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Abstract. In this study, the Serret-Frenet frame and derivative formulas were obtained 

for all intermediate points of the rational Bezier curves with the algorithm method, and much 

more general results were computed from the previous studies. In addition, the center and 

radius of the osculator circle and sphere were calculated.  
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1. INTRODUCTION  
 

 

The founding father of the Bezier curves which are one of the computer-aided 

geometrical design elements, Paul de Faget de Casteljau was a French automotive engineer 

working in the Citroen Company in 1959. Within the same years, these curves were also 

studied by Pierre Bezier, a French automotive engineer who was researching the cutting of the 

cylinder segments in the Renault automobile company. Since P. Bezier, one of the two 

engineers working on the Bezier curves independently, published the first article, this curve 

has been known as the Bezier curve. Since Bezier curves numerically have the most stable 

form among the bases being used, they have been used widely in geometrical design, 

engineering fields, industry, automobile, designing of the airframe, animation applications, 

and in the technics of generating fonts. The Bezier curve comes into existence in the convex 

polygon which is composed of combining of the given control points. Initial and ending 

points intersect with the curve. In order to obtain numerical values in the intermediate points 

of the Bezier curves, in 1959, P.F. Casteljau developed an algorithm method given his name. 

This algorithm Bezier curve easily provides subdivision to two parametric curves in the 

arbitrary parametric position. On the other hand, the rational Bezier curves compose the 

weight functions and the ratio of the Bezier curves. Since it is possible to obtain the properties 

of the polynomial Bezier curves through the rational Bezier curves, it has much more 

advantages than others [1-4]. Until today, a lot of studies have been done on the rational 

Bezier curves. In this paper, we are going to give examples of some contemporary studies. 

Floater (1991) studied the derivatives of the Bezier curves by utilizing the algorithm method 

and then gave such geometric samples as curvature and torsion of these curves [5]. Similarly, 

Lin (2009) analyzed the derivative formulas of the rational Bezier curves at one vertice [6]. 

İncesu and et al. studied some geometric properties of the Bezier curves and the surfaces [7-

9]. Kuşak Samancı and et al. (2015), for the first time, computed the Serret-Frenet and Bishop 

frame of the initial and ending points of the Bezier curves in the Euclidean 3-space [10]. After 

that, Kuşak Samancı (2016) analyzed the Bezier and B-spline curves along with the properties 

of the textile fibers [11, 12]. The Bezier curves were analyzed in the Minkowski space for the 
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first time by Georgiev (2008) [13]. In addition to that, Kusak Samancı and et al. studied the 

Serret-Frenet frame and some geometric properties of the Bezier and the rational Bezier 

curves more elaborately [14-19]. Then Erkan et al (2018) gave the results of the Serret-Frenet 

frame and curves in the Euclidean 3-space and the plenary results of the polynomial Bezier 

curves by assigning 1 to the weights in the algorithm method found by Floater. After that, the 

authors also analyzed these curves at 4 dimensions [20-21]. Kılıçoğlu et al (2020) gave the 

matrix representation of the cubic Bezier curve. Ceylan et al. (2021) investigated some 

different geometric properties of the rational Bezier curves [23]. 

In this study, the Serret-Frenet frame and derivative formulas of the rational Bezier 

curves have been computed through the algorithm method given in [5], and the interpretations 

of their curvatures and torsion have been given as well. Thus, thanks to this method, we have 

made the calculations that are obtained according to the initial and ending points in other 

studies more generally. Therefore, we have managed to compute the Serret-Frenet frame and 

some geometric properties of the curve for some intermediate points. Moreover, thanks to this 

study, we have shown that it is easy to obtain all results found in the polynomial Bezier 

curves and the values of the initial and ending points in the literature. For instance, the results 

of the polynomial Bezier curve have been obtained easily by assigning 1 to the weights in the 

rational Bezier curves, and again, utilizing the obtained results, values of the initial and 

ending points have been obtained as well. Darboux vector of the Serret-Frenet frame of the 

rational Bezier curves has been obtained through the algorithm method. Also, the center of the 

osculating circle and sphere has been computed. Finally, a numerical example has been given. 
 

 

2. MATERIALS AND METHODS 
 

 

2.1. THE MAIN PROPERTIES OF THE CURVES IN THE EUCLIDEAN SPACE 
 

 

This section includes such basic definitions and theorems used in the differential 

geometry as the inner product of the Euclidean space in [24, 25], curves, Serret-Frenet frame, 

curvature, and torsion of the planar and space curves, Darboux vector, osculator circle, and 

sphere. 
 

Definition 2.1.1. Let be a real numbers field and V be a vector space. If the function

 , ,u v u v  indicates an inner product function in V for ,u v V   , :V V  , 

vector space V is called inner product space. 
 

Definition 2.1.2. Let the points  1 2, ,..., nx x x x ,  1 2, ,..., ny y y y  and  1 2, ,..., nz z z z

be taken from the n-dimensional Euclidean space. The function described as 
1

,
n

i i

i

x y x y


  

for any two vectors is called inner product or Euclidean inner product. Then, the product 

 2 3 2 3 3 1 3 1 1 2 1 2, ,x y x y y x x y y x x y y x     is called Euclidean cross-product and it satisfies 

the condition   , ,x y z z x y z y x    . 
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Definition 2.1.3. For any two vectors  1 2, ,..., nx x x x  and  1 2, ,..., ny y y y  taken from 

n-dimensional Euclidean space, the function described as 
1

,
n

i i

i

x x y x y


    is called the 

norm of the vector x . 
 

Definition 2.1.4. Let I  be an open interval of , a transformation which is in the form of 

: nI    from the set C
is called as a curve in the Euclidean n-space. Since 

( ) 1,t  the curve   is called a unit speed curve. 

 

Theorem 2.1.5. Assume that 
2 2: ,J   be a linear transformation defined by  

 

 1 2 2 1( , ) ( , )J u u u u  .  (2.1) 

 

 Geometrically J is a counterclockwise 
2


 angled rotation about the origin. J is 

called as the complex structure of 2 .
2 1J   . Since 

2,u v  the transformation J  has the 

characteristics of , , ,Ju Jv u v , 0Ju u   and , ,Ju Jv v Ju  . 

 

Theorem 2.1.6. Assume that 
2,u v , be two non-zero vectors in the Euclidean planar. For

0 2    , there is only one  number as 
 

 

,
cos

u v

u v
   and 

,
sin

u Jv

u v
   (2.2) 

 

where the angle  is called a directed angle from vector u  to vector .v  
 

Theorem 2.1.7. Let   2: ,a b  be a planar curve. The curvature of the curve  at the 

point ( )t  is defined as 

 

3

( ), ( )
( )

( )

t J t
t

t

 




 



 (2.3) 

 

where the positive function 
1

( )t



  is called the radius of curvature of the curve .  

 

Theorem 2.1.8. Let   2: ,a b  be a regular planar curve. The necessary and sufficient 

condition for the curve   is correct is ( ) 0t  . Also, the necessary and sufficient 

condition for the curve   to be a part of a radius 0r   circle is ( ) 1t r  . 

 

Theorem 2.1.9. Assume that the curve   2: ,a b  is a unit speed curve in the Euclidean 

planar. The Serret-Frenet frame is composed of the unit tangent and the normal vector field of 

the planar curve   is defined with the orthonormal vectors ( )T s  and ( ) ( ( ))N s J s . 
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Since ( ) ( ) ( )s s J s     the derivative formula of the Serret-Frenet frame of the curve   is 

computed as ( ) ( ) ( )T s s N s   and ( ) ( ) ( )N s s T s   . 

 

Theorem 2.1.10. The Serret-Frenet frame which is composed of the unit tangent and normal 

vector field of a non-unit speed curve   2: ,a b   in the Euclidean plane is given with 

 

( )

( )

t
T

t









 and 

( ( ))
( ) .

( ( ))

J t
N t

J t









 (2.4) 

 

Since ( )v t  the derivative formula of the Serret-Frenet frame of the curve   

is computed as . .T v N   and . . .N v T    
 

Definition 2.1.11. Let the curve 
3: I   be a unit speed curve. The tangent of the 

Serret-Frenet frame of the curve   is defined by ( )T s , and the principal normal and 

binormal of which is introduced by 
( )

( )

T s
N

T s





 and B T N  , respectively. If the 

curvature and the torsion of the curve   are ( )T s   and 2

,
,

  




  



 the 

derivative formulas of the Serret-Frenet frame are computed by the matrix 
 

 

0 0

0 .

