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Abstract. In this study, we introduce a new class of generating functions of odd and
even Gaussian (p,q)-Fibonacci numbers, Gaussian (p,q)-Lucas numbers, Gaussian (p,q)-Pell
numbers, Gaussian (p,q)-Pell Lucas numbers, Gaussian Jacobsthal numbers and Gaussian
Jacobsthal Lucas numbers and we will recover the new generating functions of some
Gaussian polynomials at odd and even terms. The technique used her is based on the theory
of the so called symmetric functions.
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1. INTRODUCTION AND PRELIMINARY RESULTS

For p and g positive real numbers, the Gaussian (p,q)-Fibonacci numbers {GFp,qyn}

n>0

and Gaussian (p,g)-Lucas numbers {GLMY”} are defined by the same second-order

n>0

homogeneous linear recurrence relation:

GU,4n=pGU ,  ,+qGU vn =2,

.q,n-2"

but with different conditions GF, ,,=i,GF, ,=1 and GL, ,=2-ip,GL, ,,=p+2iq,
(see [1]). These Gaussian (p,q)-numbers have been introduced as a generalizations of usuel
Gaussian Fibonacci numbers {GFn}nZO and Gaussian Lucas numbers {GLn}n which were

>0
defined in [2, 3]. Obviously, GF, =GF,,  and GL, =GL,, .
The Gaussian (p,q)-Pell numbers {GPM’n }n>o [4] is defined recursively as follows, for
p and q positive real numbers:

Gpplq,n =2pGPp,q,n—1+qGPp'q’n_2, vn > 2,

with initial terms GP i and GP _.=1. The Gaussian (p,q)-Pell Lucas numbers

=2-2ipand
GQ, 41 =2p +2iq. The Gaussian (p,q)-Pell numbers and Gaussian (p,q)-Pell Lucas numbers

P.g.0 — p.g.l

{Gvaqvn}mo is defined by the same manner but with the initial terms GQ

p.q.0
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are the natural extensions of Gaussian Pell numbers {GP,}  and Gaussian Pell Lucas

n>0
numbers {GQ, | ,ie., GP, =GP, and GQ, =GQ,,,, these Gaussian numbers (GP, and
GQ, ) are defined in the paper [5].

The authors in [6] defined and studied the Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas numbers, they gave some properties and results of them such as generating
function, Binet's formula, explicit formula and Q-matrix. They also presented explicit
combinatorial and determinantal expressions of these numbers. The recurrence relations of
these Gaussian numbers given in the following definitions:

Definition 1.1. [6] The Gaussian Jacobsthal numbers, denoted by {GJn}nZO is defined
recurrently by:

GJ, =GJ, ,+2GJ ,, ¥n>2
GJ, =14, GJ, =1

Definition 1.2. [6] The Gaussian Jacobsthal Lucas numbers, denoted by {Gjn}nZO is defined
as:

Gjn :Gjn—1+ZGjn—2’ vn 22
Gj,=2-1, Gj, =1+2i

On the other hand, many kinds of generalizations of second order recurrence relations
of numbers and polynomials have been presented in the literature. For example, Horadam in
[7] defined generalized Fibonacci sequence {H .},., by:

H,=H,,+H

n— n-1

vn >3,

n-27

with H, =p and H, = p +q, where p and g are arbitrary integers. The same author in [8, 9],

presented another generalized Fibonacci sequence. And in [10], the authors made the
generalized polynomials of second order sequences as follow:

G, (X)=(Po+px )G, (X )+(de +ax )G, (x ), ¥n =2,

with Gy (x)=e, and G,(x )=/, +Bx, where {py, P,,0q.0:: %, By B} €C. The special
cases of this sequence are listed as follows:

o If pp=9,=4=0p,=4=L0q,=2 and «,=%, we get the Gaussian Jacobsthal
polynomials [11], known as:

GJ,o(x)=7%.GJ,(x) =1
GJ, (x)=GJ, ,(x)+2xGJ,__,(x), ¥Yn>2'
or

{61, (x)} =1, L L1+xi, 2x +1+ix, 4x +1+ix (2x +1),..}.
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e For p,=0,=0,p,=45=10,=2, a,=2-% and S =2i we reduce the Gaussian
Jacobsthal Lucas polynomials [11], known as:

