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Abstract. In this study, we examine timelike helices in R’ and some integral
characterizations of these curves in terms of Frenet frame. In addition, we study timelike B,
slant helices in R} and present the differential equations for vector positions.
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1. INTRODUCTION AND PRELIMINARIES

The curves are used in many different fields such as nature, art, technology and
science. It is geometrically important to describe the behavior of the curve in a point on the
curve. The curves are interpreted geometrically with the help of a frame in different spaces.

There are many studies about curves and especially special curves in R} [1-7].
The semi-Euclidean space R} is the standard vector space given with the metric

() =—dx —dx; +dx; +dx;,

where (X,,X,,X5,X,) is the coordinate system of R}. For the vector v in R}, if the

condition (V,v) >0 is met, v is spacelike, if the condition (V,v) <0 is met, v is timelike, if
the condition (V,v)=0, V =0 is met, v is null (lightlike) vector. The norm of the vector v
is defined as |V]|=|(V,V)| . If (V,V) =1, then V is the unit vector [8].

Let v and w be two vectors in R}. Then there is only one angle between the vectors

v and w, such that;
i) if vand w are spacelike vectors, then <\7, Vv>=”§””®”cos€

i) if vand w are timelike vectors, then <\7,\7v> :—“GHHVV“COShe

iii) if v is spacelike vector and w is timelike vector, then K\? Vv>‘ :HQHHWHsinh@ [9,10].
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Let the Frenet frame of the curve a(s) be {T(s), N(s),B,(s),B,(s)} in R}, where Tis
tangent vector field, N is principal normal vector field, B, is first binormal vector field, B, is
the second binormal vector field.

Definition 1. If the tangent vector T of the curve ;1 — E* makes constant angle with a
unit vector U in E*, the curve « is called general helix (inclined curve) [11].

Definition 2. If the principal normal vector N of the curve «: 1 — E* makes constant angle
with a unit vector U in E*, the curve « is called slant helix [12].

Let « be atimelike curve parametrized by arclength function s in R?. Let the vector
N be timelike, B, and B, spacelike. In this case there exists only one Frenet frame
{T,N,B,,B,} for which « is timelike curve with Frenet equations

T'=-kN

N'=KT +k,B,
B,'=k,N+k,B,
B,'=-k,B,

where the vectors T, N, B, B, satisfy the equations:
(N,N)=(T,T)=-1,(B,,B,)=(B,,B,) =1

and the functions k =k (s), k, =k,(s) and k, =k,(s) are called the curvatures of the timelike
curve a(s) [4,13].

2. TIMELIKE HELICES IN THE SEMI-EUCLIDEAN SPACE R}
2.1. TIMELIKE HELICES

Theorem 1. Let a:1c R — R} be timelike curve parametrized by arclength function s. The
necessary and sufficient condition to be a timelike helix of the curve « is

6] i ol o

Proof: Let «:1 <R — R} be a timelike helix. In this case, the tangent vector T of the curve

o makes constant angle with a spacelike unit vector U. Thus, the equality
<T,U>:HTHHUHsinhezconstant (or <‘T’,U>:—H'ITHHU“coshH:const., for U is timelike)
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is written. If this equality is differentiated, the following equation is obtained using the Frenet
frame:

(N.)=0.

So, it is clear that N LU . The vector U is written as

U=uT+u,B, +u,B,.
Differentiating this equality, we get
0=y T+ (UK, (S)+Upk, (8))N +(us —uky (5)) B, +(u,k, (s)+us ) B,,
from here the following system is easily visible

u =0

—uk; () +uk,(s)=0
Uy —Uzks (5) =0

U,ks (s)+u; =0.

(2)

It is clear that u; =0 = u, =c = constant, and from the second equality of the system

@)

< (5) )

If the value u, found from the last equality of the system (2) is equalized with the
Eq.(3), then

kl(s)C:_ 1 du, @
ky(s)  ky(s) ds

Using this value of u, in the third equation of the system (2), we get

0 = 1 0 = c d(kl(s)] -

ky(s) ds | K, (s)

L dy,
ky(s) ds

. du d
Also, since —%=u.k.(s), —
ds ° 5(5) ds[

]+u3k3(s)=0. If the transformation

t='(|)'k3(s)ds is made, dt=Kk;(s)ds :kg(s):% is obtained. Substituting this equality in

i(%j+ﬂu3 =0.
ds\ dt ds

ISSN: 1844 — 9581 Mathematics Section
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Multiplying both sides of this equation by % , We get

d’u,

F"FU:; =0,

This equation is the second order, constant coefficient, linear, homogeneous
differential equation. The solution of this equation is calculated as