0 0

T T

N N

B B



 



    
          
         

 (2.5) 

 

Definition 2.1.12. Assume that the curve 
3: I   is a non-unit speed curve. The 

tangent of the Serret-Frenet frame of the curve  is defined as 
( )

( )

t
T

t









 and the principal 

normal and binormal of which is defined as  ( ) ( ) ( )N t B t T t   and 

, respectively. The curvature of the curve   is defined with 

3

( ) ( )
( )

( )

t t
t

t

 




 



 and the torsion of which is defined with the equation 

2

( ), ( ) ( )

( ) ( )

t t t

t t

  


 

  


 
 . If the speed of the non-unit speed curve   is ( ) ,v t  then the 

derivative formulas of the Serret-Frenet frame are computed with the matrix  

 

0 0

0 .

0 0

T T

N v v N

B v B



 



    
          
         

 (2.6) 

 

( ) ( )
( )

( ) ( )

t t
B t

t t

 

 

 


 
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Theorem 2.1.13. Let 
3: I   be a curve in the Euclidean 3-space. If 0  , the curve 

  is a straight line, if 0  , the curve   is a planar curve, if . 0const    and 0  , the 

curve   is a circle segment, and finally if .const   , the curve  is a helix. 

 

Theorem 2.1.14. The angular velocity vector which meets the condition ( ) ( ),T t D T t  

( ) ( )N t D N t    and ( ) ( )B t D B t    along with the Serret-Frenet frame  ( ), ( ), ( )T s N s B s  of a 

unit speed space curve 
3: I    is called as Darboux vector and is described with the 

equation ( ) ( )D T s B s   . 

 

Theorem 2.1.15. If ( )v t , the Darboux vector of the Serret-Frenet frame

 ( ), ( ), ( )T t N t B t of a non-unit speed curve 
3: I    is defined by 

( ) ( )D v T s v B s   . 

 

Definition 2.1.16. (Osculator circle) The circle which has at least in second-order contact 

with the curve at a point ( )s  of the curve   in the Euclidean 3-space is called an osculator 

circle at the point ( )s  of the curve  . Assume that   is a non-unit speed curve. If ( )t is 

the curvature function of the curve and ( )N t is a normal vector field of the curve, the center 

( )m t and the radius  of the osculator circle at the point ( )t  is computed with 

 

 0 0 0 0( ) ( ) ( ) ( )m t t t N t    and 0( ) 1 .t   (2.7) 

 

The equation of the osculator circle is given with 
 

 
0 0 0 0 0

0 0

( ) ( ) 1 cos ( ) ( ) ( )sin ( ).
( ) ( )

t t N t t T t
t t

 
    

 

 
    

 
 (2.8)  

 

Definition 2.1.17. (Osculator sphere) The which has at least in third-order contact at a point 

( )s  of the curve   in the Euclidean 3-space is called an osculator sphere at the point ( )s  

of the curve  . Assume that   is a non-unit speed curve. The curvature and the torsion 

function of the curve are ( )t and ( )t , and ( )v t  is the speed of it, respectively. 

When ( )N t and ( )B t are the normal and the binormal vector field of the curve and 

0( ) 1t  ve 0( ) 1t  , the center ( )M t and the radius  of the osculator sphere at 

the point ( )t are computed with 

 

 
0 0 0 0 0 0 0

0

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
M t t t N t t t B t

v t
       , (2.9) 

 

 

2
2

1 1 1
( ) .t

v  

          
    
 

 (2.10) 
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2.2. THE POLYNOMIAL BEZIER CURVES IN THE EUCLIDEAN SPACE 
 

 

In this section, the main definitions and theorems of the polynomial Bezier and the 

rational Bezier curves are included in the references [1-4]. 
 

Definition 2.2.1. Let 
3

0 1, ,..., nP P P   be the control points. A polynomial Bezier with n-th 

degree curve is defined by ,

0

( ) ( )
n

i n i

i

P t B t P


  where  , ( ) 1
n ii

i n

n
B t t t

i

 
  
 

 are Bernstein 

polynomials for [0,1]t . If the degree of polynomial Bezier curve is 1n  , then the 

polynomial Bezier is called a linear Bezier curve and denoted by   0 1( ) 1P t t P tP   . If the 

degree is 2n  , then the polynomial Bezier is called a quadratic Bezier curve and denoted by  
 

   
2 2

1 2( ) 1 2 1 .P t t P t tP t      

 

If the degree is 3n  , then the polynomial Bezier is called a cubic Bezier curve and 

denoted by 

     
3 2 2 3

0 1 2 3( ) 1 3 1 3 1P t t P t tP t t P t P       . 

 

Theorem 2.2.2. Assume that 
3

0 1, ,..., nP P P   are the control points in Euclidean 3-space. 

The r-th order derivative of the n-th degree Bezier curve is 
 

 
( )

,

0

!
( ) ( )

!

n r
r r

i n r i

i

n
P t B t P

n r







 


  

 

where 
1

1

0

( 1)
r

r r

i j

i

r
P P

j







 
   

 
  is the difference equation and the condition

1 1

1

r r r

j j jP P P 

     is satisfied. Especially, the first, second, and third-order derivatives of 

the polynomial Bezier curve are 
1

, 1

0

( ) ( ) ,
n

i n i

i

P t n B t P






    
2

2

, 2

0

( ) 1 ( ) ,
n

i n i

i

P t n n B t P






   

  
3

3

, 3

0

( ) 1 2 ( ) ,
n

i n i

i

P t n n n B t P






      respectively. 

 

Corollary 2.2.3. Let 
3

0 1, ,..., nP P P   be the control points in Euclidean 3-space. Since Bezier 

curves are examined with their values at the starting and ending points, the geometric values 

they have at these points are very important. The r-th order derivative of the n-th degree 

Bezier curve for the starting point 0t   and ending point 1t   are obtained 

 
( )

00

!
( ) ,

!

r r

t

n
P t P

n r
 

  
( )

1

!
( )

!

r r

n rt

n
P t P

n r


 


, respectively. In that case, the first, 

second, and third-order derivatives of the polynomial Bezier curve for the starting point 0t   

are 00
( ) . ,

t
P t n P


     2

00
( ) 1 ,

t
P t n n P


     and    3

00
( ) 1 2 .

t
P t n n n P


      Also the 

first, second, and third-order derivative of the polynomial Bezier curve for the ending point 

1t   are 11
( ) . ,nt

P t n P 
     2

11
( ) 1 ,nt

P t n n P 
     and    3

11
( ) 1 2 .nt

P t n n n P 
       
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2.3. THE RATIONAL BEZIER CURVES THROUGH ALGORITHM METHOD IN THE 

EUCLIDEAN 3-SPACE  
 

 

In this section, the derivatives of the Bezier curves have been explained by the 

algorithm method given in the reference [1] and by the algorithm method of the rational 

Bezier curve. 
 

Definition 2.3.1. Given the control points 
3

0 1, ,..., nP P P   in Euclidean 3-space and the 

associated nonnegative weights 0 1, ,..., n    , a rational Bezier curve ( )P t  of the n-th 

degree is defined by  

 

,

0

,

0

( )

( )

( )

n

i n i i

i

n

i n i

i

B t P

P t

B t













 (2.11) 

 

where the coefficients 0, 1, ,, ,...,n n n nB B B  are the Bernstein polynomials. Note that if all weights 

are equal to 1, a rational Bezier curve reduces to a polynomial Bezier curve. Moreover, the 

rational Bezier curves express all conic sections. Two-degree rational Bezier curves named 

quadratic rational Bezier curves are conics. Since the weights are satisfied the conditions
2

1 0 2 0,     
2

1 0 2 0    , 
2

1 0 2 0    , then the quadratic rational Bezier curve 

corresponds to an ellipse, a parabola, and a hyperbola, respectively. 
 

Definition 2.3.2. (de Casteljau Algorithm) The de Casteljau algorithm was developed by 

Casteljau to calculate the value 0( )P t  of a rational Bezier curve at its point 0 [0,1]t  . A cubic 

Bezier curve with control points 0 1,P P  and 3P  for a specified parameter value [0,1]t , the 

Casteljau algorithm is expressed by  
 

0,0 1,0 2,0 3,0

0,1 1,1 2,1

0,2 1,2

0,3

P P P P

P P P

P P

P

 

 

the recursive formula ,0 ,i iP P , , 1 1, 1(1 )i j i j i jP t P tP      for [0,1]t , 1,2,3j   and 0,...,3 .i j   

For the cubic Bezier curve, the Casteljau algorithm generates a triangular set of values as  
 

 
Figure 1. de Casteljau Theorem [1-6]. 
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Farin (1983) gave a new recursive algorithm for calculating ( )P t , analogous to the de 

Casteljau algorithm in the following definition:  
 

Definition 2.3.3. Assume that 
3

0 1, ,..., nP P P  are the control points and 0 1, ,..., n     are 

the associated nonnegative weights. If the intermediate weights , ( )i k t  are introduced as 

 

 
, ,

0

( ) ( ) ,
k

i k j k i j

j

t B t  



  (2.12) 

the algorithm gives the equation 

 
 , , 1 1, 11 .i k i k i kt t        (2.13) 

 

Then, the intermediate points , ( )i kP t  are 

 

 

,

0

,

,

0

( )

( )

( )

k

j k i j i j

j

i k k

j k i j

j

B t P

P t

B t





 












 (2.14) 

 

where ,0 ( )i iP t P  and 0, ( ) ( )nP t P t . Consequently, Farin found a different recursive algorithm 

for computing , ( )i kP t  as 

 
 , , , 1 , 1 1, 1 1, 11 .i k i k i k i k i k i kP t P t P           (2.15)       

 

Theorem 2.3.4. Let 
3

,i kP   be the control points and ,i k   be the associated 

nonnegative weights. Using the algorithm method, the first derivative of a rational Bezier 

curve ( )P t  of the n-th degree is computed by 

 

  
0, 1 1, 1

0, 12

0,

( )
n n

n

n

P t n P
 



 


    (2.16) 

 

where the difference between the intermediate points is denoted by , 1, ,i j i j i jP P P   . 

