρ2n
N

)
+O

(
ρ2n
M

)
+O

(
ρ2n
MN

)
+O

( ρn
MN

)
=O

([
λc
0,n

M

]2
1

N

)
+O

([
λc
0,n

M

]2
1

M

)
+O

([
λc
0,n

M

]2
1

MN

)
+O

(
λc
0,n

M

1

MN

)

=O

([
λc
0,n

ϕn

]2
1

(1− ϕn)

1

n3

)
+O

([
λc
0,n

ϕn

]2
1

ϕn

1

n3

)

+O

([
λc
0,n

ϕn

]2
1

ϕn (1− ϕn)

1

n4

)
+O

(
λc
0,n

ϕ2
n (1− ϕn)

1

n3

)
=O

(
n3
)
+O

(
n3
)
+O

(
n4
)
+O

(
n3
)
,
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and hence the form of the variance expression stated in the Theorem.

Variance simplification when gn (w, x) takes the logit form

Observe that V (sij,n) = Σ2n + Σ3n. Therefore when gn (Wi, Xj) = en
(
α0 + Z ′

ijβ0

)
we

have that

nV (sij,n) = nE
[
(Yij − eij,n)

2RijR
′
ij

]
− nb2n

= nE
[
eij,n (1− eij,n)RijR

′
ij

]
+ o

(
n−3
)

→ Γ̃0,

and hence the alternative limiting variance expression

V
(
n3/2Sn

)
=

n2Σc
1n

1− ϕn

+
n2Σp

1n

ϕn

+
n (Σ2n + Σ3n)

ϕn (1− ϕn)
+O

(
n−1
)

→ Σ̃c
1

1− ϕ
+

Σ̃p
1

ϕ
+

Γ̃0

ϕ (1− ϕ)

as n → ∞.

Triangular array setup

Observe that U1n +Vn =
∑T

t=1 Znt,where the triangular array {Znt} is defined as follows:

Zn1 =
1

N

(
s̄c11,n − bn

)
...

ZnN =
1

N

(
s̄c1N,n − bn

)
ZnN+1 =

1

M

(
s̄p11,n − bn

)
...

ZnN+M =
1

M

(
s̄p1M,n − bn

)
ZnN+M+1 =

1

NM
(s11,n − s̄11,n)

...

ZnN+M+NM =
1

NM
(sNM,n − s̄NM,n) ,

with T = T (n) = N + M + NM . For any vector Xi, let X t
1 = (X1, . . . , Xt)

′. Iterated
expectations, as well as the conditional independence relationships implied by dyadic
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dependence (Assumptions 1 and 2), yield

E
[
Znt|Zt−1

n1

]
= 0,

establishing that {Znt} is a martingale difference sequence (MDS). The variance of this
MDS is

∆̄n

def
≡ V

(
T∑
t=1

Zni

)

=
Σc

1n

N
+

Σp
1n

M
+

Σ3n

NM
.

To show asymptotic normality of n3/2Sn (θ0) I first show, recalling decomposition (22)
in the main test, that, for a vector of constants c,

(
c′∆̄nc

)−1/2
c′Sn =

(
c′∆̄nc

)−1/2
c′ [U1n + Vn] + op (1) (48)

and subsequently that

(
c′∆̄nc

)−1/2
c′ [U1n + Vn]

p→ N (0, 1) . (49)

To show (48) observe that

c′∆̄nc = O

(
ρ2n
N

+
ρ2n
M

+
ρn
NM

)
= O

(
ρ2n
n

(
1

1− ϕn

+
1

ϕn

+
1

(1− ϕn)λc
n

))
= O

(
ρ2n
n

)

and hence that
(
c′∆̄Nc

)−1
= O (nρ−2

n ) as long as λc
n ≥ C > 0 and ϕ ∈ (0, 1) (see

Assumptions 1 and 2). Additionally using (46) yields

(
c′∆̄nc

)−1/2
c′U2n = Op

(
n1/2ρ−1

n

)
Op

(
ρ2n
)

= Op

(
n1/2ρn

)
= op (1) ,

as long as ρn = O (n−α) for α > 1
2
, as is maintained here. We also have that(

c′∆̄nc
)−1/2

c′bn =Op

(
n1/2ρ−1

n

)
o (n−2) = op (1). These two results imply assertion (48).
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Central limit theorem

To show (49) I verify the conditions of Corollary 5.26 of Theorem 5.24 in White (2001);
specifically the Lyapunov condition, for r > 2

T (n)∑
t=1

E

[(∣∣∣∣∣ c′Znt(
c′∆̄nc

)1/2
∣∣∣∣∣
)r]

= o (1) (50)

and the stability condition
T (n)∑
t=1

(c′ZNt)
2

c′∆̄nc

p→ 1. (51)

I will show (50) for r = 3. Observe that

E

[(
1

N
c′
(
s̄c1i,n − bn

))3
]
=O

(
ρ3n
N3

)

E

[(
1

M
c′
(
s̄p1j,n − bn

))3
]
=O

(
ρ3n
M3

)

