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A class of models, which describe the critical phenomena in anisotropic multidimensional systems with both 

higher-order spatial order parameter (OP) derivatives and higher OP nonlinearities is proposed. Such models may be 

useful in the study of phase transitions in early universe cosmology; inflation cosmology; superstring, p-branes and 

other non-point objects theories. Both the upper and the lower critical dimensions of the models were calculated. It 

allows one to define the ranges of the mean-field theory applicability for describing critical phenomena in the 

proposed models. 
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INTRODUCTION 

The concept of the physical dimension of space has 

remained unchanged for a long time. The question of 

the number of dimensions was more a philosophical 

problem than a natural science problem. Of course, in 

physics and the corresponding areas of mathematics, 

various abstract spaces of different dimensions 

(configuration space, etc.) were used to describe various 

physical phenomena. However, there were no serious 

reasons to doubt the three-dimensionality of physical 

space. The progress of physics in the 20th century 

brought important changes to this picture. One of the 

most important steps along this path was the invention 

of the general theory of relativity. A clear “picture” of 

three-dimensional Euclidean space and one-dimensional 

time was replaced by a four-dimensional Riemannian 

space-time. Further progress in physics, especially in 

areas such as elementary particle physics and 

cosmology, raised many questions about the dimension 

of space. Is the dimension of space equal to three, is it 

constant. Spaces of different types of M-theory, spaces 

of different types of cosmology of the early universe, 

etc. are examples of spaces of different dimensions. 

Other examples of changing ideas about the 

dimension of space can be seen in the theory of critical 

phenomena. The development of the fluctuation theory 

of phase transitions led to a significant revision of the 

function of the dimension of space in thermodynamics 

[1]. The dimension of space appears in the equations of 

thermodynamics along with other material parameters 

and behaves as a continuous real quantity. 

Initially, the basic objects of application of the 

theory of phase transitions were various systems of the 

condensed state. However, such foundations of the 

phase transitions PT theory as spontaneous symmetry 

breaking and the group-theoretical approach are also the 

foundations of the theory of elementary particles [2]. 

Theories of the early universe, the concept of the 

multiverse also have a close relationship with the theory 

of phase transitions. 

The object of the article is a model describing phase 

transitions in anisotropic systems of arbitrary 

dimensions. 

SPACE DIMENSION IN THE THEORY OF 

CRITICAL PHENOMENA 

So, what role plays space dimension in the theory of 

critical phenomena. In the vicinity of points of 

“symmetry breaking” or, in other words, points of PT 

fluctuations of the order parameter and other physical 

values become very big. The influence of fluctuations 

strongly depends on space dimension. One of the 

consequences of these dependencies is the existence of 

two critical (borderline) dimensions (lower and upper). 

The definition of the lower critical dimension (dl) is 

as follows: if the dimension of space is less than dl, then 

the phase transition at a nonzero temperature is not 

possible. I.e. the existence of any ordering states is 

possible only if d> dl [3]. 

The upper critical dimension (du) determines the 

range of applicability of the mean-field approximation 

in the theory of critical phenomena. In addition, systems 

in the space of upper critical dimensions have some 

important properties. They are renormalizable and 

invariant under the scale transformations. These 

properties greatly facilitate the analysis and solution of 

the corresponding variational equations. 

The critical dimensions divide axe d into three 

regions [4]: 

d<dl: the existence of any ordering states is 

impossible. 

dl<d<du: phase transitions are possible, but the 

mean-field approximation is invalid. 

d>du: fluctuations are suppressed, the mean-field 

approximation is valid. 

Critical dimensions are important not only as 

boundaries separating spaces with different types of 

critical behavior. They are important when using 

methods based on the renormalization group theory. 

MULTICRITICAL AND LIFSHITZ POINTS 

We want to introduce a model that describes system 

with critical point of new type. Let us consider the 

thermodynamic potential (TP) of the following form 

[5]: 
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where η is the order parameter depending on the space 

coordinate; ∇η is the gradient of order parameter; ai, cj 

are the material parameters depending on the external 

fields. 

To describe the phase transitions in the vicinity of 

the usual critical point it is sufficient to take into 

account the terms with coefficients a2, a4, c1. In this case 

a4>0, c1>0 are the positive values and a2 changes the 

sign in the point of the phase transition. It is an example 

of one of the simplest model with broken symmetry. 

A well-known example of an anisotropic system is a 

system with the Lifshitz point [6]. Originally, the 

conception of the Lifshitz point was introduced to 

describe the phase transition in systems with anisotropic 

magnetic properties. Recently it has been often used in 

the theory of black halls, quantum gravity, and 

cosmology. The critical phenomena in the systems with 

the critical Lifshitz point of the first order might be 

described by taking into account the fact that the 

coefficient c1 vanishes at the point of phase transition. 