Furthermore, since the weights ,i k   are nonnegative, the norm of the first derivative of the 

curve ( )P t  is obtained 

 

0, 1 1, 1

0, 12

0,

.
n n

n

n

P n P
 



 


    (2.17) 

 

Theorem 2.3.5. Assume that 
3

,i kP   be the control points and ,i k   be the associated 

nonnegative weights. By the algorithm method, the second derivative of a rational Bezier 

curve ( )P t  of the n-th degree is computed by 

 

 

 2, 2 1, 1 1 1, 2 0, 2 2 0, 23

0,

. . . .n n n n n

n

n
P P n P    


    

      (2.18) 
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where 
2

1 0, 1 0, 2 0, 0, 1 0,2 ( 1) 2n n n n nn n            and 
2

2 1, 1 2, 2 0, 1, 1 0,2 ( 1) 2 .n n n n nn n             

Theorem 2.3.6.  Let
3

,i kP   be the control points and ,i k   be the associated positive 

weights. By using the algorithm method the third derivative of a rational Bezier curve ( )P t  of 

the n-th degree is  
 

                                  1 0, 3 2 1, 3 3 2, 3. . .n n nP P P P    
        (2.19) 

 

 where i for 1,2,3i  are the coefficients included the weights ,i k . 

 

Corollary 2.3.7. Using the Equations (2.16) and (2.18), the vectorial product of P  and P is 

obtained 

 

   0, 2 1, 2 2, 22

0, 2 1, 23

0,

1
n n n

n n

n

P P n n P P
  



  

 
       (2.20) 

and  

  0, 2 1, 2 2, 22

0, 2 1, 23

0,

1 .
n n n

n n

n

P P n n P P
  



  

 
       

 

Corollary 2.3.8. Using the Equations (2.16), (2.18), and (2.19)  the triple product of P , P  

and P is calculated 
 

 

   
2 0, 3 1, 3 2, 3 3, 33

0, 3 1, 3 2, 34

0,

, 1 2 ,
n n n n

n n n

n

P P P n n n P P P
   



   

  
          (2.21) 

 

Theorem 2.3.9.  Let 
3

,i kP  be the control points of the non-unit speed rational Bezier curve 

and associated positive weights be ,i k  . The curvature of the rational Bezier curve which 

is at any point of it is computed by the algorithm method as 
 

 

  3
0, 2 1, 20, 0, 2 1, 2 2, 2

33 3

0, 1 1, 1 0, 1

( ) ( )1
( )

( )

n nn n n n

n n n

P t P tn
t

n P t

   


 

   

  

 



  (2.22) 

 

 

  2
0, 3 1, 3 2, 30, 0, 3 1, 3 2, 3 3, 3

22 2 2

0, 2 1, 2 2, 2 0, 2 1, 2

( ) ( ), ( )2
( )

( ) ( )

n n nn n n n n

n n n n n

P t P t P tn
t

n P t P t

    


  

     

    

  


 
 (2.23) 

 

Proof: When the curvature and torsion of the non-unit speed curves are applied for the 

rational Bezier curve, the result becomes 
3

( ) ( )
( )

( )

P t P t
t

P t


 



 and 

2

( ) ( ), ( )
( )

( ) ( )

P t P t P t
t

P t P t


  


 
 . If the equations (2.20) and (2.21) are substituted in these 

curvature and torsion formulas, the curvature and torsion equations become computed. 
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3. RESULTS AND DISCUSSION 
 

 

3.1. SERRET-FRENET FRAME OF THE PLANAR RATIONAL BEZIER CURVES BY THE 

ALGORITHM METHOD 
 

 

Theorem 3.1.1. Let 
3

0 1, ,..., nP P P  be the control points and ,i k   be the positive 

weights. The Serret-Frenet frame of the non-unit speed planar rational Bezier curve ( )P t for 

the interval 0 1t   by algorithm method is computed by  

 

0, 1

0, 1

( )
( )

( )

n

n

P t
T t

P t









   and 

   0, 1 0, 10, 1

0, 1 0, 1

,
( )

y x

n nn

n n

P PJ P
N t

P P

 

 

 
 

 
 

 

where T  and N are called by a tangent and a principal normal vector. 
 

Proof: Since the equations (2.16) and (2.17) are substituted in the equation 
( )

( )
( )

P t
T t

P t






which is the tangent vector field of the formulas of the Serret-Frenet frame for the planar 

curves in the equation (2.4) described in the theorem (2.1.9) and then by making some 

abbreviations, the tangent of the non-unit speed planar rational Bezier curve is found as 

0, 1

0, 1

( )
( )

( )

n

n

P t
T t

P t









. When the definition of the complex structure in Definition 2.5 is applied to 

the rational Bezier curve, the equation  0, 1 1, 1

0, 12

0,

( )
n n

n

n

JP t n J P
 



 


    is obtained. Assume 

that    0, 1 0, 1 0, 1,y x

n n nJ P P P      , and when it is substituted in the principal normal vector 

( )
( )

( )

JP t
N t

P t





 given in the equation (2.4), the result 

   0, 1 0, 10, 1

0, 1 0, 1

,
( )

y x

n nn

n n

P PJ P
N t

P P

 

 

 
 

 
 

is obtained. 
 

Theorem 3.1.2. Let 
3

0 1, ,..., nP P P  be the control points and ,i k   positive 

weights. The complex structure and the inner product of the first and the second derivative of 

the planar rational Bezier curve ( )P t  for the interval 0 1t   are computed as  

 

0, 2 1, 2 2, 22

1, 2 0, 23

0,

( ), ( ) ( 1) ,
n n n

n n

n

P t JP t n n P J P
  



  

 
       

 

Proof: Since the denotation ( )P t  and ( )P t  are substituted in the inner product with the 

help of the equations (2.16) and (2.18), then the inner product is calculated by 
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   

   

2, 2 1, 1 0, 22 2

0, 1 0, 2, 2 1, 1 0, 1, 2 0, 25

0,

2

0, 2 1, 12 2

1, 1 0, 2, 2 1, 1 0, 0, 2 0, 25

0,

2

2, 2 0, 12 2

0, 15

0,

( ), ( ) 2 1 2 1 ,

2 1 2 1 ,

2

n n n

n n n n n n n

n

n n

n n n n n n n

n

n n

n

n

P t JP t n n n t P J P

n n n t P J P

n n n

  
    



 
    



 




  

    

 

    

 



        

      

    

  

0, 2 0, 0, 1 0, 1, 2 1, 2

0, 2 0, 1 2, 22 2

0, 1 0, 2 0, 0, 1 0, 0, 2 1, 25

0,

1 2 ,

2 1 2 , .

n n n n n n

n n n

n n n n n n n

n

t P J P

n n n t P J P

   

  
    



   

  

    

   

     

 
 

When it is admitted to the shared bracket by using the inner product in this equation  
 

0, 2 0, 2, 0,n nP J P     
1, 2 1, 2, 0n nP J P     ve 

0, 2 1, 2 0, 2 1, 2, ,n n n nP J P J P P         , 

 

the result 
 

  

    

  

0, 1 1, 1 0, 1 1, 1

0, 2 2, 22

0, 0, 2 1, 1 2, 2 0, 1 1, 2 0, 25

0,

0, 1 0, 1, 1

2 1

1 1 ,

2 1 2

n n n n

n n

n n n n n n n

n

n n n

n t t

n n t t P J P

t t

   
 

    


  

   

 

     

 

  
 
      
 

    

 

 

is obtained. After using the algorithm method  , , 1 1, 11i k i k i kt t       in the equation 