Gj,(x)=2-1%,Gj,(x) =1+2ix
{Gjn(x) =Gj,,(X)+2xGj, _,(x), Yn =2’
or
{Gi, (x)}  ={2—%, 1+2xi, 4x +1+ix, 6X +1+Xi (4x +1), 8x?+8x +1+xi (6x +1),..}.

e Inthe case when p,=0,=/4=0,0,=4,=1 p,=2 and ¢, =i, we get the Gaussian
Pell polynomials [12], known as:

GPR,(x)=1,GP,(x)=1
{GPn (x)=2xGP_ ,(x)+GP, ,(x), ¥n>2'
or

{GP, (x)}  ={i, L 2x+i, 4x?+1+2ix, 8x°+4x +i (4x 2 +l),...}.
In [13], the author defined Gaussian Pell Lucas polynomials as follows:

GQ, (X )=2-2xi,GQ,(x )=2x +2i
GQ, (x)=2xGQ, ,(x)+GQ, ,(x), Vn =2’
or
{GQn (x )}neN ={2-2ix, 2X +2i, 4x?+2+2xi, 8Xx° +6X +2i (2x2+1),

16x ‘ +16x * +2+2xi (4% +3),..}.

Next, we recall some backgrounds about the symmetric functions.

Definition 1.3. [14] Let k and n be two positive integers and {e,.e,,....e,} are set of given
variables the k-th complete homogeneous symmetric function h, (a,,a,,...,a, ) is defined by:

h(e,€,.m8)= D ejey.er (k 20),

i+, =k

With i,i,,....i, >0.

Remark 1.1. Set hy(e.e,,....e,)=1 by usual convention. For k <O, we set
h (e,.€;,...€,)=0.

Definition 1.4. [15, 16] Let A and E be any two alphabets. We define S (A—E) by the
following form:

ngsn(A—E)zn, (11)
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with the condition S (A —E) =0 for n <0.
Equation (1.1) can be rewritten in the following form:

isn(A —E)z’ ZKiSn(A)Z "jX(iSn(—E)Z ”j,

where

Sn(A—E):iSn_j (-E)S; (A).

Definition 1.5. [17, 18] Let n be positive integer and E ={e,,e,} are set of given variables.
Then, the n-th symmetric function S (g, +e,) is defined by:

en+l _en+1
S,(E)=S,(e,+e,)="—"2—,
€, -6,

with

SO(E) :SO(el +e2) =1,
Sl(E) zsl(el +e2) =€, +€,,
Sz(E) = Sz(el +e2) :e12 +€g€, +822,

Definition 1.6. [19, 20] Given a function f on R", the divided difference operator is defined
as follows:

P (f ): f (el"”’ei 7ei+17“"en)_f (el1“"ei—l’ei+l’ei ’ei+2’“"en) .

S ei _ei+l

Definition 1.7. [21] Given an alphabet E ={e1,e2}, the symmetrizing operator o, is
defined by:

erf e)-e;f

)=f D)k eN, =NU{0}={0123,.). (1.2)

O, (F) =

If k =0, the operator (1.2) gives us

5eole2 (f ):f (eé):z (ez)

=0, ()
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2. MAIN RESULTS

In this part, we are now in a position to provide some new theorems by using the
symmetrizing operator &,, for k e {0,1,2}. We now begin with the following theorem.

Theorem 2.1. Given an alphabet E ={e, e, }, we have

i ] (e, +e,)z
S E = . 2.1
nzzc; Sk (1-efz )(1-elz) @5
Proof: By applying the divided difference operator 0,, to the series ief”z "= 1_%22 we get
n=0 !
< n n 1
ief”z”—ief”z” L
« n=0 n=0 _ lelz l-ekz
€, € €, €
o e, (i-eiz) (el
= Z . = _ a2 a2
= e —e, (e, —e,)(1-efz )(1-efz)
e ) (e, +e,)z
S E = :
©§ na(B)2 (1-efz )(1-eiz)

Hence, we obtain the desired result.

Theorem 2.2. Given an alphabet E ={e, e, }, we have

- n l+eg,z
an‘?Szn (E)2" = (1-e/z )1(1—e222 ) (22)

Proof: By applying the operator &,, to the series Zef”z "=—L_ we get

ez’
n=0 !

