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Abstract. A new analytical method for the evaluation of heat capacities of 

semiconductors (GeS, GeSe, GeTe, and SnS) has been proposed using the Einstein-Debye 

approximation. These formulae differ from the Debye model representations and they involve 

a combination of the Einstein and Debye approximations. The proposed method allows 

developing an increasing accuracy for the determination of the temperature dependent heat 

capacities of semiconductors GeS, GeSe, GeTe and SnS. The approach suggested in this study 

for calculation of heat capacities is very well suitable to determine other thermodynamical 

properties of materials. The temperature dependence of heat capacities of GeS, GeSe, GeTe 

and SnS semiconductors has been evaluated and shows a good agreement with literature at 

different temperature ranges. 

Keywords: specific heat capacities; Einstein-Debye approximation; Debye model; 

semiconductors. 
 

 

1. INTRODUCTION  
 

 

The narrow-band-gap IV-VI semiconductors play important roles in scientific and 

industrial applications, including in field-effect transistors, photovoltaic devices and 

photodetectors [1-6]. Since these materials generally have band gaps in the narrow range of 

0.5-1.5 eV, this property makes them effective absorbers for incoming solar radiation [7, 8]. 

Also, it is shown that IV-VI semiconductors have multiple exciton constitutions, which can 

lead to an increase in the efficiency of solar cells. Note that among various materials, the 

layered semiconductors SnS, SnSe, GeS and GeSe have attracted intense attention due to their 

high chemical and environmental stability for photovoltaic cells [9-14]. By considering the 

industrial applications of semiconductors, it is shown that new various accurate analytical 

methods should be developed in the study of thermal properties. A large number of scientific 

articles have been written for the evaluation of the thermal properties of semiconductors, 

including several experimental and theoretical approaches [15-24]. In literature, most of the 

studies suggest that calculations of thermodynamics properties have been investigated by 

using the standard Debye approximation or semi empirical formulae in restricted temperature 

ranges [15-20]. The experimental method was proposed for calculating heat capacities and 

absolute entropies of semiconductors, it also provides obtaining the temperature dependent 

expressions which are derived from the graph quantities, calculated in the paper [16]. In the 

study [9], the temperature dependent thermoelectric properties of single-crystal GeSe have 

been investigated. One alternative synthesis approach was suggested for GeS and GeSe 
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crystals, also their electrical and optical properties were reported in work [1]. In the article 

[18], the heat capacity of crystals (GeTe, SeSe, SnTe, PbS, PbSe, and PbTe) and (GeS, GeSe, 

SnS, GeS2, and SnS2) have been evaluated in the low temperature range by the Debye 

method which is only convenient for the acoustic branches. Also by using the Debye model, 

the calculation results have been presented for the heat capacities of (GeS, GeSe, GeTe,and 

SnS) crystals [19] and other materials [17]. 

Thus, taking into account the analytical Einstein-Debye suggested method [25, 26], 

this paper aims to propose an accurate formulation for the evaluation of the heat capacities of 

semiconductors in the arbitrary temperature range. In recent studies [27-31], successful 

results were obtained for the calculation of the heat capacities of materials using the Einstein-

Debye approach. The new approximation obtained here provides an effective way to 

calculate high and low temperature behavior of the heat capacities of semiconductors. 
 

 

2. BASIC FORMULAS AND EINSTEIN-DEBYE APPROXIMATION 

 
 

Explicit semi-empirical expressions can also be found for heat capacities of 

semiconductors in studies [15, 16, 37] as following forms: 

1. for ,GeS  in the temperature range 220 610T K   

 

                               2 5 2 1 146.5 1.49 10 2.01 10 ( )PC T T JK mol                                     (1) 

 

2. for GeSe  in the temperature range 220 610T K   

 

                              3 5 2 1 150.2 9.60 10 1.87 10 ( )PC T T JK mol                                (2) 

 

3. for GeTe in the temperature range 220 460T K   

 

                                        3 1 145.9 2.22 10 ( )PC T JK mol                                           (3) 

 

4. for SnS  in the temperature range 100 870T K   

 

       3 2 1 1(0.114905(ln ) 1.99273(ln ) 11.6659ln 19.144)( )PC Exp T T T JK mol     .      (4) 

 

To obtain the specific heat capacity at constant pressure and volume, we use the 

formulas presented in Refs. [31, 32], respectively: 

 

                                         0( ) ( ) 1 ( )P V V

m

A T
C T C T C T

T

 
  

 
,                                              (5)  