(2.13) and making some editing the equation  
 

      0, 2 2, 22

0, 1 1, 1 0, 0, 0, 2 1, 1 2, 2 0, 1 1, 2 0, 25

0,

2 1 1 1 ,
n n

n n n n n n n n n n

n

n n n t t P J P
 

       


 

       
        

 
 

is obtained. Since it is admitted to the bracket   0,1 nn  , the equation 

 

      0, 2 2, 22

1, 1 0, 1 0, 2 0, 1 1, 1 2, 1 1, 2 0, 24

0,

1 1 ,
n n

n n n n n n n n

n

n n t t P J P
 

     


 

       
          

 

is founded. Then, when the algorithm method is used again, the result becomes 
 

    0, 2 2, 22

1, 2 1, 1 0, 1 1, 2 0, 24

0,

1 1 , .
n n

n n n n n

n

n n t t P J P
 

  


 

    
        

 

By the renewing of the algorithm method, the result 
 

  0, 2 1, 2 2, 22

1, 2 0, 23

0,

( ), ( ) 1 ,
n n n

n n

n

P t JP t n n P J P
  



  

 
       

 

is computed.  
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Theorem 3.1.3. Let 
3

0 1, ,..., nP P P  be the control points and ,i k  be the positive 

weights. The curvature of the planar rational Bezier curve ( )P t  for the interval 0 1t   by 

algorithm method is  
 

3
1, 2 0, 20, 0, 2 1, 2 2, 2

33 3

0, 1 1, 1 0, 1

,( 1)
( )

n nn n n n

n n n

P J Pn
t

n P

   


 

   

  

 



 

 

or when it is written in a more explanatory way, it is computed as 
 

3

0, 0, 2 1, 2 2, 2 0, 2 1, 2 1, 2 0, 2

33 3

0, 1 1, 1 0, 1

( 1)
( )

x y x y

n n n n n n n n

n n n

P P P Pn
t

n P

   


 

      

  

   



. 

 

Proof: If the inner product ( ), ( )P t JP t  and the norm ( )P t which are found in the 

Theorem (3.1.2) and (2.17) are substituted in the equation (2.3) which is the curvature 

formula of the planar curves in the Euclidean space, the curvature of the planar rational Bezier 

curve becomes  
 

0, 2 1, 2 2, 22

1, 2 0, 23

0,

3 3
30, 1 1, 13

0, 16

0,

( 1) ,

( )

n n n

n n

n

n n

n

n

n n P J P

t

n P

  




 



  

 

 



  





. 

 

Since the inner product is arranged by utilizing the definition of the complex structure 

in (2.1), it is computed as 
 

3

0, 0, 2 1, 2 2, 2 0, 2 1, 2 1, 2 0, 2

33 3

0, 1 1, 1 0, 1

( 1)
( )

x y x y

n n n n n n n n

n n n

P P P Pn
t

n P

   


 

      

  

   



. 

 

Theorem 3.1.4 Assume that 
3

0 1, ,..., nP P P  are control points and ,i k  are weights. 

The derivative formulas of the Serret-Frenet frame of the planar rational Bezier curve ( )P t

for the interval 0 1t  are computed as  
 

1, 2 0, 20, 0, 2 1, 2 2, 2

22 2

0, 1 1, 1 0, 1

,
( 1)

n nn n n n

n n n

P J P
T n N

P

   

 

   

  

 
  


 

 

1, 2 0, 20, 0, 2 1, 2 2, 2

22 2

0, 1 1, 1 0, 1

,
( 1)

n nn n n n

n n n

P J P
N n T

P

   

 

   

  

 
   


 

 

by the algorithm method. 
 

Proof: Since the speed of the curve 
0, 1 1, 1

0, 12

0,

( )
n n

n

n

v P t n P
 



 


    and the curvature 

equations ( )t in Theorem (2.1.12) are substituted in the derivative formulas of the Serret-



The Serret-Frenet frame of … Hatice Kuşak Samanci 

ISSN: 1844 – 9581 Mathematics Section 

733 

Frenet frame for the non-unit speed planar curves in the Theorem (2.3.9), the proof of the 

theorem is obtained. 
 

Corollary 3.1.5. Assume that 
3

0 1, ,..., nP P P  are the control points and ,i k   are the 

weights. 0

0
0

( )
t

P
T t

P





is the tangent at the initial point 0t   of the non-unit speed planar 

rational Bezier curve ( )P t , 
 

 
0

0

0

( )
t

J P
N t

J P





 is the principal normal vector field and 

 

1 00 2

20
1 0

,1
( )

t

P J Pn
t

n P

 




 



 

is the curvature of it. 

The derivative formulas of the Serret-Frenet frame are obtained as 
 

1, 2 0, 22

20 0
1 0, 1

,
( ) ( 1)

n n

t t

n

P J P
T t n N

P





 

 



 
  


 

 

1, 2 0, 22

20 0
1 0, 1

,
( ) ( 1)

n n

t t

n

P J P
N t n T

P





 

 



 
   


 

 

Corollary 3.1.6. Let 
3

0 1, ,..., nP P P  be the control points and ,i k  be the weights. 

The tangent at the ending point 1t   of the non-unit speed planar rational Bezier curve ( )P t

is 
1

1
1

( ) n

t
n

P
T t

P










, the principal normal vector field is

 

 
1

1

1

( )
n

t

n

J P
N t

J P











 and the curvature 

of it is 

2 11 3

321
1 1

,1
( )

n nn n

t
n n

P J Pn
t

n P

 




  


 

 



. 

 

Therefore, the derivative formulas of the Serret-Frenet frame are obtained as 
 

1, 2 0, 23

21 1
2 0, 1

,
( ) ( 1)

n nn

t t
n n

P J P
T t n N

P





 

 
 

 
  


 

 

1, 2 0, 23

21 1
2 0, 1

,
( ) ( 1) .

n nn

t t
n n

P J P
N t n T

P





 

 
 

 
   


 

 

Corollary 3.1.7. Let 
3

0 1, ,..., nP P P  be the control points and ,i k   be the positive 

weights. Since the open writing of the non-unit speed planar rational Bezier curve ( )P t , 

which is found by algorithm method for the interval 0 1t  , is made by the Bernstein 

polynomial, the tangent vector field of the Serret-Frenet frame is 
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1

, 1

0

1

, 1 , 1

0

( ) ( )

( ) ,

( ) ( ) ( ), ( )

n

i n i

i

n

i n j n i j

i

B t P t

T t

B t B t P t P t









 







 





 

 

the principal normal vector field is 
 

 
1

, 1

0

1

, 1 , 1

, 0

( ) ( )

( ) ,

( ) ( ) ,

n

i n i

i

n

i n j n i j

i j

B t J P t

N t

B t B t P P









 







 





 

 

and the curvature is  
 
2 1

2

, 2 , 13

0 00, 0, 2 1, 2 2, 2

3 3 3
10, 1 1, 1

, 1 , 1

, 0

( ) ( ) ,
1

( ) .

( ) ( ) ,

n n

i n j n i j

i jn n n n

nn n

i n j n i j

i j

B t B t P J P
n

t
n

B t B t P P

   


 

 

 

   

 

 



 




 
  

 





 

 

The derivative formulas of the Serret-Frenet frame are computed as 
 

2 1
2

, 2 , 1

0 00, 0, 2 1, 2 2, 2

12 2

0, 1 1, 1
, 1 , 1

0

( ) ( ) ,

( 1)

( ) ( ) ,

n n

i n j n i j

i jn n n n

n

n n
i n j n i j

j

B t B t P J P

T n N

B t B t P P

   

 

 

 

   



 
 



 

  

 




 

 
2 1

2

, 2 , 1

0 00, 0, 2 1, 2 2, 2

12 2

0, 1 1, 1
, 1 , 1

0

( ) ( ) ,

( 1)

( ) ( ) ,

n n

i n j n i j

i jn n n n

n

n n
i n j n i j

j

B t B t P J P

N n T

B t B t P P

   

 

 

 

   



 
 



 

   

 




 

 

Corollary 3.1.8. If the weights are taken as , 1i k   in the non-unit speed planar rational 

Bezier curve ( )P t which is composed of the control points
3

0 1, ,..., nP P P  and positive 

weights ,i k  , the planar polynomial Bezier curve occurs. Thus, the tangent of the Serret-

Frenet frame of the planar polynomial Bezier curve is 0, 1

0, 1

( )
( )

( )

n

n

P t
T t

P t









, the principal normal 

is 
   0, 1 0, 10, 1

0, 1 0, 1

,
( )

y x

n nn

n n

P PJ P
N t

P P

 

 

 
 

 
 and the curvature of it becomes 

 

1, 2 0, 2

3

0, 1

,( 1)
( )

n n

n

P J Pn
t

n P


 



 



 . 
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The derivative formulas of the Serret-Frenet frame are found as 
 

1, 2 0, 2

2

0, 1

,
( 1)

n n

n

P J P
T n N

P

 



 
  


 and 

1, 2 0, 2

2

0, 1

,
( 1) .

n n

n

P J P
N n T

P

 



 
   


 

 

Corollary 3.1.9. Considering the Serret-Frenet frame of the non-unit speed planar rational 

Bezier curve ( )P t which is composed of the control points
3

0 1, ,..., nP P P  and positive 

weights ,i k   at the initial point 0t  . The tangent and principal normal vector field are 

computed by 
0

0
0

( )
t

P
T t

P





 and 

 

 
0

0

0

( )
t

J P
N t

J P





, then the curvature is 

1 0

0
0

,1
( )

t

P J Pn
t

n P




 



, and also the derivative formulas of the Serret-Frenet frame are 

obtained as  

1, 2 0, 2

20 0

0, 1

,
( ) ( 1)

n n

t t

n

P J P
T t n N

P

 

 



 
  


 

and  

1, 2 0, 2

20 0

0, 1

,
( ) ( 1)

n n

t t

n

P J P
N t n T

P

 

 



 
   


 

 

by taking the weights , 1i k  . 