) ief“z“ P

e — Yep 2
12n:0 12 1—612
e, ez —e, ez e e
s _n=0 n=0 _ ez  l-elz
€,—¢€, €, -6,
® A2n+1 2n+1 e (1_e22 )_e (1_922)
PN e, ~—€, n_ 1 2 2 1
2 2
e e, (e,—e,)(1-e/z )(1-€}z )
= l+ee,z
no_ 12
=S, (E)z" = . —.
" (1-efz)(1-efz)

Thus, this completes the proof.
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Theorem 2.3. Given an alphabet E ={e,,e,}, we have

e, +e
n_ 1 2
2Smal(E)2" =7 = (23)
= (1-efz)(1-elz)
Proof: By applying the operator &, to the series Zef”z "= 1_61122 , We get
n=0
52 ieZHZ n _52 1
ee 1 T Yee 2
1°2 s 12 l—el Z
efyez"—e;ye"z" e e
e =0 n=0 _lefz 1l
€, —€, €, —€,

0 e2n+2 _e2n+2 ) el2 (1_e222 )_e22 (1_e122)
oY A—2 "=

e —e, (e,—e,)(1-efz )(1-€fz)
c N e +e
@;SZnﬂ(E)Z _(1_e1221)(12_e222).

As required.
3. APPLICATIONS OF THEOREMS

In this part, we now consider the previous theorems in order to derive a new generating
functions of odd and even Gaussian (p,q)-Fibonacci numbers, Gaussian (p,q)-Lucas numbers,
Gaussian (p,q)-Pell numbers, Gaussian (p,q)-Pell Lucas numbers, Gaussian Jacobsthal
numbers and Gaussian Jacobsthal Lucas numbers, and we calculate the new generating
functions of Gaussian Pell polynomials, Gaussian Pell Lucas polynomials, Gaussian
Jacobsthal polynomials and Gaussian Jacobsthal Lucas polynomials at odd and even terms.

e Forthecase E ={e,,—e,} with replacing e, by (—e,) in Theorems 2.1, 2.2 and 2.3, we
have:

> ) (e,—e,)z

S, (e, +[€,])z2" = : 31)
nzzc; na(&r-e.) 1—((el—e2)2+2e1e2)z +e/elz?
< 1-ege,z

S, (e, +]-e,])z" = 172 : (3.2)
nz:(; n (e lec) 1—((e1—e2)2+2e1e2)z +elesz?
iSZMl (el+[_e2])z "= zel = , (3.3)
h=0 1—((e1—e2) +2e1e2)z +elelz?

respectively.
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3.1. ORDINARY GENERATING FUNCTIONS OF ODD AND EVEN GAUSSIAN (p,q)-

NUMBERS

This part consists of three cases.

e,—e, =
Case 1. The substitution of { 178 =Py Egs. (3.1), (3.2) and (3.3), we obtain:

€€, =

DS a6 +[-€,])2" = Pz

mri 1-(p*+2q)z +q%z?’
< n __ 1_qz
Z:ﬂszn (e [2))2 C1-(p?+29)z +q%2?’

DS ale +[e,])2" = P

~ 1-(p*+2q)z +q%z?’

respectively, and we have the following theorems.

(3.4)

(3.5)

(3.6)

Theorem 3.1. For n eN, the new generating function of even Gaussian (p,q)-Fibonacci

numbers is given by

iGF - i+(p—i(p2+q))z
p.d,2n

e B _1—(p2+2q)z +q2z?

Proof: By [1], we have

GF, 0 =iS, (&, +[€,])+(1-ip)S, (e, +[-2.]).

Writing (2n) instead of (n), we get

GF, 420 =155, (&, +[€,])+(1=1p)S . (e, +[-2,]).
Then,
SR, 2" = (18 6 [0+ 195,06 )2

Il
L7

(& +[2,])2" +(1-ip) iszm (e +[-e
n=0

Il
o

n
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Multiplying the equation (3.5) by (i ) and adding it to the equation obtained by (3.4)
multiplying by (1—ip), then we obtain the following equality:

i _ i (1-0z) .\ (1-ip)pz
I 1-(p®+2q)z +q°2* 1-(p*+2q)z +q°2z°

_ i +(p—i (p2+q))z

1-(p®+29)z +q%z?

Hence, we obtain the desired result.

Theorem 3.2. For n e N, the new generating function of even Gaussian (p,q)-Lucas numbers
IS given by

o n_2—ip+(ip(p2+G}q)—(p2+2q))z

n=0 “ B 1_(p2+2q)z +q222 (38)

Proof: In [1], we have GL, , , =(2-ip)S, (e1+[—e2])+(i (p2 +2q)— p)sn—l(e1+[_e2])'

By the same method given in Theorem 3.1, the proof can be easily made. So we omit
the proof.