U, = g4 COSt+ g, 8int, g4, 1, R, (6)
and it is clear that

iy sl

0

Differentiating this equality, we get

% = — 44, SiN U K, (s)dsj Ky (S)+ 1, cosU K, (s)ds) ks (s) (7)
0 0
Substituting this equality in the equality (4), we get
u,=—C- (s) = ,ulsin(j K, (s)ds]—y2 cos[J' K, (s)ds). (8)
k, () 2 2

The solving equations (7) and (8) together, we get
__¢ a8 ] K(8) ginl |
W= () ds[kz(s)JCOSUk3(s)dsj+ckz(s) sm[!&(s)ds},

bt om) {0

0

2 2 2 2
Since “te ER gng "+ 1" €R ™+ 1" =constant np g o6 e get

on-o(80] & ot

% (5) “(5)| s kz(S)H = constant and

R ol (] e
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Let
k()Y 1 [d(kE)]
L +— —| =2 = constant . 9)
k,(s)) Kk °(s)| ds|k,(s)
Let's take a vector in the form
Go|-i-lB)g 1 dfk(S) g G, (10)
() " K(s) ds\ K, (s)
It is clear that <U,T> =sinh @ =—u, . Differentiating the equality (10), we get
du K, (s) 1 d(k(s))] |-
=\ — k - - B .
ds (kz(s) +(5) Ky (s) ds | k,(s) 2 (1)
Differentiating the equality (9), we get
1 i{kl(s)] :_k1(5)k3(5). (12)
(5) a5k, ) . (5)
So, dd—LSJ =0 and U =constant. Therefore, the curve « is a timelike helix curve. Thus,

the proof is completed.

Corollary 1. Let a:1cR— R} be a timelike curve with parameters $. In order for the

curve a(s) to be atimelike helix, the equation

k(s) d| 1 dfk(s)]|_
ks(s)mﬁ{kg(sﬁ(kz(s)ﬂ‘°'

must be satisfied.

Proof: Let «:1 <R — R} be atimelike curve. In that case, we get the equality

) o sl e

Differentiating this equality, we get

e e maled -

(13)

(14)
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where

Kk
i) for i( 1( )J 0, a isatimelike helix,

ds| k,(s)

i) for ( J {kts) :S{El((zgﬂzo this equality is multiplied with

) and the proof is completed

Theorem 2. Let o =a/(s):IcR —R; be aunit speed timelike curve. The curve a(s) isa
timelike helix if and only if there is a differentiable

sy fom o)

0

Proof: Let  =a(s):IcR —R} be aunit speed timelike helix. We get the equation

dt k,(s) d|d[k(s)
d—md—[d—{k—uﬂ“

by applying the variable change t _'[k s)ds in the equation (13). And thus, the 2nd order,

constant coefficient, linear, homogeneous differential equation depending on Elt)) IS
2
obtained as
2(k k
d_2 10 N 1(3):0_
dt* { k,(s) ) k,(s)
The solving this equation, we get
(s) _ cost+m,sint =m, cos jk (s)ds [+m,sin jfk (s)ds 15
G (s) TR S| Jlels)es ) 15)

m,,m, e R. Let's define the equality

k(s) | d [ ki(s)
-t
ds| ky(s)ds{ k,(s)
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over the equation (14). The solution (15) is used in the equality (16) to get

f(s) = msm(jk ds]—m cos{fk ]

Also, it is obvious from the equations (14) and (16) that
i)l il sl -

Let the equations

s 2 o

0

and f'(s)= kl(;) ;(S) be given. Let's define the function

[
N
~
w\
—~
w
S~

and thus

ISSN: 1844 — 9581 Mathematics Section
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2 2
Since ¢(s)=0 for these equalities, (El(S)J +k21 l:i{ki(s)ﬂ = constant.
3

Thus, the curve «(s) is a timelike helix.
2.2. TIMELIKE B, —SLANT HELIX

Theorem 3. Let =« (s):1cR —Rj; be a unit speed timelike curve. The curve «(s) isa
timelike B, —slant helix if and only if

Proof: Let a=a(s):IcR —R; be a timelike B, —slant helix. In this case, the second

binormal vector B, of the curve a makes a constant angle with a spacelike unit vector U . So
<Bj,U> = HBTHHUH cos @ = constant. (or <BT2 U> = HPTZHHUHSinh 6 = const., for U is timelike)

Differentiating this equality, we get

- (B.U)=0.

Thus, B, LU and

U=uT+u,N+u,B,

are written. Differentiating this equality, we get

T(uf +u,K, (5))+N(=uk, () +uj)+B, (uk, () —ugks (5))+B,us =0,
So we get the system

Uy +u,k, (s)=0,
—uk, (s)+u; =0,
u,k, (s)—Uuzk, (s) =0,
u; =0.