 

Corollary 3.1.10. The tangent at the ending point 0t   of the Serret-Frenet frame of the non-

unit speed planar rational Bezier curve ( )P t which is composed of the control points

3

0 1, ,..., nP P P  and the positive weights ,i k   by taking , 1i k   is 
1

1
1

( ) ,n

t
n

P
T t

P










 

the principal normal vector field is 
 

 
1

1

1

( ) ,
n

t

n

J P
N t

J P











 the curvature is 

2 1

31

1

,1
( )

n n

t

n

P J Pn
t

n P
  





 



. The derivative formulas of the Serret-Frenet frame are obtained 

as 

1, 2 0, 2

21 1

0, 1

,
( ) ( 1)

n n

t t

n

P J P
T t n N

P

 

 



 
  


 and 

1, 2 0, 2

21 1

0, 1

,
( ) ( 1)

n n

t t

n

P J P
N t n T

P

 

 



 
   


. 

 

Corollary 3.1.11. Since the curve is taken as 2n  , the results are obtained similar with the 

quadric Bezier curve    
2 2

0 1 2( ) 1 2 1P t t P t tP t P     , also since it is taken as 3n   the 

results are found similar with the cubic Bezier curve 

     
3 2 2 3

0 1 2 3( ) 1 3 1 3 1P t t P t tP t t P t P        . 

3.2. THE SERRET-FRENET FRAME OF THE RATIONAL BEZIER CURVES IN THE 

EUCLIDEAN 3-SPACE BY THE ALGORITHM METHOD 
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Theorem 3.2.1. Let 
3

0 1, ,..., nP P P  be the control points and ,i k   be the weights. Also, 

assume that the speed of the rational Bezier curve ( )P t for the interval 0 1t   is 

0, 1 1, 1

0, 12

0,

( ) ( )
n n

n

n

v P t n P t
 



 


    and the length of the arc parameter is

1

0

0, 1 1, 1

0, 12

0,

( )
t

n n

n
t

n

s n P t dt
 



 

  . The tangent, principal normal, and the binormal vector field 

of the Serret-Frenet frame of the rational Bezier curve ( )P t for the interval 0 1t   through 

the algorithm method is computed as 
 

                                  

0, 1

0, 1

( )
( )

( )

n

n

P t
T t

P t









, 

 

 0, 2 1, 2 0, 1

0, 1 0, 2 1, 2

0, 2 1, 2

0, 1 1, 2 0, 1 0, 2

1, 2 1, 2

0, 2 0, 21, 2 0, 2

( ) ( ) ( )
( )

( ) ( ) ( )

cos ( ) ( ) cos ( ) ( )

sin ( ) sin ( )( ) ( )

n n n

n n n

n n

n n n n

n n

n nn n

P t P t P t
N t

P t P t P t

t P t t P t

t tP t P t

 

 

  

  

 

   

 

  

  


  

 
 

 
 

 

                                

0, 2 1, 2

0, 2 1, 2

( ) ( )
( )

( ) ( )

n n

n n

P t P t
B t

P t P t

 

 

 


 
 

 

where the angle  ,

, , ,,j m

i k i k j mP P     is an angle between the vectors ,i kP  and ,j mP  . 

 

Proof: Since 0, 0, 1 1, 1, ,n n n   

    are the positive weights, if the values ( )P t  and ( )P t  in 

the equations (2.16) and (2.17) are substituted in the tangent formula 
( )

( )
( )

P t
T t

P t





 of the 

Serret-Frenet frame of the non-unit speed rational Bezier curve and the abbreviations are 

made 

 

 

0, 1 1, 1

1, 1 0, 12

0, 0, 1

0, 10, 1 1, 1

1, 1 0, 12

0,

( ) ( )
( )

( )
( )

( ) ( )

n n

n n

n n

nn n

n n

n

n P t P t
P t

T t
P t

n P t P t

 



 



 

 



 

 




 




 

 

is obtained. Since the binormal vector field of the rational Bezier curve is substituted for the 

equations Corollary 2.3.7 in the binormal vector field formula in Definition (2.1.12), it is 

found as 
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 

 

0, 2 1, 2 2, 22

0, 2 1, 23

0, 2

0, 2 1, 2 2, 22

0, 2 1, 23

0, 2

0, 2 1, 2

0, 2 1, 2

( ) ( )
( )

( ) ( )

1 ( ) ( )

1 ( ) ( )

( ) ( )
.

( ) ( )

n n n

n n

n

n n n

n n

n

n n

n n

P t P t
B t

P t P t

n n P t P t

n n P t P t

P t P t

P t P t

  



  



  

 



  

 



 

 

 


 

  



  

 


 

 

The normal vector field is computed by vectorial product ( ) ( ) ( )N t B t T t   as 

 

 

0, 2 1, 2 0, 1

0, 2 1, 2 0, 1

0, 2 1, 2 0, 1

0, 1 0, 2 1, 2

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n n n

n n n

n n n

n n n

P t P t P t
N t

P t P t P t

P t P t P t

P t P t P t

  

  

  

  

  
 

  

  


  

 

 

where the angle between the vectors ,i kP  and ,j mP  is  ,

, , ,,j m

i k i k j mP P    . When the 

vector products are arranged in the principal normal vector of the rational Bezier curve, they 

can also be shown as 
 

0, 1 0, 2 1, 2 0, 1 1, 2 0, 2

1, 2

0, 1 0, 2 1, 2 0, 2

0, 2 1, 2

0, 1 1, 2 0, 1

1, 2 1, 2

0, 2 0, 21, 2

( ), ( ) ( ) ( ), ( ) ( )
( )

( ) ( ) ( ) sin

cos ( ) ( ) cos ( )

sin ( ) sin (( )

n n n n n n

n

n n n n

n n

n n n

n n

n nn

P t P t P t P t P t P t
N t

P t P t P t

t P t t

t P t



 

 

     



   

 

  

 

 

      


  


 



0, 2

0, 2

( )
.

) ( )

n

n

P t

t P t









 

 

Theorem 3.2.2. Assume that 
3

0 1, ,..., nP P P  are the control points and ,i k   are the 

weights. The tangent formula of the Serret-Frenet frame of the rational Bezier curve ( )P t  for 

the interval 0 1t  through the algorithm method is 
 

 
0, 2 1, 20, 0, 2 1, 2 2, 2

22 2

0, 1 1, 1 0, 1

( ) ( )
( ) 1

( )

n nn n n n

n n n

P t P t
T t n N

P t

   

 

   

  

 
  


 

 

 

 

0, 2 1, 20, 0, 2 1, 2 2, 2

22 2

0, 1 1, 1 0, 1

0, 3 1, 3 2, 3 0, 10, 1 0, 3 1, 1 1, 3 2, 3 3, 3

2

0, 0, 2 1, 2

( ) ( )
( ) 1 ( )

( )

( ) ( ), ( ) ( )
2 ( )

( ) ( )

n nn n n n

n n n

n n n nn n n n n n

n n n

P t P t
N t n T t

P t

P t P t P t P t
n B t

P t P t

   

 

     



   

  

        

 

 
   



   
 

 

 

 

 
0, 3 1, 3 2, 3 0, 10, 3 1, 3 2, 3 3, 3 0, 1 1, 1

22 2 2

0, 2 1, 2 2, 2 0, 2 1, 2

( ) ( ), ( ) ( )
( ) 2 ( ).