 

                                          ( ) 3 , ,V A B D EC T N k M T   ,                                          (6) 

 

where 3 1

0 5.1 10A x J K mol  , T is the absolute temperature, 
mT is the melting temperature, 

AN  

is the Avogadro number, 
Bk is the Boltzmann constant, 

D  is the Debye temperature and 
E  is 

the Einstein temperature. By using the Debye-Einstein approximation for the  , ,D EM T    

function, we get an entirely efficient formula as [25, 26]: 
 

                                  , , , ( 1) ,D E V D EM T L T s A T      ,                            (7) 
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where s  is the number of atoms in one lattice point and the function  ,V DL T  is determined 

as:  

   , ( 1) 1, .

1
D

D D
V D n

T

n
L T n D

T T
e



 


 
   

 


                                    (8) 

 

Here, the quantity   takes the value 3-5 for alloys and metals. The functions 

( , )nD x appearing in Eq. (8) are the n-dimensional Debye functions [33]: 

 

                                             
0

  ,x =
( 1)

x n

n n t

n t
D dt

x e 


 .                                          (9) 

 

where   takes an integer and non-integer values and 1   corresponds to the Einstein-Debye 

approximation. The function  , EA T   in Eq. (3) is the Einstein function and determined by the 

following formula: 
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As seen from Eq.(7), one of the fundamental problems is an accurate evaluation of n-

dimensional Debye functions. Recently, the general analytical relation for n-dimensional 

Debye functions ( , )nD x is presented in the work [34] as: 

 

                              
1
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( , ) lim 1 ( )
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n in nN
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n n i x
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where N  is the upper limit of series. Here, the functions ( )iF   and ( , )y   are the binomial 

coefficients and incomplete gamma functions defined as, respectively [35-38]: 
 

                                                        
1
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F n n i
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and 

                                                        
1

0

( , )

y

ty t e dt     .                                                 (13) 

 

The most general reproduced formulas have been developed in [39] for the accurate 

calculation of incomplete gamma functions. 

 

 

3. RESULTS AND DISCUSSION 
 

 

It should be noted that the problem of the evaluation of theoretical information about 

heat capacities of semiconductors are given approximately by the literatures presentation of 

results in the form of small-scale temperature ranges. The new approach may yield the 

progress of further thermodynamics properties, in particular using a new identity for n 

dimensional Debye functions. 
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We present a new approach for the calculation of the heat capacities of 

semiconductors as a function of temperature using formulas (5) and (7). The all calculations 

were performed in the Mathematica 7.0 program software. The comparison of obtained results 

with well known literature data is given in Figs. 1-4. Considering that most of the applications 

of semi empirical formulae do not have a high deviation from the full analytical methods, we 

conclude that the approximation is useful in the calculation of the heat capacities as an 

alternative to its formulation described by Eqs. (1)-(4)  for practical applications in the given 

temperature ranges. We demonstrate an efficient method for the analytical evaluation of heat 

capacities in a wide range of temperatures. As seen from Figs. 1-4, the evaluation of the heat 

capacities with the Einstein-Debye approach yields convenient results, also could provide a 

new attempt to the calculation of other thermal properties of semiconductors. We believe 

some essential discrepancy with Eqs. (1)-(4) associated with the use of approximate formulas 

in restricted temperature ranges for calculation of heat capacity. The Einstein-Debye method, 

one of the well known new developments in theoretical approaches, has provided more 

accurate results for the evaluation of the thermodynamic quantities of solid materials.  

 

 
 

Figure 1. The temperature dependence of Cp heat 

capacity at constant pressure for GeS 

(Tm = 931K, θD = 360K, θE = 379K). 

 
 

Figure 2. The temperature dependence of Cp heat 

capacity at constant pressure for GeSe 

(Tm = 948K, θD = 280K, θE = 235K). 

 

 
 

Figure 3. The temperature dependence of Cp heat 

capacity at constant pressure for GeTe 

(Tm = 996K, θD = 180K, θE = 140K). 

 

 
 

Figure 4. The temperature dependence of Cp heat 

capacity at constant pressure for SnS 

(Tm = 1155K, θD = 270K, θE = 237K) [38]. 
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4. CONCLUSION 

 

 

In an attempt to find the proposed method for evaluation of the heat capacities have to 

adequately represent the temperature dependence behavior of more matters. It can be 

concluded, on the basis of the results obtained, suggested approach allows us to evaluate the 

heat capacities in the wide range temperature ranges with accuracy and reliability. 
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