(17)

It is clear that u; =0 = u, =c=constant, and from the third equality of the system

(s)
(s)

(17)

>
w

u, = C.. (18)

=
N
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If the value u, found from the first equality of the system (17) is equalized with the
Eq.(18), then

=g (19)

Using this value of u, in the second equation of the system (17), we get

U, = 1 du, ¢ d ks (s)
Y k(s) ds kl(s)ds[kz(s)]' (20)

Using this value of u, in the first equation of the system (17), we get

df 1 du, 3
E(mEJ+u2kl(s)_O. (21)

If the transformation t:_[kl(s)ds is made, dt=k,(s)ds :kl(s)zg is obtained.
0

Substituting this equality in the equality (21), we get
i(%j + u2 ﬁ — 0 .
ds\ dt ds

Multiplying both sides of this equation by % , We get

d®u
?224‘”2 :O .

This equation is the second order, constant coefficient, linear, homogeneous
differential equation. The solution of this equation is calculated as

u, =@ cost+am,sint, o, m, R,
and it is clear that

o, cosUkl(s)dsJ+a)zsinﬁkl(s)ds} 22)

0 0

Differentiating this equality, we get

0, =—a)lsin[j;k1(s)dsJ+a)2 cos[jkl(s)dsj.

0
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Substituting this equality in the equality (20), we get

bl o)

0

u, =

The solving equations (22) and (23) together, we get

o= (] ki(s)dsj‘kfﬂ%[tigJ“”@ (51|
g 0% e oo

0

Since @, w, R, A’ +B*eR, for A=m, +w®,, B=wm —w,. And so we get

oo 3 ) e

2 2
[ks(s)J + 21 [i(k3(5) D = constant. (24)
(s)) K ()| sk (5)
Let's take a vector in the form
U=l L (k) 5, k()5 5o 25)
() ok, (5) ) K, (5)
It is clear that <U§;> = cos @ = constant . Differentiating the equality (25), we get

4 (kl i(k3<s)ﬂ+k3(s>kl<s) o560

ds (s)ds| k,(s)

Let

Differentiating the equality (11), we get,

{ 1 (i[k3(s)JHkl(s)k3(s)
o (5) 3L (5) o)

So, Z—U=6 and U =constant. Therefore, the timelike curve « is B, —slant helix.
S

Thus, the proof is completed.
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Corollary 2. Let a:1cR — R} be a timelike curve with parameters s. In order for the
curve «(s) to be atimelike B, —slant helix, the equation

ky(s) d| 1 dk(s)
Bl — =0 2
kl(S)kz(s)+ds{kl(s) ds(kz(s) (26)
Proof: Let o:1 <R — R} be atimelike B, —slant helix. In that case,

6] i sl -

Differentiating this equality, we get
selethaslaasbts e

k
i) for i ﬁ =0, « isatimelike B, —slant helix,
ds| k,(s)

iyfor [KG))1 d) 1 dK(S)V o e equality is multiplied with
k,(s)) k/(s)ds|k(s)ds|k,(s)
k, (s) and the proof is completed.

must be satisfied.

where

Theorem 4. Let a =a(s):IcR —Rj be aunit speed timelike curve. The curve «(s) isa
timelike B, —slant helix if and only if there is a differentiable

e e

0

Proof: Let a=a(s):IcR —R; be a unit speed timelike B, —slant helix. We get the

equation
dtk(s) . d[d(k(s))]_
d—md—h(k—uﬂ‘)
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by applying the variable change t_jk s)ds in the equation (26). And thus, the second

order, constant coefficient, linear, homogeneous differential equation depending on :f’gz; IS
2
obtained as
k3(5)+d_2 ks () -0
k,(s) dt*{ k,(s)
The solving this equation, we get
ks (s) i
=(,cost+/(,sint=/(, cos .[ki s)ds [+(,sin jk (s)ds |, (28)
k, (s) 0
0,0, e R. Let's define the equality
[ks(s)jd(ks(s)J
1 d[ks(s k,(s) )ds| Kk, (s
k(s)dslk(s)) df 1 d[k(s)
ds{ k (s)ds{k,(s)

over the equation (27). The solution (28) is used in the equality (29) to get

f(s)= ﬂsm[jk ds]—ﬁ cos[jk ]

Also, it is obvious from the equations (27) and (29) that

e sl eleimalet])

~f(s)

Let the equations

f(5):‘kfs)i[tigjz‘kfs) js{f o 1 - o ki(s)dsﬂ

and f'(s)= M be given. Let's define the function
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o9 ) S (|

and thus

Since ¢(s)=0 for these equalities, (128]:kfl(s){%(tzgz;ﬂz: constant.

Thus, the curve «(s) is a timelike B, —slant helix.

3. CONCLUSION

In this study, the integral characterizations are given for the timelike helices according

to the Frenet frame in R}. In addition, the timelike helix, the timelike B, —slant helix

concepts are examined in R} and the differential equations for vector positions are presented.
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