( ) ( )

n n n nn n n n n n

n n n n n

P t P t P t P t
B t n N t

P t P t

     

  

        

    

   
   

 
 

 

Proof: Since the speed of the non-unit speed rational Bezier curve in the Euclidean 3-space is  
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0, 1 1, 1

0, 12

0,

( ) ( )
n n

n

n

v P t n P t
 



 


   , the tangent formulas of the Serret-Frenet frame of the 

rational Bezier curve is obtained as  
 

 
0, 2 1, 20, 0, 2 1, 2 2, 2

22 2

0, 1 1, 1 0, 1

( ) ( )
( ) ( ) ( ) 1 ,

( )

n nn n n n

n n n

P t P t
T t v t N t n N

P t

   


 

   

  

 
   


 

 

 

 

0, 2 1, 20, 0, 2 1, 2 2, 2

22 2

0, 1 1, 1 0, 1

0, 3 1, 3 2, 3 0, 10, 1 0, 3 1, 1 1, 3 2, 3 3, 3

0, 0, 2 1

( ) ( ) ( ) ( ) ( )

( ) ( )
1

( )

( ) ( ), ( ) ( )
2

( )

n nn n n n

n n n

n n n nn n n n n n

n n

N t v t T t v t B t

P t P t
n T

P t

P t P t P t P t
n

P t P

 

   

 

     



   

  

        



   

 
  



   
 

 
2

, 2

,
( )n

B
t

 

 

 
0, 3 1, 3 2, 3 0, 10, 3 1, 3 2, 3 3, 3 0, 1 1, 1

22 2 2

0, 2 1, 2 2, 2 0, 2 1, 2

( ) ( ) ( )

( ) ( ), ( ) ( )
2 ( ).

( ) ( )

n n n nn n n n n n

n n n n n

B t v t N t

P t P t P t P t
n N t

P t P t



     

  

        

    

  

   
  

 

 

 

Corollary 3.2.3. Let 
3

0 1, ,..., nP P P  be the control points and ,i k   be the positive 

weights. The tangent at the initial point 0t   of the non-unit speed rational Bezier curve ( )P t

in the Euclidean 3-space is 
0

0
0

( )
( )

( )t

P t
T t

P t





, the principal normal vector field is 

 0 1 0

0
0 0 1

( )
t

P P P
N t

P P P

  


  
 or 

1 1 01
0 00

1 0

( )
( ) cos cot

( )t

P tP
N t ec

P P t
 




 

 
, and the binormal 

vector field becomes 
0 1

0
0 1

( )
t

P P
B t

P P

 


 
. The curvature is obtained 

  0 10 2

320
1 0

1
( )

t

P Pn
t

n P

 




 



 or 

  1 10 2
0220

1 0

1
( ) sin ,

t

Pn
t

n P

 
 







 and the torsion 

is obtained as 
 

  0 1 20 3

20
1 2 0 1

,2
( )

t

P P Pn
t

n P P

 




  


 
 or 

   0 1 20 3

20
1 2 0 1

2 det , ,
( ) .

t

n P P P
t

n P P

 




   


 
 

 

From the derivative of the Serret-Frenet frame, the derivative of the tangent formula is 

computed by 
 

  0 12

20 0
1 0

( ) 1
t t

P P
T t n N

P



 

 
  


 or   1 12

00 0
1 0

( ) 1 sin .
t t

P
T t n N

P




 


  


 

 

The principal normal vector becomes 
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   0 1 0 1 2 032

2 20 0 0
1 20 0 1

,
( ) 1 2

t t t

P P P P P P
N t n T n B

P P P



   

     
     

  
 

or  

   
 1 0 1 21 32

0 20 01
1 0 2 0 1 0

det , ,
( ) 1 sin 2

sin
t t

P P P P
N t n T n B

P P P




  
 

   
     

  
. 

 

Moreover, the binormal vector is obtained as  
 

  0 1 2 03

0 0
2 0 1

,
( ) 2

t t

P P P P
B t n N

P P



 

   
   

 
 

or 

 
 0 1 23

20 02 1
2 0 1 0

det , ,
( ) 2

sin
t t

P P P
B t n N

P P



 
 

  
   

 
. 

 

Corollary 3.2.4. Let 3

0 1, ,..., nP P P  be the control points and ,i k   be the positive 

weights. The tangent at the ending point 1t   of the non-unit speed rational Bezier curve ( )P t

in the Euclidean 3-space is 1

1
1

( )
( )

( )

n

t
n

P t
T t

P t










, the principal normal vector field is 

 1 2 1

1
1 1 2

( )
n n n

t
n n n

P P P
N t

P P P

  


  

  


  
 or 

2 22 1
1 11

2 1

( )
( ) cos cot

( )

n nn n
n nt

n n

P P t
N t ec

P P t
   

 
 

 
 

 
, and the 

binormal vector field is 
1 2

1
1 2

( ) n n

t
n n

P P
B t

P P

 


 

 


 
. The curvature is obtained as

  1 21 3

321
2 1

1
( )

n nn n

t
n n

P Pn
t

n P

 




  


 

 



 or 

  2 21 3
1221

2 1

1
( ) sin ,

n nn n
nt

n n

Pn
t

n P

 
 



  


 





 

and the torsion is obtained as  
 

  1 2 31 4

21
2 3 1 2

,2
( )

n n nn n

t
n n n n

P P Pn
t

n P P

 


 

   


   

  


 
 

or 

   0 1 21 4

21
2 3 0 1

2 det , ,
( ) n n

t
n n

n P P P
t

n P P

 


 
 


 

   


 
 

 

From the tangent formula of the Serret-Frenet frame  
 

  1 23

21 1
2 1

( ) 1
n nn

t t
n n

P P
T t n N

P





 

 
 

 
  


 or   2 23

11 1
2 1

( ) 1 sin
n nn

nt t
n n

P
T t n N

P






 
 

 


  


,  

 

the principal normal vector becomes  
 

   1 2 1 2 3 13 4

2 21 1 1
2 31 1 2

,
( ) 1 2

n n n n n nn n

t t t
n nn n n

P P P P P P
N t n T n B

P P P

 

 

      

  
   

     
     

  
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or  

   
 2 1 2 323 4

1 21 1 12 2
2 1 3 1 2 1

det , ,
( ) 1 sin 2 .

sin

n n n nnn n
nt t tn

n n n n n n

P P P P
N t n T n B

P P P

 


  

    
  

     

   
     

  
 

 

The binormal vector is obtained as 

 

  1 2 3 14

1 1
3 1 2

,
( ) 2

n n n nn

t t
n n n

P P P P
B t n N

P P





   

 
  

   
   

 
 

or 

 
 1 2 34

21 12 2
3 1 2 1

det , ,
( ) 2

sin

n n nn

t tn
n n n n

P P P
B t n N

P P



 

  

 
   

  
   

 
. 

 

Corollary 3.2.5. Assume that 
3

0 1, ,..., nP P P  are control points and ,i k   are positive 

weights. When the open writing of the non-unit speed rational Bezier curve ( )P t is made by 

the Bernstein polynomial in the Euclidean 3-space found by the algorithm method for the 

interval 0 1t  , the tangent vector field of the Serret-Frenet frame is 
 

                            

1

, 1

0

1

, 1 , 1

0

( ) ( )

( ) ,

( ) ( ) ( ), ( )

n

i n i

i

n

i n j n i j

i

B t P t

T t

B t B t P t P t









 







 





 

 

the principal normal vector field is 
 

 

 

1 2 1
2

, 1 , 2 , 1

0 0 0

1 2 2
2

, 1 , 2 , 2

0 0 0

( ) ( ) ( )

( ) ,

( ) ( ) ( ) ( )

n n n

i n j n k n i j k

i j k

n n n

i n i i n j n i j

i j i

B t B t B t P P P

N t

B t P t B t B t P P

  

  

  

  

  

  

  



  



 

 

 

the binormal vector field is 

 

 

2 2
2

, 2 , 2

0 0

2 2
2

, 2 , 2

0 0

( ) ( )

( )

( ) ( )

n n

i n j n i j

j i

n n

i n j n i j

j i

B t B t P P

B t

B t B t P P

 

 

 

 

 

 

 



 





 

and the curvature is  

 
 

2 2
2

, 2 , 23
0 00, 0, 2 1, 2 2, 2

33 3 1
0, 1 1, 1

, 1

0

( ) ( )
1

( )

( ) ( )

n n

i n j n i j

j in n n n

n
n n

i n i

i

B t B t P P
n

t
n

B t P t

   


 

 

 

   


 





 









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 

 

1 2 3
2 3

, 1 , 2 , 32

0 0 00, 0, 3 1, 3 2, 3 3, 3

22 2 2
2 2

0, 2 1, 2 2, 2 2

, 1 , 2 , 3

0 0

( ) ( ) ( ) ( ) ( ), ( )
2

( )

( ) ( ) ( ) ( ) ( )

n n n

i n j n k n i j k

i j kn n n n n

n n
n n n

i n j n k n i j

j k

B t B t B t P t P t P t
n

t
n

B t B t B t P t P t

    


  

  

  

     

 
  

  

 

  




 




 

 

The derivative formulas of the Serret-Frenet frame could be shown similarly.  
 