Theorem 3.3. For neN, the new generating function of odd Gaussian (p,q)-Fibonacci
numbers is given by

iGFp,q,Zm—lzn _ 1+q(ip-1)z

n=0 1_(p2+ZQ)Z +q222' (39)

Proof: By referred to [1], we have
GF,qn =18, (€1 +[-€.])+(1-1p)S,.. (e, +[2.]).

Substituting n by (2n +1), we obtain

GF, 42001 =1S 50, (6, +[€,]) +(1-1p)S,,, (6, +[ -, ]).

S6F, iz =3[ Sars (e e ])+(1-i9)Sa (e [-2,])2
:iism(eﬁ[—e J)z" +(1-ip nZ‘_O;)Sm( —,])z".
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Multiplying the equation (3.6) by (i ) and adding it to the equation obtained by (3.5)
multiplying by (1—ip), then we obtain the following equality:

: ip (1-ip)(1-az)
GF 2" =
nzz(; P 1-(p*+2)z +q222+1—(p2+2q)z +q%z°?
_ 1+q(ip-1)z
_1—(p2+2q)z +q2z?
As required.

Theorem 3.4. For n e N, the new generating function of odd Gaussian (p,q)-Lucas numbers
IS given by

- n_p+2iq+q(p—i(p2+2q))z

ZGLp,q,2n+lZ

= 3.10
~ 1—(p2+2q)z +q%z2 (3.10)

Proof: Recall from [1] that GL, . =(2-ip)S, (e1+[_e2])+(i (P2+ZQ)—p)5n_l(el+[*z])-
By the same method given in Theorem 3.3, the proof can be easily made.

e If we take p=q =1 in the Egs. (3.7), (3.8), (3.9) and (3.10), we get the new generating
functions of even and odd Gaussian Fibonacci and Gaussian Lucas numbers. The
calculation and results are listed in the Tab.1.

Table 1. Generating functions for even and odd Gaussian Fibonacci and Gaussian Lucas numbers.

Coefficient of z" Generating function
GF,, i+ (1-2i)z
1—3z+ z?
Ly 2—i+(4i—3)z
1—3z+ z2
GFanns 1+G-1z
1—3z+ z2
Lot 14+ 2i+ (1 -3i)z
1—-3z+ z?
T e,—e,=2p . .
Case 2. The substitution of e =q in Egs. (3.1), (3.2) and (3.3), we obtain:
1°2 =
iSZn—l (el +[_e2])z "= 2pz : (3.11)
= 1-2(2p*+q)z +9°2°
iszn (e, +[-e,])2" = Lz , (3.12)
~ 1—2(2p2+q)z +9%z°
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c n_ 2p
§82n+1(e1+[—e2])z _1—2(2p2+q)z +q%z? (3.13)

respectively, and we have the following theorems.

Theorem 3.5. For n €N, the new generating function of even Gaussian (p,q)-Pell numbers is
given by

= n_i+(2p—i(4p2+q)>z

2" = . 3.14
e 1-2(2p*+q)z +9°z° (3.14)

Proof: Recall that, we have
GP, . =iS (e +[-e ]) (1-2ip)s, (e1+[—e2]), (see [1])
By setting n =2n, we get

GP, 420 =1S,, (&, +[€,])+(1-2ip)S,, 4 (6, +[ e, ])-

SGP, (22" = i(is2n (e, +[-e,])+(1-2ip)S,, (el+[—e2]))z "

-0
:iiSZn(eﬁ[—e ])z" +(1-2ip) iSZHl(e +[-e,])z".
n=0

Multiplying the equation (3.12) by (i) and adding it to the equation obtained by
(3.11) multiplying by (1—2ip), then we obtain the following equality:

i i (1-0z) (1-2ip)2pz
Z = +
= P 1—2(2p2+q)z +q%z2 1—2(2p2+q)z +0%z2

i +(2p —i (4p°? +q))z
B 1-2(2p*+q)z +q°2° '

Hence, we obtain the desired result.

Theorem 3.6. For n eN, the new generating function of even Gaussian (p,q)-Pell Lucas
numbers is given by
2-2ip +(2|p 4p2+3q)— (2p2+q))z

DOG "= . 3.15
nZ::S Qan? 1- 2(2p +q)z +0222 (315
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Proof: By referred to [1], we have
GQ, .. =(2-2ip)s, (e1+[—e2])+(i (4p2+2q)—Zp)SH(eﬁ[—ez]).