Thus, it is necessary to consider the term with a positive 

coefficient c2. If the system has the Lifshitz point of the 

p-1 order, then in TP the terms with the coefficients c1, 

c2, cp-1 can change their signs, so the terms up to 

cp(∇
p
η)

2
 must be taken into account. The TP for a 

system with Lifshitz point of (d, m) type in the vicinity 

of the critical point: 
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Here η(x) is the one-component order parameter; d is 

the physical space dimension and r, γ, δ, β, u are the 

material parameters. We assume that the physical space 

consists two subspaces of dimensions m and d-m 

denoted by i and c respectively. There are the wave 

modulation vectors in the first subspace and are not in 

the second one. We consider d and m as continuous 

variables and. Δi and Δc are the Laplacian operators in 

the corresponding subspaces. Such model even in 

simplest one-dimensional case allows one to describe a 

parametric evolution of ordep parameter field with 

different tipes of soliton-like states [7]. 

The highest OP nonlinearity in model (2) equals 4. 

Systems with OP nonliniarities higher than 4 are known 

as systems with multicritical points [8]. TP for such 

systems looks as follows: 

2 1...
2

Nr
u      . 

In [9] critical behavior in a system with joint 

tricritical (N = 4) and Lifshitz point was described. 

In [10] was proposed a model which describes the 

system with joint multicritical (arbitrary N) and Lifshitz 

behavior. Corresponding TP has the following form: 
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The corresponding dispersion law looks as: 
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The main property of systems with Lifshitz point is 

the anisotropic scaling. The considered system is 

invariant under variational scale transformation if the 

dimension of space coincides with upper critical one. 

Generator of corresponding scale transformation: 

 
1 1

.
2 2c i

N N
X

x p x 

    
   

  
 (5) 

As was mentioned above the existence of symmetry 

(5) is very helpful while analyzing the variational 

equations which describe the OP spatial distributions. 

In models (2) and (3) the whole physical space is 

considered to be separated into two subspaces with two 

different types of critical behavior. In this paper, we 

generalize these models considering the physical space 

separating into an arbitrary number of subspaces with 

arbitrary dimensions. 

MODEL WITH AN ARBITRARY NUMBER 

OF SUBSPACES WITH ARBITRARY 

DIMENSIONS 

Lets consider a system with space consisting of k 

subspaces (indexed by α) with dimensions mά. The 

order of gradient in subspace denoted by α is equal to 

pα. 

The thermodynamic potential:   
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The corresponding dispersion law looks as: 
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This model allows one to study the critical 

phenomena in the multidimensional anisotropic systems 

with higher nonlinearities. We want to calculate lower 

and upper critical dimensions for such systems. 

To calculate the lower critical dimension we have to 

consider a fluctuation contribution to entropy in vicinity 

of critical point. 
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d

flS s
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                                  (8)

 Here τ=(T-Tc)/Tc is reduced temperature and σ is a 

function of space dimension. We want to study the 

critical behavior of Sfl  in the vecinity of the critical 

point: 
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One can see that under condition Tc ≠ 0 the 

fluctuation contribution to entropy is a divergent 

function if σ (d)<0, so appearance of ordering states is 
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impossible. Otherwise, the fluctuation contribution to 

entropy goes to zero. Thus, one can find lower critical 

dimension from condition: 

   0ld  .       (10) 

To find temperature dependencies of entropy we use 

the following expression: 
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Here Gfl is a fluctuation contribution to 

thermodynamic potential [11]: 
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From eq.(11) and eq.(12) we have: 
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After some manipulations: 
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Here I(q) does not depend on temperature. And: 
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In order to find dl let pk=1, we can do it by 

renumbering the subspaces. 

 

1

1 1

1 1 1

1 1 1

1
1 .

k k
j j

k

j jj j

k k k
j

j j

j j jj j

m m
m

p p

m
d m d m

p p



 

  

  

  

 
     

 
 

 

  

  (14) 

And finally: 
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We see that lower critical dimension does not 

depend on power of nonlinearities of system. Some 

properties of dl we will discuss later. 

There are a few ways to calculate upper critical 

dimension.  

First of them is similar to way we have calculated dl. 

One should compare fluctuation contribution to entropy 

with its equilibrium value. 

The second one is to find du from stability condition 

of fixed point of corresponding renomgroup 

transformation. 

We will find it from the condition of scale 

variational invariance. Scale variational invariance is 

very important property of models of type (6). It allows 

one to simplify the analysis of the corresponding 

differential equations [12] Lets consider the invariance 

of model (6) under the following transformations: 
* *,x x      . 

This condition looks as a set of k+1 equations under 

k+1 variables (μα, τ): 
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Compatibility condition of the equations (16) is 

vanishing of determinant: 
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After some manipulations: 
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From D=0, taking into account (14) one can find 

expression for du: 
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CONCLUSIONS 

From (15) and (17) one can find a range of the 

fluctuation region. It depends on power of the 

nonlinearity and does not depend on anisotropic features 

of our system (Figure). 
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Dependency of the range of the fluctuation region on 

the power of nonlinearity of the model 

From 18 follows: 

  lim 0u l
N

d d

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So, the “fluctuation region” decreases as function of 

power of nonlinearity. This fact is physically 

reasonable. Strong coupling damps the fluctuations. 