Corollary 3.2.6. Since the weights are taken as , 1i k   in the equation of the non-unit speed 

rational Bezier curve ( )P t , which is composed of the control points 3

0 1, ,..., nP P P  and the 

positive weights ,i k  , in the Euclidean 3-space, the polynomial Bezier curve occurs. 

Therefore, the Serret-Frenet frame of the polynomial Bezier curve  
 

                                            

0, 1

0, 1

( )
( )

( )

n

n

P t
T t

P t









, 

 

 0, 2 1, 2 0, 1

0, 1 0, 2 1, 2

( ) ( ) ( )
( )

( ) ( ) ( )

n n n

n n n

P t P t P t
N t

P t P t P t

  

  

  


  
 

 

                                            

0, 2 1, 2

0, 2 1, 2

( ) ( )
( )

( ) ( )

n n

n n

P t P t
B t

P t P t

 

 

 


 
 

 

the curvature, and the torsion of the polynomial Bezier curve 
 

                                    

  0, 2 1, 2

3

0, 1

( ) ( )1
( )

( )

n n

n

P t P tn
t

n P t


 



 



 

and      

  0, 3 1, 3 2, 3

2

0, 2 1, 2

( ) ( ), ( )2
( )

( ) ( )

n n n

n n

P t P t P tn
t

n P t P t


  

 

  


 
 

 

are obtained similarly with the polynomial Bezier curves. Also, the derivative formulas of the 

Serret-Frenet frame are 

                                     

 
0, 2 1, 2

2

0, 1

( ) ( )
( ) 1

( )

n n

n

P t P t
T t n N

P t

 



 
  


 

 

                               

 

 

0, 2 1, 2

2

0, 1

0, 3 1, 3 2, 3 0, 1

2

0, 2 1, 2

( ) ( )
( ) 1 ( )

( )

( ) ( ), ( ) ( )
2 ( )

( ) ( )

n n

n

n n n n

n n

P t P t
N t n T t

P t

P t P t P t P t
n B t

P t P t

 



   

 

 
   



   
 

 
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 
0, 3 1, 3 2, 3 0, 1

2

0, 2 1, 2

( ) ( ), ( ) ( )
( ) 2 ( ).

( ) ( )

n n n n

n n

P t P t P t P t
B t n N t

P t P t

   

 

   
   

 
 

 

Corollary 3.2.7. The tangent at the initial point 0t   of the Serret-Frenet frame of the non-

unit speed polynomial Bezier curve ( )P t , which is composed of the control points 

3

0 1, ,..., nP P P  and the positive weights ,i k   and , 1i k   taken in the Euclidean 3-

space is 0

0
0

( )
( )

( )t

P t
T t

P t





, the principal normal vector field is 

 0 1 0

0
0 0 1

( )
t

P P P
N t

P P P

  


  
 or 

1 1 01
0 00

1 0

( )
( ) cos cot

( )t

P tP
N t ec

P P t
 




 

 
, and the binormal vector field becomes

0 1

0
0 1

( )
t

P P
B t

P P

 


 
. The curvature is obtained as 

  0 1

30

0

1
( )

t

P Pn
t

n P




 



 or

  1 1

020

0

1
( ) sin ,

t

Pn
t

n P
 







 and the torsion is obtained as

  0 1 2

20

0 1

,2
( )

t

P P Pn
t

n P P




  


 
 or 

   0 1 2

20

0 1

2 det , ,
( )

t

n P P P
t

n P P




   


 
. From the derivative formulas of the Serret-Frenet frame 

  0 1

20 0

0

( ) 1
t t

P P
T t n N

P
 

 
  


or   1 1

00 0
0

( ) 1 sin
t t

P
T t n N

P


 


  


, the principal normal 

vector becomes 
 

     

   0 1 0 1 2 0

2 20 0 0

0 0 1

,
( ) 1 2

t t t

P P P P P P
N t n T n B

P P P
  

     
     

  
 

or 

   
 1 0 1 21

0 20 01
0 0 1 0

det , ,
( ) 1 sin 2

sin
t t

P P P P
N t n T n B

P P P



 

   
     

  
. 

 

The binormal vector is obtained by  
 

  0 1 2 0

0 0
0 1

,
( ) 2

t t

P P P P
B t n N

P P 

   
   

 
 

or 

 
 0 1 2

20 02 1

0 1 0

det , ,
( ) 2

sin
t t

P P P
B t n N

P P 
 

  
   

 
. 

 

It seems that the results here are the same as those in the study [10]. 
 

Corollary 3.2.8. The tangent at the ending point 1t   of the Serret-Frenet frame of the non-

unit speed polynomial Bezier curve ( )P t , which is composed of the control points 

3

0 1, ,..., nP P P  and the positive weights ,i k   and taking the weights as , 1i k   in the 
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Euclidean 3-space is 1

1
1

( )
( )

( )

n

t
n

P t
T t

P t










, the principal normal vector field is 

 1 2 1

1
1 1 2

( )
n n n

t
n n n

P P P
N t

P P P

  


  

  


  
 or 

2 22 1
1 11

2 1

( )
( ) cos cot

( )

n nn n
n nt

n n

P P t
N t ec

P P t
   

 
 

 
 

 
, the binormal 

vector field is 
1 2

1
1 2

( ) n n

t
n n

P P
B t

P P

 


 

 


 
. The curvature is 

 

  1 2

31

1

1
( )

n n

t

n

P Pn
t

n P
  





 



 or 

  2 2

121

1

1
( ) sin ,

n n

nt

n

Pn
t

n P
  









 

 

and the torsion is obtained as  

 

  1 2 3

21

1 2

,2
( )

n n n

t

n n

P P Pn
t

n P P
   



 

  


 
 or

   0 1 2

21

0 1

2 det , ,
( )

t

n P P P
t

n P P




   


 
 . 

 

From the derivative formula of the Serret-Frenet frame 

  1 2

21 1

1

( ) 1
n n

t t

n

P P
T t n N

P

 

 



 
  


 or   2 2

11 1
1

( ) 1 sin
n n

nt t
n

P
T t n N

P
 

 



  


, the principal 

normal vector becomes  
 

   1 2 1 2 3 1

2 21 1 1

1 1 2

,
( ) 1 2

n n n n n n

t t t

n n n

P P P P P P
N t n T n B

P P P

     

  

  

     
     

  
 

or  

   
 2 1 2 32

1 21 1 12 2
1 1 2 1

det , ,
( ) 1 sin 2

sin

n n n nn

nt t tn
n n n n

P P P P
N t n T n B

P P P




   

  
   

   
     

  
.  

 

The binormal vector is obtained by  
 

  1 2 3 1

1 1
1 2

,
( ) 2

n n n n

t t
n n

P P P P
B t n N

P P

   

 
 

   
   

 
 

or 

 
 1 2 3

21 12 2

1 2 1

det , ,
( ) 2

sin

n n n

t tn

n n n

P P P
B t n N

P P 

  

 

  

  
   

 
. 

 

It seems that the results obtained here are the same as those in the study [10]. As it 

seems, since taking the weights as , 1i k  , the rational Bezier curve transforms into 

polynomial Bezier curves. Therefore, the Serret-Frenet frame of the rational Bezier curves 

involves the results of the Serret-Frenet frame of the polynomial Bezier curve as well. Thus, 

since the Serret-Frenet frame of the rational Bezier curves is a general demonstration that 

involves all situations, it is a more preferred curve. 
 

Corollary 3.2.9. Since the curve is taken as 2n   in the above results, the results of the 

quadratic rational Bezier curve ( )P t are obtained. One advantage of the quadratic rational 



 The Serret-Frenet frame of … Hatice Kuşak Samanci  

 

www.josa.ro Mathematics Section  

744 

Bezier curves is that the cone classification as an ellipse, a parabola, and a hyperbola can be 

determined easily by which the weights 1 2 3, ,    satisfy the conditions 

2

1 0 2 0    .
2

1 0 2 0    , 
2

1 0 2 0    . Also, if 3n  , the results for the cubic 

rational Bezier curve can be obtained easily. 
 

Corollary 3.2.11. Assume that 
3

0 1, ,..., nP P P  are the control points and ,i k  are the 

weights of the rational Bezier curve ( )P t in the Euclidean 3-space. The geometric 

interpretation of the curvature and the torsion of the rational Bezier curves found by the 

algorithm method in Theorem 2.3.9 can be given. If the curvature of the rational Bezier curve

( )P t is 0  , then the curve ( )P t indicates a straight line. If the torsion is 0  , ( )P t is 

a planar curve. If . 0const    0  , ( )P t is a circle segment. And if .const   , ( )P t is 

a helix. 
 