By the same method given in Theorem 3.5, the proof can be easily made.

Theorem 3.7. For n e N, the new generating function of odd Gaussian (p,q)-Pell numbers is
given by

iGPp,q,Zm—lZ - 1+q(2ip-1)z

= 3.16
— 1-2(2p®+q)z +q°z* (3.16)

Proof: By referred to [1], we have

GP, ,.n =iS, (&, +[-€,])+(1-2ip)S, , (¢, +[e,]), (see [1]).

By putting n =2n +1, we get

GP, 4 201 =155, (6, +[€,]) +(1-2ip)S,, (e, +[ e, ])-

SP, g ans2 " = (1S 0 (6, +[€,]) + (1-2p)S, (6, + [, ]))2"

n=0 n=0
=i§:52n+1(91+[—e ])z" +(1-2ip) iSZH( —e,])z".
n=0 n=0

Multiplying the equation (3.13) by (i) and adding it to the equation obtained by (3.12)
multiplying by (1-2ip), then we obtain the following equality:

S ; 2ip (1-2ip)(1-0qz)
GP 2" =
nzz(; PO 1-2(2p% +q)z +q72° +1—2(2p2+q)z +q%z2
_ 1+g(2ip-1)z
_1—2(2p2+q)z +q2z?

This completes the proof.

Theorem 3.8. For n eN, the new generating function of odd Gaussian (p,q)-Pell Lucas
numbers is given by

- 2p+2iq+2q(p—i(2p°+q))z
ZGQp,q,2n+lz "= ( ( ))
n=0

1-2(2p*+q)z +q%2°

(3.17)
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Proof: It is well-known from [1] that
GQ, .. =(2-2ip)s, (e1+[—e2])+(i (4p2+2q)—Zp)SH(eﬁ[—ez]).
By the same method given in Theorem 3.7, the proof can be easily made.
e If we take p =g =1 in the relationships (3.14), (3.15), (3.16) and (3.17), we get the new

generating functions of even and odd Gaussian Pell and Gaussian Pell Lucas numbers.
The calculation and results are listed in the Tab.2.

Table 2. Generating functions for even and odd Gaussian Pell and Gaussian Pell Lucas numbers.

Coefficient of z" Generating function
P, i+ (2-5i)z
1—6z+ z2
2-2i+2(7i —3)z
GQzn
Q. 1—6z+ z2
GP2n+1 w
1—6z+ z>2
24+2i4+2(1-3i)z
G n+
Qanes 1—6z+ z2
S e, —e, =1 . .
Case 3. The substitution of o in Egs. (3.1), (3.2) and (3.3), we obtain:
12 =
= z
S e, +[=e,|)z2"=———, 3.18
Z; o (0 [-2:]) 1-57 +4z72 (3.18)
= 1-2z
S, (e,+|-=e,|)z2"=———, 3.19
;2"(1 ) 1-57 +4z2 (3.19)
ism (e, +[,])z" = ;, (3.20)
~ 1-5z +4z°?

respectively, and we have the following theorems.

Theorem 3.9. For n €N, the new generating function of even Gaussian Jacobsthal numbers
is given by

> i +(2-3i)z

Gl 2" =—— . 3.21
Z an 2-10z +8z°2 (3:21)

Proof: We have

WWW.josa.ro Mathematics Section




Generating functions of even and odd ... Nabiha Saba, Ali Boussayoud, Mohamed Kerada 137

Writing (2n) instead of (n), we get
GJ,, =iEs2n (e1+[4e2])+(1—i§jsznl (e, +[-e,])-
iGJan "= i[%SZn (e +[—e2])+(1—i§j82n1 (e, +[—e2])jz "
S, (e, +[-€,])z" +(1—%j§82“(e1+[—e2])z n

Multiplying the equation (3.19) by ('5) and adding it to the equation obtained by
(3.18) multiplying by (1—‘5), then we obtain the following equality:

= ) i (1-2z) (2-i)z
Gl, z"=
Z; an 2(1—5z +422)+2(l—52 +422)
i +(2—3i)z
 2-107 +8z2°

Thus, this completes the proof.