Lets consider what types of anisotropic system in 

classic 3 and relativistic 4 dimensional spaces allow the 

existing of ordering states.  

There are 2 types of anisotropic systems in three-

dimensional space: 

1) usual critical point (without anisotropy); 

2) 1-axe Lifshitz point. 

In case of 4-dimensional space: 

1) usual critical point (without anisotropy); 
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2) 1; 2; 3 – axe Lifshitz point; 

3) 1; 2 – axe Lifshits point of order p>2. 

In general case: for some initial order of Lifshitz 

point – p, the ordering in space with dimensionality 

d>2p with any kind of anisotropy is possible. In case of 

d≤2p there are various situations and this case demands 

extra investigation. 

As expected, the lower critical dimension of any 

systems is not less than 2. The obtained results are 

correct for classical PTs. As it is known, in the theory of 

quantum PTs the effective dimension of a system in the 

vicinity of the quantum critical point is higher than a 

dimension of space [13]. Therefore, it is apparent that 

there are more possible types of PTs in a quantum case. 

In particular, our results do not contradict a possibility 

of quantum PTs in two-dimensional systems.  

REFERENCES 

1. A.Z. Patashinskii and V.L. Pokrovskii. Fluctuation 

Theory of Phase Transition. Pergamon Press, New 

York, 1979. 

2. A.I. Olemskoy, V.F. Klepikov. The theory of 

spatiotemporal patterns in nonequilibrium systems // 

Physics Reports. 2000, v. 338, p. 571-677. 

3. A.M. Polyakov. Gauge Fields and Strings. 

Switzerland: Harwood Academic Publishers, 1987. 

4. A.V. Babich, L.N. Kitcenko, V.F. Klepikov. Critical 

dimensions of systems with joint multicritical and 

lifshitz-point-like behavior // Modern Physics 

Letters B. 2011, v. 25, No. 22, p. 1839-1845. 

5. J. C. Toledano and P. Tol´edano. The Landau 

Theory of Phase Transitions. Application to 

Structural, Incommensurate, Magnetic and Liquid 

Crystal Systems. World Scientific, 1987. 

6. R.M. Hornreich, M. Luban, and S. Strikman // Phys. 

Rev. Lett. 1975, v. 35, p. 1678. 

7. A.V. Babich, S.V. Berezovsky, V.F. Klepikov. 

Soliton like order parameter distributions in the 

critical region // Condensed Matter Physics. 2006, 

v. 9, No 1(45), p. 121-125; DOI:10.5488/CMP.9.1.121 

8. A.D. Bruce and R.A. Cowley. Structural Phase 

Transitions. Taylor and Francis Ltd, London, 1981. 

9. Yu.M. Vysochanskii, V.Yu. Slivka. Lifshitz point 

on the state diagram of ferroelectrics // 

Sov. Phys. Usp. 1992, v. 35 (2), p. 123-134. 

10. A.V. Babich, L.N. Kitcenko, V.F. Klepikov. 

Critical dimensions of systems with joint 

multicritical and lifshitz-point-like behavior // 

Modern Physics Letters B. 2011, v. 25, No. 22. 

1839-1845. DOI: 10.1142/S021798491102708X 

11. L.D. Landau, E.M. Lifshitz. Statistical Physics. 

V. 5 (3rd ed.). Butterworth-Heinemann, 1980. 

12. A.V. Babich, L.N. Kitcenko, V.F. Klepikov. 

Modulated structures in materials under irradiation // 

Problems of Atomic Science and Technology. 2014, 

No. 2(90). 

13. S. Sachdev. Quantum Phase. Cambridge: 

Cambridge University Press, 2011; 

doi:10.1017/CBO9780511973765. 

 

 

  Article received 27.05.2022 

 

КРИТИЧНІ ЯВИЩА В АНІЗОТРОПНИХ БАГАТОМІРНИХ СИСТЕМАХ 

А.В. Бабіч, В.Ф. Клепіков 

Запропоновано клас моделей, що описують критичні явища в анізотропних багатовимірних системах як з 

вищими просторовими похідними параметрів порядку (ПП), так і з вищими нелінійностями ПП. Такі моделі 

можуть бути корисні при вивченні фазових переходів у космології раннього Всесвіту; інфляційної 

космології; теорії суперструн, p-бран та теоріях інших багатовимірних протяжних об'єктів. Були розраховані 

як верхня, так і нижня критичні розмірності запропонованих моделей. Це дозволяє визначити області 

застосування теорії середнього поля для опису критичних явищ у пропонованих моделях. 
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