Corollary 3.2.12 Assume that 
3

0 1, ,..., nP P P  are the control points and ,i k  are the 

weights of the rational Bezier curve ( )P t  in the Euclidean 3-space. The Darboux vector 

which shows the rotation axis, which is around a center, of the Serret-Frenet frame of the 

rational Bezier curves by the algorithm method is given by 
 

0, 3 1, 3 2, 3 0, 1 0, 2 1, 2

1 22 2

0, 2 1, 2 0, 1

,
( 2) ( 1)

n n n n n n

n n n

P P P P P P
D n n

P P P
 

     

  

     
   

  
 

 

where the coefficients are given by  
 

0, 1 1, 1 0, 3 1, 3 2, 3 3, 3

1 2 2 2

0, 2 1, 2 2, 2

n n n n n n

n n n

     


  

     

  

  and 
0, 2 1, 2 2, 2 0,

2 2 2

0, 1 1, 1

.
n n n n

n n

   


 

  

 

  

 

Corollary 3.2.13 Let 
3

0 1, ,..., nP P P  be the control points and ,i k   be the weights. 

The curve ( )P t is a rational Bezier curve. The center of the osculating circle of the non-unit 

speed rational Bezier curve ( )P t  is computed by 

 

 
2

3 3
0, 1 0, 2 1, 2 0, 10, 1 1, 1

0, 0 3

0, 2 1, 2 2, 2 0, 0, 2 1, 2

( )
( 1)

n n n nn n

n

n n n n n n

P P P Pn
M P t

n P P

 

   

    

    

   
 

  
 

 

and the radius of the osculating circle is  
 

 

3
3 3

0, 10, 1 1, 1

0 3

0, 0, 2 1, 2 2, 2 0, 2 1, 2

( )
( )

1 ( ) ( )

nn n

n n n n n n

P tn
t

n P t P t

 


   

 

    




  
 

 

by utilizing (2.7). Thus, the osculating circle equation of the rational Bezier curve ( )P t

found by the algorithm method is obtained as 
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 0, 2 1, 2 0, 1 0, 1

0, 0 0 0

0 00, 2 1, 2 0, 1 0, 1

( ) ( ) ( ) 1 cos ( )sin .
( ) ( )

n n n n

n

n n n n

P P P P
P t t t

t tP P P P

 
   

 

   

   

    
    

    
 

 

Corollary 3.2.14 Let 
3

0 1, ,..., nP P P  and ,i k  be the control points and the weights of 

a rational Bezier curve ( ).P t  And assume that ( )v P t , 
1

( )
( )

t
t




  and 
1

( ) .
( )

t
t






Thus the center of the osculating sphere of the rational Bezier curve ( )P t is  

 

 
2

3 3
0, 1 0, 2 1, 2 1, 20, 1 1, 1

0 23

0, 2 1, 2 2, 2 0, 0, 2 1, 2

2 2 2
0, 2 1, 20, 2 1, 2 2, 2 0, 2 1,

0, 1 1, 1 0, 3 1, 3 2, 3 3, 3 0, 1

( )
1

( )

( 2)

n n n nn n

n n n n n n

n nn n n n n

n n n n n n n

P P P Pn
M P t

n P P

P Pt P P

n P

 

   

   

     

    

    

     

      

   
 

  

   


 

2

0, 3 1, 3 2, 3,n n nP P P    

 

 

by utilizing the equation (2.9). And with the help of the equation (2.10), the radius of the 

osculating sphere can be computed similarly.  
 

Corollary 3.2.15 The results of the Bezier curve with the Osculator circle and sphere 

equations at the points 0t  , 1t   and their applications in textile yarn can be analyzed from 

the references in [11-12] produced from the BEBAP 2014.08 from the Bitlis Eren University 

Scientific Research Projects. 
 

 

3. A NUMERIC EXAMPLE 
 

 

Assume that 0(1,0,0)P , 1(1,0,1)P , 2 (0,2,2)P  and 3(1,1,1)P  are the control points and 

0 1  , 1 2  , 2 1   and 3 2   are the weights of the rational Bezier curve. Now we will 

compute the Serret-Frenet frame, the curvature, and the torsion of the rational Bezier curve at 

the intermediate point 0.25t   of the algorithm method. The rational Bezier curve given by 

the four control points is a third-order curve and it is called a cubic rational Bezier curve from 

the Definition (2.2.1). Since the Bernstein polynomials  
3

0,3( ) 1B t t  ,  
2

1,3( ) 3 1B t t t  ,

 2

2,3( ) 3 1B t t t   and 
3

3,3( )B t t  are substituted in the equation  

 

0,3 0 0 1,3 1 1 2,3 2 2 3,3 3 3

0,3 0 1,3 1 2,3 2 3,3 3

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

B t P B t P B t P B t P
P t

B t B t B t B t

   

   

  


  
 

 

from (2.1) for 3n  , the equation of the cubic rational Bezier curve is obtained by 

 

 2 3 2 3 2 3

2 3

1 3 9 7 ,6 4 ,6 6 2
( ) .

1 3 6 4

t t t t t t t t
P t

t t t

     


    
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Figure 2. Rational Cubic Bezier Curve. 

 

By using the recursion formula , , 1 1, 1(1 )i j i j i jP t P tP      of the algorithm method in 

Definition 2.3.2, the control points form a triangular structure as  

 

       0,0 1,0 2,0 3,0

0,1 1,1 2,1

0,2 1,2

0,3

1,0,0 1,0,1 0,2,2 1,1,1

1 3 2 5 1 7 7
1,0, , , , ,

4 4 4 4 4 4 4

15 2 8 10 13 22
, , , ,

16 16 16 16 16 16

55 19 23
, ,

64 64 32

P P P P

P P P

P P

P

   

     
       
     

   
    
   

 
  
 

 

 

for the point 0.25t  . Similarly, the weights from (2.13) are obtained as 
 

0,0 1,0 2,0 3,0

0,1 1,1 2,1

0,2 1,2

0,3

1 2 1 2

5 7 5

4 4 4

11 13

8 8

23

16

   

  

 



   

  

 



 

 

for the point 0.25t  . Now we will investigate the Serret-Frenet frame and the torsion of the 

rational Bezier curve for the intermediate point 0.25t  . Since 
5 11 14

(0.25) , ,
4 4 4

P
 

   
 

, the 

tangent at the intermediate point 0.25t   of the cubic rational Bezier curve ( )P t  from the 

Theorem 3.2.1 is 
 

   1,2 0,2

1,2 0,2

1 1
(0.25) 5,11,14 5,11,14

18342

P P
T

P P


    


, 

 

the principle normal is 
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     

   

 
 

1,1 0,1 2,1 1,1 1,2 0,2

1,2 0,2 1,1 0,1 2,1 1,1

(0.25)
.

73,229, 206 1
73,229, 206

317342 293

P P P P P P
N

P P P P P P

      
   

 
   

, 

 

and the binormal is 
   
   

 
1,1 0,1 2,1 1,1

1,1 0,1 2,1 1,1

1
(0.25) 16,6,1 .

204

P P P P
B

P P P P

   
 

  
  

 

Moreover, the curvature is 
 

   

 

3
1,1 0,1 2,1 1,10,3 0,1 1,1 2,1

33 3

0,2 1,2
1,1 0,1

3 2

3 3

2
(0.25)

3

23 .5 .32. 14
0.302

11 .13 .9. 21

P P P P

P P

   


 

  




 

 

and the torsion is 
 

     

   

2 10 2
1,0 0,0 2,0 1,0 3,0 2,00,3 0,0 1,0 2,0 3,0

22 2 2 4 2

0,1 1,1 2,1
1,1 0,1 2,1 1,1

,1 2 .23
( ) 0.02012

3 3.5 7 .293

P P P P P P
t

P P P P

    


  

   
    

  

 

at the point 0.25t  . 
 

 

4. CONCLUSIONS 
 

 

In this study, the Serret-Frenet frame of the rational Bezier curves is computed by the 

algorithm method defined in the reference [5]. Though the Serret-Frenet frame and the 

curvature at the initial and ending points of the polynomial and the rational Bezier curves 

have been studied before, the Serret-Frenet frame of the intermediate points hasn’t been 

studied. However, with this study, a more general approach has been obtained, and acquiring 

the geometric properties at the intermediate points has been accomplished. Moreover, in this 

study when the weights are chosen as , 1i k   , the polynomial Bezier curves can be obtained. 

Thus, both the Serret-Frenet frame and the geometric properties of the rational Bezier curves 

and the polynomial Bezier curves can be obtained by a single study.  
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