Theorem 3.10. For n €N, the new generating function of even Gaussian Jacobsthal Lucas
numbers is given by

- 4-i +(7i —10)z
G "= . 3.22
HZ:(; Jan? 2-10z +82° (3.22)

Proof: We know that

. i 5i
Gj, :(Z—EJSH (el+[—e2])+[?— an_l(elJr[—ez]).
By the same method given in Theorem 3.9, the proof can be easily made.
Theorem 3.11. For n €N, the new generating function of odd Gaussian Jacobsthal numbers
is given by

© 2+2(i -2)z
Gl 2" = 3.23
23t 2-10z +82° (3.23)
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Proof: We have
i i
GJ, = ESn (e, +[_ez])+(l_§JS"‘l (e, +[.]).

Substituting n by (2n +1), we obtain

Then,

n=0 n=0
=I§ Szn+1(el+[_ez])znJ{l_%jzsw (e +[-e.])2".
n=0 n=0

Multiplying the equation (3.20) by ('3) and adding it to the equation obtained by
(3.19) multiplying by (1—‘5), then we obtain the following equality:

> - i (2-i)(1-2z)
Z%”Z“J '_2@—5z+4zzy+2@—5z+4zﬂ

C2+2(i -2)z
©2-10z +82%°

As required.

Theorem 3.12. For n €N, the new generating function of odd Gaussian Jacobsthal Lucas
numbers is given by

© . 2+4i +2(2-5i )z
Gjpni2" =
Z; Jan-a? 2-10z +8z°

(3.24)

Proof: Since

Gj, =(2—i5jsn (el+[—e2])+(%— an_l(eﬁ[—ez]).

By the same method given in Theorem 3.11, the proof can be easily made.
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3.2. ORDINARY GENERATING FUNCTIONS OF ODD AND EVEN GAUSSIAN
POLYNOMIALS

This part consists of two cases.

Case 1. The substitution of {eie_zezz =1 in Egs. (3.1), (3.2) and (3.3), we obtain:
:ZOSan (el +[—e2])z = 1—(4x +1§z +4x%z? (3.25)
ni;szn (el +[—e2])z = 1—-(4x 1_1)2;(1 4x°z?’ (3.26)
an;Sznu (el +[—e2])z = 1—-(4x +1)12 +4x%z27%’ (3.27)

respectively, and we have the following theorems.

Theorem 3.13. For neN, the new generating function of even Gaussian Jacobsthal
polynomials is given by

o i +(2-i (2x +1))z

GJ "= . 3.28
Z; n ()2 2-2(4x +1)z +8x%z? (3.29)
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Multiplying the equation (3.26) by (%) and adding it to the equation obtained by
(3.25) multiplying by (1—‘5), then we obtain the following equality:

i i(1-2xz) (2-i)z
GJ, (x)z" = +
Z; n () 2(1-(4x +1)z +4x°2%)  2(1-(4x +1)z +4x°2?)
_i+(2-i(2x+1))z
- 2-2(4x +1)z +8x%z?
Hence, we obtain the desired result.

Theorem 3.14. For n €N, the new generating function of even Gaussian Jacobsthal Lucas
polynomials is given by

4-i (i (6x +1)-2(4x +1))z

wG' "= . 3.29
nz:(; jon (X )2 2-2(4x +1)z +8x%z° (3.29)

Proof: We know that

Gj, (x):[Z—%an (e1+[—e2])+(i (ZX +%)—1}Sn_l(el+[—e2]), (see [10]).

By the same method given in Theorem 3.13, the proof can be easily made.

Theorem 3.15. For neN, the new generating function of odd Gaussian Jacobsthal
polynomials is given by

. 2+2x (i —2)z
- " _ _ 3.30
; 2n+l(X)Z 2_2(4)( +1)Z +8X222 ( )
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Multiplying the equation (3.27) by (%) and adding it to the equation obtained by
(3.26) multiplying by (1—‘5), then we obtain the following equality:

a [ (2-i)(1-2xz)
Xx)z" = +
= 2(1-(4x +1)z +4x%2%)  2(1-(4x +1)z +4x72?)
o 2+2x(i-2)z
C2-2(4x +1)z +8x %z

As required.

Theorem 3.16. For n €N, the new generating function of odd Gaussian Jacobsthal Lucas
polynomials is given by

© 2+4ix +2x (2-i (4x +1))z
G "=
Z; Jana (X)2 2-2(4x +1)z +8x%z?