E

[(
1

NM
c′ (s11,n − s̄11,n)

)3
]
=O

( ρn
N3M3

)
These calculations, as well as independence of summands 1 to N , N + 1 to N +M and
N +M + 1 to N +M +NM , imply that

T (n)∑
t=1

E

(∣∣∣∣∣ c′ZNt(
c′∆̄nc

)1/2
∣∣∣∣∣
)3
 =Op

(
n3/2ρ−3

N

){
O

(
ρ3n
N2

)
+O

(
ρ3n
M2

)
+O

( ρn
N2M2

)}
=Op

(
n3/2

) {
Op

(
n−2
)
+O

(
n−2
)
+O

(
n−2
)}

=Op

(
n−1/2

)
=op (1)

as required.
To verify the stability condition (51) I re-write it as

T (n)∑
t=1

1

n
(
c′∆̄nc

)n{(c′Znt)
2 − E

[
(c′Znt)

2
]}

p→ 0 (52)

Since n
(
c′∆̄Nc

)−1
= O

(
n · nρ−2

N

)
= O (1) the stability condition (51) will hold if the

numerator in (52) –
∑T (n)

t=1 n
{
(c′Znt)

2 − E
[
(c′Znt)

2]} – converges in probability to zero.

27



Expanding the square we get that

E
[(

n
{
(c′Znt)

2 − E
[
(c′Znt)

2
]})2]

= n2

{
E
[
(c′Znt)

4
]
−
(
E
[
(c′Znt)

2
])2}

.

We then have

E
[
(c′Znt)

2
]
=


1
N2 c

′Σc
1nc = O

([
λc
n

(1−ϕn)ϕn

]2
1
n4

)
, t = 1, . . . , N

1
M2 c

′Σp
1nc = O

([
λc
n

ϕ2
n

]2
1
n4

)
, t = N + 1, . . . , N +M

1
N2M2 c

′Σ3Nc = O
(

λc
n

ϕ3
n(1−ϕn)

2
1
n5

)
, t = N +M + 1, . . . , N +M +NM

and

E
[
(c′Znt)

4
]
=



E
[
(c′s̄c1n1)

4
]

N4 = O

([
λc
n

(1−ϕn)ϕn

]4
1
n8

)
, t = 1, . . . , N

E
[
(c′s̄p1n1)

4
]

M4 = O

([
λc
n

ϕ2
n

]4
1
n8

)
, t = N + 1, . . . , N +M

E[(c′(sn11−s̄n11))
4]

N4M4 = O
(

λc
n

ϕ5
n(1−ϕn)

4
1
n9

)
, t = N +M + 1, . . . , N +M +NM

.

Since T (n) = N + M + NM = O (n2), the summands of
1

T (n)

∑T (n)
t=1 T (n)n

{
(c′Znt)

2 − E
[
(c′Znt)

2]} all have variances which are O (n−2) or
smaller:

T (n)2 n2

{
E
[
(c′Znt)

4
]
−
(
E
[
(c′Znt)

2
])2}

=
T (n)2 n2 [O (n−8) +O (n−8)] = O (n−2) , t = 1, . . . , N

T (n)2 n2 [O (n−8) +O (n−8)] = O (n−2) , t = N + 1, . . . , N +M

T (n)2 n2 [O (n−9) +O (n−10)] = O (n−3) , t = N +M + 1, . . . , N +M +NM

Since the summands of the numerator in (52) are all mean zero with variances shrinking
to zero as n → ∞ condition (52) holds as required.

Next observe that
n3∆̄n → Σ̃c

1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)

as n → ∞, such that, using (48) and the Cramér-Wold Theorem, n3/2Sn
D→

N
(
0,

Σ̃c
1

1−ϕ
+

Σ̃p
1

ϕ
+ Σ̃3

ϕ(1−ϕ)

)
. The result then follows from Lemma 2 and Slutsky’s The-

orem.
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C Variance estimation

In this appendix I describe the variance estimators used in the Monte Carlo experiments
reported in the main text. Graham (2020a) and Graham (2020b) both discuss variance
estimation under dyadic dependence and provide references to the primary literature.

We have that Σc
1n = Cn (sij,nsik,n) for j ̸= i. For each of the i = 1, . . . , N consumers

there are
(
M
2

)
= 2

M(M−1)
pairs of products j and k, yielding a sample covariance of

Σ̂c
1n =

2

NM (M − 1)

N∑
i=1

M−1∑
j=1

M∑
k=j+1

ŝij,nŝ
′
ik,n. (53)

A similar argument gives

Σ̂p
1n =

2

MN (N − 1)

M∑
j=1

N−1∑
i=1

N∑
k=i+1

ŝij,nŝ
′
kj,n. (54)

The ‘dense’, Wald-based, confidence intervals whose coverage properties are analyzed by
Monte Carlo are based on the limit distribution for n1/2Sn given in equation (31) of the
main text (with (53), (54) and ϕn replacing their populating/limiting values). Under
dense asymptotics it is also the case that Γ̂n

def
≡ Hn

(
θ̂
)

converges to, say, Γ0, without
rescaling by n. From these two observations a simple sandwich variance estimator can
be constructed and inference based on the approximation (see, for example, Graham
(2020a)):

√
n
(
θ̂ − θ0

)
approx∼ N

(
0, Γ̂−1

n Ω̂D
n Γ̂

−1
n

)
, (55)

with Ω̂D
n =

Σ̂c
1n

1−ϕn
+

Σ̂p
1n

ϕn
.

Next define

ˆ̄sc1i,n =
1

M

M∑
j=1

ŝij,n

ˆ̄sp1j,n =
1

N

N∑
i=1

ŝij,n.

The ‘jackknife’ estimate of Σc
1n is

Σ̆c
1n =

1

N

N∑
i=1

ˆ̄sc1i,n ˆ̄s
c′
1i,n. (56)

See, for example, Efron and Stein (1981). Basic manipulation gives
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Σ̆c
1n =

1

N

1

M2

N∑
i=1

[
M∑
j=1

ŝij,n

][
M∑
j=1

ŝij,n

]′

=
1

N

1

M2

N∑
i=1

[
M∑
j=1

ŝij,nŝ
′
ij,n + 2

M−1∑
j=1

M∑
k=j+1

ŝij,nŝ
′
ik,n

]

=
1

M

1

NM

N∑
i=1

M∑
j=1

ŝij,nŝ
′
ij,n +

1

N

2

M2

N∑
i=1

M−1∑
j=1

M∑
k=j+1

ŝij,nŝ
′
ik,n

=
1

M
̂Σ2n + Σ3n +

M − 1

M
Σ̂c

1n

where I define ̂Σ2n + Σ3n = 1
NM

∑N
i=1

∑M
j=1 ŝij,nŝ

′
ij,n.

These calculations give the equality

Σ̂c
1n =

M

M − 1

[
Σ̆c

1n −
1

M
̂Σ2n + Σ3n

]
.

Analogous calculations yield

Σ̆p
1 =

1

M

M∑
j=1

ˆ̄sp1i,n ˆ̄s
p′
1i,n =

1

N
̂Σ2n + Σ3n +

N − 1

N
Σ̂p

1n

and hence that
Σ̂p

1n =
N

N − 1

[
Σ̆p

1n −
1

N
̂Σ2n + Σ3n

]
.

The jackknife estimate for V
(
n1/2Sn

)
in the dense case is thus

Ω̂JK
n =

Σ̆c
1n

1− ϕn

+
Σ̆p

1n

ϕn

=
M − 1

M

Σ̂c
1n

1− ϕn

+
N − 1

N

Σ̂p
1n

ϕn

+
1

M

̂Σ2n + Σ3n

N/n
+

1

N

̂Σ2n + Σ3n

M/n

=
Σ̂c

1n

1− ϕn

+
Σ̂p

1n

ϕn

+
2n

NM
̂Σ2n + Σ3n −

1

M

Σ̂c
1n

N/n
− 1

N

Σ̂p
1n

M/n

=
Σ̂c

1n

1− ϕn

+
Σ̂p

1n

ϕn

+
1

n

1

ϕn (1− ϕn)

(
2
[

̂Σ2n + Σ3n

]
− Σ̂c

1n − Σ̂p
1n

)
.

This suggests the bias corrected estimate of V
(
n1/2Sn

)
equal to

Ω̂JK−BC
n =

Σ̆c
1n

1− ϕn

+
Σ̆p

1n

ϕn

− 1

n

̂Σ2n + Σ3n

ϕn (1− ϕn)

=
Σ̂c

1n

1− ϕn

+
Σ̂p

1n

ϕn

+
1

n

1

ϕn (1− ϕn)

(
̂Σ2n + Σ3n − Σ̂c

1n − Σ̂p
1n

)
.
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See Cattaneo et al. (2014) for a related estimator in the context of density weighted
average derivatives. 7

To estimate V
(
n3/2Sn

)
, as required for sparse network inference, I use n2Ω̂JK−BC since

n2Ω̂JK−BC
n =

n2Σ̂c
1n

1− ϕn

+
n2Σ̂p

1n

ϕn

+
n

ϕn (1− ϕn)

(
̂Σ2n + Σ3n − Σ̂c

1n − Σ̂p
1n

)
which, under suitable conditions, should be such that

n2Ω̂JK−BC
n → Σ̃c

1

1− ϕ
+

Σ̃p
1

ϕ
+

Σ̃3

ϕ (1− ϕ)
+O

(
1

n

)
.

To estimate Γ̃0 I use −nHn

(
θ̂
)

. To ensure that Ω̂JK−BC
n is positive definite I threshold

negative eigenvalues as suggested by Cameron and Miller (2014).
The above estimators seem to be obvious places to start based on the prior work on

dyadic clustering surveyed in Graham (2020a) and Graham (2020b). However, exploring
the strengths and weakness of alternative methods of sparse network inference formally
is a topic for future research.
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