(3.31)
Proof: Once more, by [10] we have

Gj, (x)=(2—%)5n (e1+[—e2])+(i (2x +%)—1}Sn_l(el+[—e2]).

By the same method given in Theorem 3.15, the proof can be easily made. So we omit
the proof.

Case 2. The substitution of {zle_e_zlz i Egs. (3.1), (3.2) and (3.3), we obtain:
1~2 =
= 2X2
S e, +|-e "= : 3.32
nzz(; s (6 +-2:])2 1—2(2x2+1)z +z° (3.32)
ism (e, +[-e,])2" = Lz , (3.33)
i 1—2(2x2+1)z +2°
= 2X
S "= , 3.34
Z:} o (6 +[2)2 1—2(2x2+1)z +z22 (3:39)

respectively, and we have the following theorems.

Theorem 3.17. For n €N, the new generating function of even Gaussian Pell polynomials is
given by
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iGP (x)2" = i +(2x —i (4x2 +1))z 5.35)
e B 1-2(2x*+1)z +2°

Proof: Recall that, we have
GP, (x)=iS, (e, +[-€,])+(1-2ix)S, (e, +[e,]). (see [10]).
Writing (2n) instead of (n), we obtain

GP,, (x ) =iS,, (e, +[e,])+(1-2ix)S,, , (e, +[¢,]).

Then,

¥t
o9
-
X
~
N
I
M+

(iS2n (e, +[-e,])+(1-2ix)S,, 4 (e, +[—e2]))z "

n=0 n

1

S, (6 +[—,])2 " +(1-2ix) nZ‘;SZ“(@ [-e,])z".

n

I
o

Multiplying the equation (3.33) by (i) and adding it to the equation obtained by
(3.32) multiplying by (1—2ix ) then we obtain the following equality:

© i(l—z) (1—2ix)2xz
X)Z = +
— 1—2(2x2+1)z 72 1—2(2x2+1)z 7?2

i +(2x —i (4x2+1))z
T 1-2(2x7 1)z +2°

Hence, we obtain the desired result.

Theorem 3.18. For neN, the new generating function of even Gaussian Pell Lucas
polynomials is given by

- n 2—2ix+(2ix(4x2+3)—2(2x2+1))z 216
Z; Qun (x)2" = 1-2(2x? +1)z +2° ' (3.30)

Proof: We have
GQ, (x)=(2-2ix)S, (e, +[-e,])+(i (4x*+2)-2x s, , (e, +[¢,])

By the same method given in Theorem 3.17, the proof can be easily made.
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Theorem 3.19. For n €N, the new generating function of odd Gaussian Pell polynomials is
given by
i 1+(2ix —1)z
x)z" = :
i 1—2(2x2+1)z +z°

(3.37)

Proof: In [10], we have
GP, (x)=iS, (e, +[-€,])+(1-2ix S, (e, +[-€,])-
Substituting n by (2n +1), we obtain

GP,,.; (X ) =18, (6, +[—€,]) +(1-2iX)S,, (e, +[-€,])-

Then,

P (2" = 3 (18104 (6 +[-,]) + (1-20X) S, (e, +[e,])) 2

n=0 n=0

MS

=i, (e +[€,]) 2" +(1-2ix) DS, (&, +[-e,]) 2"
n=0 n=0

Multiplying the equation (3.34) by (l) and adding it to the equation obtained by
(3.33) multiplying by (1-2ix ), then we obtain the following equality:

e 2ix (1-2ix )(1-2)
x)z" = +
prd 1—2(2x2+1)z +z22 1—2(2x2+1)z +22
B 1+(2ix -1)z
_1—2(2x2+1)z 472

Which completes the proof.

Theorem 3.20. For neN, the new generating function of odd Gaussian Pell Lucas
polynomials is given by

w oo +2i+(2x—i(4x2+2))z 233
§6Q2n+l(x)z - 1—2(2x2+1)z +27°2 ' (3:38)

Proof: Recall that, we have

GQ, (x)=(2-2ix)s, (e1+[ﬁez])+(i (4x2+2)-2x )sH(eﬁ[Jez]).
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By the same method given in Theorem 3.19, the proof can be easily made. So we omit
the proof.

4. CONCLUSION

In this paper, we have derived three Theorems (2.1, 2.2 and 2.3) by making use of
symmetrizing operator given by Definition 1.7. By making use these theorems, we have
obtained theorems which are led to generating function for a class of odd and even Gaussian
numbers and polynomials.
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